JPS6310074A - Generating method for laminated pattern of multi-layer welding - Google Patents

Generating method for laminated pattern of multi-layer welding

Info

Publication number
JPS6310074A
JPS6310074A JP15222786A JP15222786A JPS6310074A JP S6310074 A JPS6310074 A JP S6310074A JP 15222786 A JP15222786 A JP 15222786A JP 15222786 A JP15222786 A JP 15222786A JP S6310074 A JPS6310074 A JP S6310074A
Authority
JP
Japan
Prior art keywords
groove
welding
weld
sectional shape
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15222786A
Other languages
Japanese (ja)
Other versions
JPH0475117B2 (en
Inventor
Tsutomu Fujita
勉 藤田
Kazuo Tomimatsu
一雄 富松
Hiroyuki Yamada
弘幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP15222786A priority Critical patent/JPS6310074A/en
Publication of JPS6310074A publication Critical patent/JPS6310074A/en
Publication of JPH0475117B2 publication Critical patent/JPH0475117B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To automatically generate a laminated pattern of multi-layer welding by synthesizing a groove sectional shape which has been derived from a weld joint dimension data, and a groove shape which has been brought to an image processing, by a computer, and operating and determining the number of weld layers and the number of weld passes. CONSTITUTION:In case a pipe intersection joint 3 of a base pipe 1 and a branch pipe 2 is brought to groove multi-layer welding, a sectional shape of a groove which has been formed, based on a dimension data of a weld joint 3 is operated and derived by a computer. Also, a groove image by an image pickup means is derived. By synthesizing body of them, a groove sectional shape data is synthesized. By this synthesized data and an allowable limit value of thickness of the layer and width of the pass, the number of weld layers and the number of weld passes of each weld layer are determined. By comparing with groove welding by a conventional manual work of pipe intersection joint 3 whose groove sectional shape is varied continuously, the efficiency of the welding work is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶接継手に形成された開先を多層溶接する
際の溶接層の積層パターンを作成する多層溶接の積層パ
ターン作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for creating a lamination pattern for multilayer welding, which creates a lamination pattern of weld layers when performing multilayer welding on a groove formed in a welded joint.

〔従来の技術〕[Conventional technology]

一般に、第9図に示すように、母管(1)と枝管(2)
との管相貫継手(3)などの溶接継手に形成されたくら
型溶接線を有する開先を多層溶接する場合、主として手
溶接が採用されており、このとき溶接作業者が開先の幅
、深さなどによる開先断面形状にもとづいて代表的な積
層パターンを作成し、作成した積層パターンに応じて手
溶接を行なっている。
Generally, as shown in Figure 9, the main pipe (1) and the branch pipe (2)
When performing multilayer welding on a groove with a hollow weld line formed in a welded joint such as a pipe-penetrating joint (3), manual welding is mainly used. A typical lamination pattern is created based on the cross-sectional shape of the groove depending on the depth, etc., and manual welding is performed according to the created lamination pattern.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記した管相貫継手(3)の場合、開先の溶接
線がくら型になり、当該開先の断面形状が連続的に複雑
に変化するため、溶接作業者が熟練者であっても、前記
くら型溶接線上の各点における前記開先の断面形状に合
った積層パターンを作成することは非常に困難であり、
溶接の途中で試行錯誤的に積層パターンを新たに作成し
、変更しなければならず、手間がかかり、作業能率の向
上を図ることができないという問題点がある。
However, in the case of the pipe-penetrating joint (3) described above, the weld line of the groove becomes hollow-shaped, and the cross-sectional shape of the groove changes continuously and in a complicated manner, so it is difficult for the welding operator to be an expert. However, it is very difficult to create a lamination pattern that matches the cross-sectional shape of the groove at each point on the saddle-shaped weld line,
There is a problem in that a new lamination pattern must be created and changed by trial and error during welding, which is time consuming and does not improve work efficiency.

