JPS63100730A - Mask for photoelectron transfer - Google Patents

Mask for photoelectron transfer

Info

Publication number
JPS63100730A
JPS63100730A JP61245372A JP24537286A JPS63100730A JP S63100730 A JPS63100730 A JP S63100730A JP 61245372 A JP61245372 A JP 61245372A JP 24537286 A JP24537286 A JP 24537286A JP S63100730 A JPS63100730 A JP S63100730A
Authority
JP
Japan
Prior art keywords
mask
film
metal
transparent substrate
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61245372A
Other languages
Japanese (ja)
Inventor
Juichi Sakamoto
坂本 樹一
Akio Yamada
章夫 山田
Jinko Kudo
工藤 仁子
Hiroshi Yasuda
洋 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61245372A priority Critical patent/JPS63100730A/en
Publication of JPS63100730A publication Critical patent/JPS63100730A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a mask for photoelectron transfer assuring stable photoelectron quantity by a method wherein a metal is patterned on a transparent substrate and after sputtering Ag thereon, alkali metal or alkali earth metal is further evaporated thereon. CONSTITUTION:Metallic patterns 12 such as Cr etc. in film thickness of 600-2000Angstrom are made on a transparent substrate 11 such as of quartz etc. Ag is not diffused in the metallic patterns 12. First, Ag is sputtered on the overall surface in thickness of around 50-600Angstrom A. Second, when the Ag surface is heated up to 100-200 deg.C to vacuum-evaporate a Cs film 14, the reaction of Ag to Cs is accelerated to stabilize the Cs. Through these procedures, the serviceable wavelength of far ultraviolet rays for Ag as a photoelectric material can be increased up to 3500-4000Angstrom compared with conventional CsI to improve the resolving power so that the light quantity may be extremely stabilized to increase the serviceable times of mask.

Description

【発明の詳細な説明】 〔概要〕 透明基板上に金属でパターニングし、その上に銀(Ag
)を付着させ、Ag膜上にアルカリ金属またはアルカリ
土類金属を付着させた構造の光電子転写用マスクである
[Detailed Description of the Invention] [Summary] Metal is patterned on a transparent substrate, and silver (Ag
) and an alkali metal or alkaline earth metal is deposited on the Ag film.

〔産業上の利用分野〕[Industrial application field]

本発明は光電子転写用マスクとその製造方法に関し、さ
らに詳しく言えば光電子源(ソース)として従来用いら
れることのなかった銀を用い、この銀の表面にアルカリ
金属またはアルカリ土類金属、例えばセシウムを付着さ
せた構造の光電子転写用マスクおよびかかるマスクの製
造方法に関するものである。
The present invention relates to a photoelectron transfer mask and its manufacturing method. More specifically, the present invention relates to a photoelectron transfer mask and a method for manufacturing the same. More specifically, the present invention uses silver, which has not been conventionally used as a photoelectron source, and coats the surface of the silver with an alkali metal or alkaline earth metal, such as cesium. The present invention relates to photoelectronic transfer masks of deposited structures and methods of making such masks.

〔従来の技術〕[Conventional technology]

超LSIの製造では微細加工プロセスが重要であり、そ
の微細加工技術(リソグラフィ技術)の1つとして、微
細パターンをウェハ等に転写する技術がある。従来この
ような微細パターンの転写技術として、光(波長約40
00人)を用い、レチクルを原版として5:1,10;
1等の縮小投影露光を行う方法が知られている。しかし
、この方法はパターンが微細になればなるほど回折、干
渉等による転写像のボケが避けられず、解析度を0.8
μ醜以上に上げるのは至難だと言われている。
Microfabrication processes are important in the production of VLSIs, and one of the microfabrication techniques (lithography techniques) is a technique for transferring micropatterns onto wafers and the like. Conventionally, as a transfer technology for such fine patterns, light (wavelength of about 40
00 people) and using the reticle as the original 5:1,10;
A method of performing reduction projection exposure of the first order is known. However, with this method, as the pattern becomes finer, blurring of the transferred image due to diffraction, interference, etc. is unavoidable, and the resolution is reduced to 0.8.
It is said that it is extremely difficult to raise it above μ ugliness.

解析度を向上させるため、電子ビーム露光法。Electron beam exposure method to improve resolution.

X線露光法、光電子転写方法等の技術が知られている。Techniques such as X-ray exposure method and photoelectron transfer method are known.