そこで、この発明では、演算および撮像手段による測定
により得られる溶接継手の開先の断面形状データにもと
づき、開先の溶接線上の各点での積層パターンを作成し
、作成した積層パターンにより溶接ロボット等による開
先の自動多層溶接を可能にすることを技術的課題とする
Therefore, in the present invention, a lamination pattern is created at each point on the weld line of the weld joint based on the cross-sectional shape data of the groove of the weld joint obtained by calculation and measurement using an imaging means, and the welding robot uses the created lamination pattern to The technical challenge is to enable automatic multi-layer welding of grooves using methods such as the following.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、前記の点に留意してなさ゛れたものであり
、溶接継手の寸法データにもとづき、前記継手に形成さ
れた開先の断面形状を演算により導出するとともに、撮
像手段による前記開先の画像を処理して実際の前記開先
の断面形状を導出し、前記演算および前記画像処理によ
り導出された前記開先の断面形状データを合成し、合成
した前記開先の断面形状データおよび層厚、パス幅の許
容限界値等にもとづき、溶接層数および各溶接層の溶接
パス数を決定し、前記開先の積層パターンを作成するこ
とを特徴とする多層溶接の積層パターン作成方法である
The present invention has been made with the above-mentioned points in mind.Based on the dimensional data of the welded joint, the cross-sectional shape of the groove formed in the welded joint is derived by calculation, and the shape of the groove formed in the welded joint is calculated. Process the image to derive the actual cross-sectional shape of the groove, synthesize the cross-sectional shape data of the groove derived by the calculation and the image processing, and synthesize the cross-sectional shape data of the groove and the layer. A method for creating a laminated pattern for multilayer welding, characterized in that the number of weld layers and the number of welding passes for each weld layer are determined based on allowable limit values of thickness, pass width, etc., and a laminated pattern of the groove is created. .

〔作 用〕[For production]

したがって、この発明によると、溶接継手の寸法データ
にもとづき、演算により該n手の開先の断面形状が導出
されるとともに、撮像手段による開先画像の処理により
開先の断面形状が導出され、演算および画像処理による
開先の断面形状データが合成され、層厚、パス幅の許容
限界値等にもとづき溶接層数および各溶接層の溶接パス
数が決定されて積層パターンが作成される。
Therefore, according to the present invention, the cross-sectional shape of the n-shaped groove is derived by calculation based on the dimensional data of the welded joint, and the cross-sectional shape of the groove is derived by processing the groove image by the imaging means, The groove cross-sectional shape data obtained through calculation and image processing is synthesized, and the number of welding layers and the number of welding passes for each welding layer are determined based on the allowable limit values of layer thickness and pass width, etc., and a lamination pattern is created.

このとき、コンピュータ等により、演算および画像処理
による開先の断面形状データの合成およ。
At this time, the cross-sectional shape data of the groove is synthesized by calculation and image processing using a computer or the like.

び溶接層数、溶接パス数の決定を行なえ、自動的に積層
パターンを作成することが可能となり、溶接ロボット等
による開先の多層溶接を自動的に行なえることになる。
It becomes possible to determine the number of welding layers and welding passes, automatically create a lamination pattern, and automatically perform multilayer welding of grooves using a welding robot or the like.

〔実施例〕〔Example〕

つぎに、この発明を、そのl実施例を示した第1図ない
し第8図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 8 showing embodiments thereof.

まず前記第9図中に示すように、母管(1)の中心線方
向をX軸とし、当該中心線に直交する2方向をそれぞれ
Y軸、Z軸とするXYZ座標系を考え、くら型溶接線上
の部分交差点Pにおける部分交差角ψを求める場合につ
いて説明する。
First, as shown in FIG. 9, we consider an XYZ coordinate system in which the direction of the center line of the main pipe (1) is the X axis, and the two directions orthogonal to the center line are the Y and Z axes, respectively. A case will be described in which the partial intersection angle ψ at the partial intersection P on the weld line is determined.

このとき、継手(3)の寸法データとして母管(1)の
半径をR1枝管(2)の半径をr、X軸の正方向を基準
としたときの枝管(2)の中心!l1mに直交する断面
の扇の中心角すなわち進行角をθ、母管(1)および枝
管(2)の中心線のなす角をα、X軸の負方向から見て
点Pと座標原点Oを結ぶ線nと2軸とのなす角を−ξと
すると、点Pにおいて母管(1)に接する平面の式は、 0−X+sinξ・Y+abξ−Z = R−・・■と
なり、同様に点Pにおいて枝管(2)に接する平面の式
は、 sinα−5inθ・X−abθ−Y−cnaα・si
nθ、Z=r    ・−■となり、これらの2個の平
面のなす角である部分交差角ψは、 朗ψ= sin f+曲θ十朗ξ+sinθe朗α  
       …■で表わされ、これより部分交差角ψ
は、となる。
At this time, as the dimensional data of the joint (3), the radius of the main pipe (1) is R1, the radius of the branch pipe (2) is r, and the center of the branch pipe (2) when the positive direction of the X axis is the reference! The central angle of the sector of the cross section perpendicular to l1m, that is, the advancing angle is θ, the angle between the center lines of the main pipe (1) and the branch pipe (2) is α, and the point P and the coordinate origin O when viewed from the negative direction of the X axis. If the angle between the line n connecting the two axes is -ξ, then the equation of the plane tangent to the main pipe (1) at point P is 0-X+sinξ・Y+abξ-Z=R-...■ The equation of the plane in contact with the branch pipe (2) at P is sin α-5inθ・X-abθ-Y-cnaα・si
nθ, Z=r ・−■, and the partial intersection angle ψ, which is the angle formed by these two planes, is: ro ψ = sin f + song θjuro ξ + sinθero α
...■, and from this, the partial intersection angle ψ
becomes.

そして、前記したように、継手(3)の寸法データにも
とづき、開先の断面形状を求める場合について説明する
Then, as described above, the case where the cross-sectional shape of the groove is determined based on the dimensional data of the joint (3) will be explained.

このとき、AWS、API、BP/MAGNUS  規
格により、部分交差角ψと開先角にとの関係が次のよう
に定められている。
At this time, the AWS, API, and BP/MAGNUS standards define the relationship between the partial intersection angle ψ and the groove angle as follows.

中AWS規格(片面開先) ■ψ<900のとき        K=ψ/2■90
°≦ψ<135°のとき     K=45゜■ψ≧1
85°のとき        K=ψ−90゜(n)A
 p I規格(片面開先) ■ψ<900のとき         K=ψ/2■9
0’≦ψ≦150°のとき    K=45゜(ii)
BP/MAGNU8規格(両面開先)■ψ≦45°のと
き         K=ψ@45°くψ≦90°のと
き     K=ψ/2■90°くψ<135°のとき
    K=45゜@ψ≧185°のとき      
  K=ψ−900いま、第3図(a)はAWSおよび
API規格の片面開先における溶接線に直交した平面で
の開先断面を示しており、部分交差角ψがたとえば90
’≦ψ≦135°であると、前記したように、開先角に
は45゜となシ、従って枝管(2)の肉厚をも、開先の
枝管(2)側の端縁から母管(1)に降した垂線の長さ
をり、母管(1)の表面上での開先自溶接部および開先
性溶接部の合計長さり、開先底を通り母管(1)の表面
に直交する直線に、開先の枝管(2)側の端縁から降し
た垂線の長さをdとすると、 となる。
Medium AWS standard (single side groove) ■When ψ<900 K=ψ/2■90
When °≦ψ<135° K=45°■ψ≧1
At 85° K=ψ−90°(n)A
p I standard (single side groove) ■When ψ<900 K=ψ/2■9
When 0'≦ψ≦150° K=45° (ii)
BP/MAGNU8 standard (double-sided bevel)■When ψ≦45°K=ψ@45°≦90°K=ψ/2■When 90°≦135°K=45゜@ψ When ≧185°
K=ψ-900 Now, Fig. 3(a) shows a groove cross section in a plane perpendicular to the weld line in a single-sided groove according to the AWS and API standards, and if the partial intersection angle ψ is, for example, 90
If '≦ψ≦135°, as mentioned above, the groove angle will be 45°, and therefore the wall thickness of the branch pipe (2) will also be set at the edge of the groove on the side of the branch pipe (2). Calculate the length of the perpendicular line that descends from Let d be the length of the perpendicular line drawn from the edge of the branch pipe (2) side to the straight line perpendicular to the surface of the groove.

つぎに、第3図(b)はBP/MAGNUS  規格の
両面開先における溶接線に直交した平面での開先断面を
示しており、部分交差角ψがたとえば1200≦ψ〈1
35°であると、前記したように、該交差角側すなわち
溶接の施工可能な開先側の開先角には45゜となり、従
って前記した第3図(a)と同様に枝管(2)の肉厚も
、長さhおよびLを定め、さらに枝管(2)の当該開先
側の肉厚をtcとすると、 となる。
Next, FIG. 3(b) shows a groove cross section in a plane perpendicular to the weld line in a double-sided groove according to the BP/MAGNUS standard, and the partial intersection angle ψ is, for example, 1200≦ψ<1
If it is 35°, as described above, the groove angle on the intersection angle side, that is, the groove side where welding can be performed, will be 45°, and therefore, the branch pipe (2 ), the lengths h and L are determined, and the wall thickness on the groove side of the branch pipe (2) is defined as tc.

従って、第4図に示すように、溶接線に直交した平面で
の開先断面において、開先底を点Aとし、点Aを通る開
先角にの2等分線lを想定し、開先の枝管(2)側の端
縁を点B2点Bから前記2等分線jに降した垂線と母管
(1)の表面との交点を点C2開先外溶接部の端部を点
りとすると、 AD=AC+CD=L AC=AB sinK = h /A B であるため、母管(1)の表面上の開先性溶接部の長さ
CDは、 CD−L−AC=L−一   ・・・■5inl( で与えられることになり、前記したAW8 、 API
 。
Therefore, as shown in Fig. 4, in the groove cross section on a plane perpendicular to the weld line, the bottom of the groove is assumed to be point A, and a bisector l of the groove angle passing through point A is assumed. The edge of the previous branch pipe (2) side is set at point B2, and the intersection of the perpendicular line drawn from point B to the bisector j and the surface of the main pipe (1) is set at point C2. Assuming points, AD=AC+CD=L AC=AB sinK=h/A B Therefore, the length CD of the groove weld on the surface of the main pipe (1) is CD-L-AC=L -1...■5inl ( will be given by the above AW8, API
.