電子ビーム露光は、点状または矩形状断面をもつ電子ビ
ームを偏向し、位置を変えなからウェハ上に照射し、さ
らにステージの動きと合せウェハ上に微細パターンを描
画するものである。従って、電子源、電子ビームを収束
、整形、偏向させるコラム、ウェハを支持し露光位置を
変えるステージ゛の他、これらを制御する系が必要であ
る。この方法では、解像度の向上を実現できるが、膨大
なパターンデータをもとにしたいわゆる“−筆書き”的
な露光のため、露光に時間がかかり、処理能力(スルー
プット)が低く、大量生産には向かない。
In electron beam exposure, an electron beam having a dotted or rectangular cross section is deflected, irradiated onto a wafer without changing its position, and a fine pattern is drawn on the wafer in conjunction with the movement of a stage. Therefore, in addition to an electron source, a column for converging, shaping, and deflecting the electron beam, and a stage for supporting the wafer and changing the exposure position, a system for controlling these is required. This method can improve resolution, but because it uses a so-called "-brush writing" type of exposure based on a huge amount of pattern data, it takes time to expose, has low processing capacity (throughput), and is not suitable for mass production. is not suitable.

X線露光法は例えば10〜50 K11の人身りなX1
jl光源を用い、波長が1〜10人のX線が用いられる
接近露光法(プロキシミティ露光法)である。従って、
X線露光では上記光源の他にマスクおよびウェハを支持
し、両者を高精度で位置合せできるアライナとの組合せ
を要する。この点では従来の光学露光に近いが、上記の
ように光源が人身りで高値になることと、光源波長に関
する吸収係数の関係からマスク構成材料に考慮を要する
こと、更にはプロキシミティ露光であるためにウェハの
直径が大きくなる程マスク、ウェハの反りによるマスク
−ウェハ間のギャップ変動によって生じるボケ等の問題
がある。上記X線発生用光源にシンクロトロン放射光を
利用することが提案されているが、装置が人身りになる
割には効率良い利用が難しく、大量生産に向いていると
はいえない。
For example, the X-ray exposure method uses 10 to 50 K11.
This is a proximity exposure method that uses a jl light source and uses X-rays with a wavelength of 1 to 10 people. Therefore,
In addition to the light source described above, X-ray exposure requires a combination of an aligner that supports the mask and wafer and can align them with high precision. In this respect, it is similar to conventional optical exposure, but as mentioned above, the value becomes high due to the presence of the light source, and the relationship between the absorption coefficient with respect to the light source wavelength requires consideration of the mask constituent materials, and furthermore, it is a proximity exposure. Therefore, as the diameter of the wafer increases, problems such as blurring occur due to variations in the gap between the mask and the wafer due to warping of the mask and wafer. Although it has been proposed to use synchrotron radiation as the light source for generating X-rays, it is difficult to use it efficiently since the equipment is very heavy, and it cannot be said that it is suitable for mass production.

転写方法のもつ高い処理能力と、電子ビームのもつ高解
像性をともに活かした露光方法として光電子による転写
方法がある。光電子転写には以下に述べる方法がある。
A photoelectronic transfer method is an exposure method that takes advantage of both the high throughput of transfer methods and the high resolution of electron beams. There are methods for photoelectronic transfer as described below.

電子ビームによる1:1 (等倍)転写技術はマスク像
を電子ビームで試料上に転写するもので、その原理は第
2図に示す。焦点コイル(ヘルムホルツコイル等)31
の作る平行磁場(同図で上下方向)の中に磁場と直角に
光電(フォトカソード)マスク32と試料(例えば表面
に電子レジスト36が塗布されたシリコンウェハ37)
が並行に向い合って配置され、マスクが負、試料が正に
なるような電圧がかかっている。光電マスク32は透明
基板例えば石英板33の上に紫外線の吸収体34(例え
ばクロム、 Cr)からなる転写すべきパターンを作り
、その上に紫外線の照射によって電子の出る光電物質の
膜を作って(真空中でヨー化セシウム(Cs)を全面蒸
着する)カソード35を作る。
The 1:1 (equal magnification) transfer technique using an electron beam transfers a mask image onto a sample using an electron beam, and its principle is shown in FIG. Focusing coil (Helmholtz coil, etc.) 31
A photoelectric (photocathode) mask 32 and a sample (for example, a silicon wafer 37 whose surface is coated with an electronic resist 36) are placed perpendicularly to the magnetic field in a parallel magnetic field (in the vertical direction in the figure) created by
are placed facing each other in parallel, and a voltage is applied such that the mask is negative and the sample is positive. The photoelectric mask 32 is made by forming a pattern to be transferred consisting of an ultraviolet absorber 34 (for example, chromium, Cr) on a transparent substrate, for example, a quartz plate 33, and forming a photoelectric material film on which electrons are emitted by irradiation with ultraviolet rays. A cathode 35 is made (by evaporating cesium iodide (Cs) over the entire surface in a vacuum).