BP/MAGNUS の各規格の開先に対する開先断面
の各寸法を、前記した■、■、■、■式の演算により導
出し、たとえば進行角θが5°ごとの開先断面形状デー
タを導出しておく。
The dimensions of the groove cross section for each standard groove of BP/MAGNUS are derived by calculating the above formulas ■, ■, ■, ■, and for example, the groove cross section shape data for every 5 degrees of advance angle θ is derived. I'll keep it.

つキニ、テレビジョンカメラ等の撮像手段(図示せず)
により、継手(3)の開先を実際に撮像し、画像処理手
段により前記開先の画像を処理し、進行角θが5°ごと
の溶接線上の各点における実際の前記開先の断面形状を
導出し、演算により導出した前記開先の断面形状データ
と、画像処理により導出した前記開先の断面形状データ
とを合成する。
Imaging means such as camera, television camera, etc. (not shown)
, the groove of the joint (3) is actually imaged, the image of the groove is processed by an image processing means, and the actual cross-sectional shape of the groove at each point on the welding line with an advancing angle θ of 5° is obtained. The cross-sectional shape data of the groove derived by calculation and the cross-sectional shape data of the groove derived by image processing are combined.

このとき、画像処理により得られる開先の断面形状デー
タは開先自溶接部のみのデータであり、前記した第4図
でいうと、三角形ABCのデータのみであるため、開先
性溶接部である三角形BCDのデータ、とくに点0.D
間の長さを演算による開先断面形状データの合成により
補うことになる。
At this time, the cross-sectional shape data of the groove obtained by image processing is only for the groove self-welded part, and in the case of FIG. 4, it is only for the triangle ABC. Data of a certain triangle BCD, especially point 0. D
The length between the grooves is compensated for by combining the groove cross-sectional shape data through calculation.

そして、合成により得られた開先断面形状データにもと
づき、開先内に形成すべき溶接層数および各溶接層の溶
接パス数を決定して積層パターンを作成する。
Then, based on the groove cross-sectional shape data obtained by the synthesis, the number of weld layers to be formed within the groove and the number of welding passes for each weld layer are determined to create a lamination pattern.

このとき、溶接品質の維持や溶接の連続性などの面から
次のような規則を設け、これらの規則に従って積層パタ
ーンの作成を行なう。
At this time, the following rules are established from the viewpoint of maintaining welding quality and welding continuity, and the laminated pattern is created in accordance with these rules.

(1)溶接トーチの姿勢ごとに予め定められた層厚、パ
ス幅の許容限界内の値に各溶接層厚。
(1) The thickness of each welding layer is set to a value within the permissible limits of the layer thickness and pass width determined in advance for each orientation of the welding torch.

各溶接パス幅を定める。Define the width of each welding pass.

(11)溶接線上の各点における開先内での同一溶接層
に対する溶接パス数が同じになるようにする。
(11) The number of weld passes for the same weld layer within the groove at each point on the weld line should be the same.

すなわち、第5図に示すように、開先Wのa−a断面、
b−b’断面、c−c’断面での同じ溶接層に対する溶
接パスパターンを図中のクロスハツチング部分のように
定めると、2パス以上の −a/断面と1パスのb−b
’断面目の施工時にわずかな未溶接部が残存することに
なり、このような不都合の防止を図るための項目である
That is, as shown in FIG. 5, the a-a cross section of the groove W,
If weld pass patterns for the same weld layer in the b-b' and c-c' sections are defined as shown in the cross-hatched area in the figure, two or more passes of the -a/ section and one pass of the b-b
A small amount of unwelded parts will remain during construction of the cross-section, and this item is intended to prevent such inconvenience.

(iff)  層厚は4朋を標準とし、その他の規則、
開光断面形状に応じて適宜増、滅する。
(if) The standard layer thickness is 4 mm, and other rules,
It increases or decreases as appropriate depending on the cross-sectional shape of the light.

4V)  溶接線上の各点において、開先内の各溶接層
の層厚は同一にする。
4V) The thickness of each weld layer within the groove shall be the same at each point on the weld line.

(v)連続溶接施工範囲において、溶接線上の各点での
溶接層数の増減を繰り返さないようにする。
(v) Avoid repeating increases and decreases in the number of weld layers at each point on the weld line in the continuous welding area.

6/D  開先外では溶接層数が1増加するごとに溶接
パス数をl減少させる。
6/D Outside the groove, the number of weld passes is decreased by 1 for each increase in the number of weld layers.

ところで、通常継手(3)を溶接する場合、枝管(2)
を横置きの状態にし、たとえばT型の継手では第6図(
a)中の矢印に示すように、溶接線Lwの最下点である
進行角θ=00の点から最上点までθの正方向および負
方向にそれぞれ180’ 、すなわち進行角θが+18
0°および−1800となるように上進溶接が行なわれ
、Y型の継手では同図(b)中の矢印に示すように、T
型継手と同様に溶接線Lwの進行角θ=00から+18
0°および一180°となるように上進溶接が行なわれ
ルカ、同図(b) 17)場合θ=+800〜+150
’ t テの範囲は、母管(1)、枝管(2]と溶接ロ
ボットのトーチとが干渉して自動溶接が不可能となるた
め、手動溶接を行なう必要があり、従って、連続溶接範
囲の始点、終点を示す進行角θS、θeを予め求めてお
き、θS≦θ≦θeの範囲での開先断面形状データを導
出し、導出した開先断面形状データおよび前記した規則
中〜位i1にもとづき、次のような手順で溶接層数、溶
接パス数の決定を行なう。
By the way, when welding the joint (3), the branch pipe (2)
For example, for a T-type joint, place it horizontally as shown in Figure 6 (
a) As shown by the arrow in the middle, from the lowest point of the welding line Lw at the advancing angle θ = 00 to the highest point, the angle of advance is 180' in the positive and negative directions of θ, that is, the advancing angle θ is +18
Upward welding is performed so that the angles are 0° and -1800°, and in Y-shaped joints, the T
Similar to the type joint, the advancing angle θ of the weld line Lw is from 00 to +18
17) In the case where upward welding is performed so that the angles are 0° and -180°, θ = +800 to +150.
' t Te range is a continuous welding range because automatic welding is impossible due to interference between the main pipe (1), branch pipe (2) and the welding robot's torch, so manual welding is required. Advance angles θS and θe indicating the starting point and end point of Based on this, the number of welding layers and number of welding passes are determined using the following procedure.

まず、第7図のフローチャートに示すように、ステップ
Slにおいて、前記したような連続溶接範囲θS≦θ≦
θeを求め、当該範囲における開先断面形状データを導
出したのち、ステップS2において、前記規則(m)に
従い、層厚を4寵として溶接層数Raを Ra=INT(開先深さ/4jff)    −・・■
の式により算出する。ただし、INTは整数値を求める
操作を示し、たとえば四捨五入などの演算操作を指す。
First, as shown in the flowchart of FIG. 7, in step Sl, the continuous welding range θS≦θ≦
After determining θe and deriving the groove cross-sectional shape data in the range, in step S2, according to the rule (m), the layer thickness is set to 4, and the number of weld layers Ra is set as Ra=INT (groove depth/4jff). −・・■
Calculated using the formula. However, INT indicates an operation for obtaining an integer value, for example, an arithmetic operation such as rounding.

このとき、くら型溶接線を有するある開先に対し進行角
θが00〜180°での前記0式の演算を行なった結果
が、たとえば第8図(a)中の実線に示すようになった
場合を例にとって考えると、第8図(a)中の実線は暦
数系列をパターン化して表わしたものであり、このよう
な暦数系列パターンに対し、第7図に示すように、次の
ステップS3において、パターンの山の数が“I It
か否かの判定がなされる。なお、第8図(a)〜(e)
中の破線は各図中の実線で示す暦数で開先深さを割って
得られる層厚値の変化を示す。
At this time, the result of calculating the above formula 0 for a certain groove with a saddle-shaped weld line when the advancing angle θ is 00 to 180 degrees is as shown, for example, by the solid line in Fig. 8(a). For example, the solid line in Figure 8(a) represents the calendar number series as a pattern, and for such a calendar number series pattern, as shown in Figure 7, In step S3, the number of peaks in the pattern is “I It
A determination is made whether or not. In addition, Fig. 8(a) to (e)
The dashed line in the middle shows the change in layer thickness value obtained by dividing the groove depth by the calendar number indicated by the solid line in each figure.

そして、第8図(a)の暦数系列パターンでは、35゜
≦θ≦55°、95°≦θ≦100°、125°≦θ≦
140’ 、θ=150°に山があり、従って山の数は
4となって暦数が増減を繰り返すため、前記した規則(
v)に反することになり、前記第7図のステップs3を
否定(No)で通過して次のステップS4に移行し、肯
定(YES )であれば、後述の溶接パス数の算出処理
に移行し、ステップS4において、暦数系列パターンの
山の数の低減、すなわち山部の暦数低減処理が行なわれ
、たとえば第8図(a)の巻数系列パターンの6層部分
を5層に低減した場合、パターンは同図(b)のように
なる。
In the calendar number series pattern of Fig. 8(a), 35°≦θ≦55°, 95°≦θ≦100°, 125°≦θ≦
140', there is a peak at θ=150°, so the number of peaks is 4, and the calendar number repeats increases and decreases, so the above rule (
v), the process passes through step s3 in FIG. 7 with a negative result (No) and proceeds to the next step S4; if affirmative (YES), the process proceeds to the calculation process of the number of welding passes described below. Then, in step S4, the number of peaks in the calendar number series pattern is reduced, that is, the process of reducing the number of peaks in the calendar number series is performed. For example, the 6-layer portion of the winding number series pattern in FIG. In this case, the pattern becomes as shown in FIG.

ここで、暦数を減らした部分、すなわち35°≦θ≦5
5°、95°≦θ≦100° の部分では、第8図(b
)中の破線に示すように、同図(a)中の破線と比べて
明らかなように層厚が増すことになり、そのときの層厚
が前記した規則1)で言う許容限界内にあることの確認
を行なう必要があり、許容限界を越えるときには、その
部分の暦数低減処理は行なわない。
Here, the part where the calendar number is reduced, that is, 35°≦θ≦5
5°, 95°≦θ≦100°, Fig. 8 (b
), the layer thickness clearly increases compared to the dashed line in (a) of the same figure, and the layer thickness at that time is within the allowable limit according to rule 1) above. It is necessary to confirm that this is the case, and if the allowable limit is exceeded, the calendar number reduction process for that part is not performed.

つぎに、第7図のステップS5において、再び暦数系列
パターンの山が”1″か否かの判定がなされ、第8図(
b)の暦数系列パターンでは、10°≦θ≦115°、
125°≦θ≦140°、θ=150°の3つの山があ
るため、当該ステップS5をNOで通過して次のステッ
プS6に移行し、ステップS6において、層数系列パタ
ーンの谷の数の増加、すなわち谷部の暦数増加処理が行
なわれ、第8図(b)の層数系列パターンのθ=120
°、θ=145°の部分の暦数を5層に増加した場合、
パターンは同図(e)のようになり、同図(C)では1
0’≦θ≦150°の部分のみが山となり、谷部はなく
なるため、パターンの山の数はゞl I Itとなり、
前記第7図の次のステップS7における暦数系列パター
ンの山の数が°°l″か否かの判定をYESで通過して
、前記ステップS3.S5をYESで通過した場合ト同
様に1次のステップS8に移行する。
Next, in step S5 of FIG. 7, it is again determined whether the peak of the calendar number series pattern is "1" or not, and as shown in FIG.
In the calendar number series pattern b), 10°≦θ≦115°,
Since there are three peaks of 125°≦θ≦140° and θ=150°, the process passes through step S5 with NO and proceeds to the next step S6.In step S6, the number of valleys in the layer number series pattern is determined. In other words, the process of increasing the number of calendars in the valley is performed, and θ = 120 in the layer number series pattern in Fig. 8(b).
When increasing the calendar number of the part where °, θ = 145 ° to 5 layers,
The pattern is as shown in the figure (e), and in the figure (C) it is 1
Only the portion where 0'≦θ≦150° becomes a peak and there are no valleys, so the number of peaks in the pattern is ゞl I It,
If the next step S7 in FIG. 7 determines whether the number of peaks in the calendar number series pattern is °°l'' with YES, and the steps S3 and S5 are YES, 1 The process moves to the next step S8.

ただし、前記ステップS7の判定の結果がNOである場
合、すなわち前記ステップS4.S6の処理によっても
暦数系列パターンの山の数が°゛l”にならない場合に
は、前記した規則に矛盾することになるため、オペレー
タの判断を受け、状況に応じ。
However, if the result of the determination in step S7 is NO, that is, in step S4. If the number of crests in the calendar number series pattern does not become ゛l'' even after the processing in S6, it will contradict the above-mentioned rules, so the operator will judge and adjust the process according to the situation.

規則(i)と(V)の優劣が決定されていずれかが優先
されることになる。
The superiority of rules (i) and (V) will be determined and one will be given priority.

そして、第7図のステップS8において、開先内の各溶
接層の溶接パス数の算出が行なわれ、このとき溶接効率
を上げるために、パス幅の許容限界内でできるだけパス
数が少なくなるように定められたのち、ステップS9に
おいて、前記規則(11)に従うように、算出した前記
溶接パス数の調整が行なわれ、ステップSlOにおいて
、同一溶接層において溶接パス数が同じになっているか
否かの判定がなされ、判定の結果がNoであればオペレ
ータの判断を受け、状況に応じ、前記規則(1)を緩和
するかあるいは溶接層数の設定をやり直すかの判断がな
され、前記ステップ510の判定の結果がYESであれ
ば、前記規則1) 、 (V) 、 (VDに従い、開
先内の溶接層数、溶接パス数の設定処理と同様にして、
開先外の溶接層数、溶接パス数の設定がなされ、開先内
、外の積層パターンの作成処理が終了し、これらの積層
パターンの作成処理がコンピュータにより行なわれ、作
成された積層パターンがCRT にグラフィック表示さ
れることになる。
Then, in step S8 of FIG. 7, the number of welding passes for each welding layer within the groove is calculated. At this time, in order to increase welding efficiency, the number of passes is reduced as much as possible within the allowable limit of the pass width. In step S9, the calculated number of welding passes is adjusted in accordance with the rule (11), and in step SlO, it is determined whether the number of welding passes is the same in the same welding layer. If the result of the determination is No, the operator determines whether to relax the rule (1) or re-set the number of weld layers depending on the situation. If the result of the determination is YES, follow the rules 1), (V), and (VD) in the same manner as the setting process of the number of weld layers and the number of weld passes in the groove,
The number of welding layers outside the groove and the number of welding passes are set, and the creation process of lamination patterns inside and outside the groove is completed.The creation process of these lamination patterns is performed by a computer, and the created lamination pattern is Graphics will be displayed on the CRT.

したがって、前記第7図のフローチャートのステップS
lから87の処理により、たとえば第2図に示すように
溶接線上の各点での開先W内の溶接層数の設定が行なわ
れるとともに、ステップS8.S9゜S10の処理によ
り開先W内の各溶接層数の溶接パス数の設定が行なわれ
、さらにステップSITの処理により、開先W外の溶接
層数、溶接パス数の設定がなされ、たとえば第1図(a
) 、 (b) 、 ((りに示すような溶接線上の各
点での積層パターンPa 、 Pb 、 Pcが作成さ
れてCRT画面上にグラフィック表示され、作成された
積層パターンに従い、溶接ロボットによる継手(3)の
開先の自動溶接が行なわれる。
Therefore, step S in the flowchart of FIG.
1 to 87, the number of weld layers in the groove W at each point on the welding line is set as shown in FIG. Through the processes of S9 and S10, the number of welding passes for each welding layer within the groove W is set, and further, through the process of step SIT, the number of welding layers and the number of welding passes outside the groove W are set, for example. Figure 1 (a
), (b), ((A lamination pattern Pa, Pb, Pc at each point on the welding line as shown in () is created and graphically displayed on the CRT screen, and the joint is made by a welding robot according to the created lamination pattern. (3) Automatic welding of the groove is performed.

なお、前記実施例は、くら型溶接線を有する開先に適用
した場合について説明したが、これに限るものでないの
は勿論である。
In addition, although the said Example demonstrated the case where it applied to the groove which has a neckline weld line, it is needless to say that it is not limited to this.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の多層溶接の積層パターン作成
方法によると、演算、および撮像手段による測定により
それぞれ得られる溶接継手の開先の断面形状データにも
とづき、開先の溶接線上の各点での積層パターンを作成
するため、作成した積層パターンにより溶接ロボット等
による開先の自動多層溶接が可能となり、とくに管相貫
継手のように、開先の断面形状が連続的に変化する場合
に非常に有効であり、溶接時の作業能率の向上を図るこ
とができ、その効果は極めて大きい。
As described above, according to the layer pattern creation method for multilayer welding of the present invention, each point on the weld line of the weld joint is The created lamination pattern enables automatic multi-layer welding of the groove using a welding robot, etc., which is especially useful when the cross-sectional shape of the groove changes continuously, such as in a pipe-through joint. It is effective for improving work efficiency during welding, and the effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図はこの発明の多層溶接の積層パター
ン作成方法の1実施例を示し、第1図(a)〜(C)は
それぞれ異なる積層パターンの説明図、第2図は溶接層
数設定時の説明図、第3図(a) 、 (b)はそれぞ
れ異なる開先の断面図、第4図は開先断面形状の算出時
の動作説明用の断面図、第5図および第6図(a) 、
 (b)はそれぞれ動作説明図、第7図は動作説明用フ
ローチャート、第8図(a)〜(C)はそれぞれ動作説
明図であり、溶接の進行角と溶接層数との関係図、第9
図(a)〜(C)は一般の管相貫継手の正面図、平面図
、右側面図である。 (3)・・・管相貫継手、Pa、Pb、Pc・・・積層
パターン。
1 to 8 show an embodiment of the method for creating a laminated pattern for multilayer welding according to the present invention, FIGS. 1(a) to (C) are explanatory diagrams of different laminated patterns, and FIG. 2 is a welding layer. Figures 3(a) and 3(b) are cross-sectional views of different grooves, Figure 4 is a cross-sectional view for explaining the operation when calculating the groove cross-sectional shape, Figures 5 and 3 are Figure 6(a),
7(b) is an explanatory diagram of the operation, FIG. 7 is a flowchart for explaining the operation, and FIGS. 8(a) to (C) are explanatory diagrams of the operation, respectively. 9
Figures (a) to (C) are a front view, a top view, and a right side view of a general pipe-penetrating joint. (3) Pipe interpenetrating joint, Pa, Pb, Pc... Lamination pattern.

Claims (1)

【特許請求の範囲】[Claims] (1)溶接継手の寸法データにもとづき前記継手に形成
された開先の断面形状を演算により導出するとともに、
撮像手段による前記開先の画像を処理して実際の前記開
先の断面形状を導出し、前記演算および前記画像処理に
より導出された前記開先の断面形状データを合成し、合
成した前記開先の断面形状データおよび層厚、パス幅の
許容限界値等にもとづき、溶接層数および各溶接層の溶
接パス数を決定し、前記開先の積層パターンを作成する
ことを特徴とする多層溶接の積層パターン作成方法。
(1) Deriving the cross-sectional shape of the groove formed in the welded joint based on the dimensional data of the welded joint, and
The image of the groove by an imaging means is processed to derive the actual cross-sectional shape of the groove, and the cross-sectional shape data of the groove derived by the calculation and the image processing are synthesized, and the synthesized groove The number of welding layers and the number of welding passes for each welding layer are determined based on the cross-sectional shape data and allowable limit values of layer thickness, pass width, etc., and a lamination pattern of the groove is created. How to create a laminated pattern.
JP15222786A 1986-06-27 1986-06-27 Generating method for laminated pattern of multi-layer welding Granted JPS6310074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15222786A JPS6310074A (en) 1986-06-27 1986-06-27 Generating method for laminated pattern of multi-layer welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15222786A JPS6310074A (en) 1986-06-27 1986-06-27 Generating method for laminated pattern of multi-layer welding

Publications (2)

Publication Number Publication Date
JPS6310074A true JPS6310074A (en) 1988-01-16
JPH0475117B2 JPH0475117B2 (en) 1992-11-27

Family

ID=15535867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15222786A Granted JPS6310074A (en) 1986-06-27 1986-06-27 Generating method for laminated pattern of multi-layer welding

Country Status (1)

Country Link
JP (1) JPS6310074A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444206A (en) * 1990-09-17 1995-08-22 Hitachi, Ltd. Structure of metal container having trunk pipe and branch pipe, and manufacturing method and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444206A (en) * 1990-09-17 1995-08-22 Hitachi, Ltd. Structure of metal container having trunk pipe and branch pipe, and manufacturing method and apparatus therefor

Also Published As

Publication number Publication date
JPH0475117B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
CN102218578B (en) Path planning method for complicated-shape workpiece of robot bead weld based on radial bias
CN113352317B (en) Multilayer multichannel welding path planning method based on laser vision system
CN111496428A (en) Multilayer multi-pass welding bead planning method based on straight welding seam contour recognition and welding workstation
CN104722888A (en) Forming process of full penetration of main welding joint of steel angle opposite-buckling box
Yang et al. Multi-pass path planning for thick plate by DSAW based on vision sensor
US4184796A (en) Globoid worm gear generating method
JPS6310074A (en) Generating method for laminated pattern of multi-layer welding
JPH067363B2 (en) Compound surface generation method
JPH08150474A (en) Method for automatic control of bead shape
JPS59199172A (en) Build-up welding method
JP2914932B2 (en) Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor
JPH09164483A (en) Automatically deciding system for welding route
CN110076501B (en) Method and system for obtaining multi-layer and multi-pass welding deformation angle of thick plate
JP2002126881A (en) Friction jointing method
JPH0999368A (en) Automatic welding equipment
JPH0318476A (en) One side root pass method for pipes
JPS6310076A (en) Welding condition deciding method for multi-layer welding
JPS63278671A (en) Saddle type weld line welding method for pipe intersection part
JPH078436B2 (en) Multi-layer welding method
JPS60106672A (en) Automatic multilayer welding
JPH02116422A (en) Method for wire cut electric discharge machining
JPS62161473A (en) Automatic welding method
JPH07204875A (en) Method for cutting tube
JPS62142076A (en) Multilayer buildup welding robot device
JPH02230406A (en) Tool path generating method