石英板33の上から紫外線源38の出す紫外線39を照
射すると、パターンのないところ(紫外線吸収体34の
ない所)にある光電物質に紫外線が当り、その部分から
電子40が矢印のように出る。マスク32上の1点から
出た電子40は、そこにある偏光コイル41の作る電場
と焦点コイル31の作る並行磁場によって螺旋を描いて
試料の方向に進み、ある所で再び1点に集まる、すなわ
ち焦点を結ぶ。
When the ultraviolet rays 39 emitted by the ultraviolet source 38 are irradiated from above the quartz plate 33, the ultraviolet rays hit the photoelectric material in areas where there is no pattern (where there is no ultraviolet absorber 34), and electrons 40 are emitted from that area as shown by the arrow. . Electrons 40 emitted from one point on the mask 32 travel in a spiral toward the sample due to the electric field created by the polarizing coil 41 there and the parallel magnetic field created by the focusing coil 31, and converge again at one point at a certain point. In other words, focus.

第3図は装置構造の一部を示し、同図の中心右側に光電
マスク32が、同左側にシリコンウェハ37が向い合っ
て立っている。ウェハ左側のX線検出器40は、マスク
の合せマークから出た電子がウェハ上の重金属マークに
当るときの線を検出して位置合せを行うに用いる。偏光
コイル41はマスクから出た電子ビームを偏光し、マス
クパターンとウェハ上のパターンの位置合せをするとき
に用いる。
FIG. 3 shows a part of the device structure, with a photoelectric mask 32 facing each other on the right side of the center of the figure, and a silicon wafer 37 on the left side. The X-ray detector 40 on the left side of the wafer is used to perform alignment by detecting a line when electrons emitted from the alignment mark on the mask hit a heavy metal mark on the wafer. The polarizing coil 41 polarizes the electron beam emitted from the mask and is used to align the mask pattern and the pattern on the wafer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、透過型光電子転写用マスクすなわち光電子物質と
してはCslを使用したものが知られている。しかし、
Cslは光の吸収端が短い(Cslから電子が飛出すた
めにその表面で超えなければならない電位障壁の高さで
ある仕事関数−work func−tton−が高い
)ことに加え、粒子があらく、水分を吸収し易く不安定
でパターンが乱れ易く、使用においては20〜50回の
露光が限界であった。
Conventionally, a mask using Csl as a transmission type photoelectronic transfer mask, that is, a photoelectronic material, is known. but,
Csl has a short light absorption edge (it has a high work function, which is the height of the potential barrier that must be overcome at the surface for electrons to escape from Csl), and its particles are rough. It easily absorbs moisture, is unstable, and easily disturbs the pattern, and its use is limited to 20 to 50 exposures.

本発明はこのような点に鑑みて創作されたもので、安定
な光電子量が得られる光電子転写用マスクとその製造方
法を提供することを目的とする。
The present invention was created in view of these points, and an object of the present invention is to provide a photoelectronic transfer mask that can obtain a stable amount of photoelectrons, and a method for manufacturing the same.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の部分的な断面図で、図中、11
は透明基板、12は金属パターン、13はAgPA、1
4はAg膜13の表面に付着したC5Il!である。
FIG. 1 is a partial sectional view of an embodiment of the present invention, and in the figure, 11
1 is a transparent substrate, 12 is a metal pattern, 13 is AgPA, 1
4 is C5Il! attached to the surface of the Ag film 13! It is.

本発明においては、石英、サファイア、ルビー等で作っ
た光に透明な基板ll上に、クロム(Cr) 。
In the present invention, chromium (Cr) is deposited on a light-transparent substrate made of quartz, sapphire, ruby, or the like.

タンタル(Ta) 、タングステン(W)などの金属パ
ターン12を作り、金属パターン12を含む透明基板1
1上に銀を付着してAg膜上3を形成し、Ag膜13上
にアルカリ金属またはアルカリ土類金属を付着して該付
着膜14が形成されてなる光電子転写用マスクが提供さ
れる。アルカリ金属としてはセシウム(Cs) 、アル
カリ土類金属としてバリウム(Ba)が好ましい。
A metal pattern 12 of tantalum (Ta), tungsten (W), etc. is made, and a transparent substrate 1 containing the metal pattern 12 is formed.
A photoelectronic transfer mask is provided, in which silver is deposited on the Ag film 1 to form an Ag film 3, and an alkali metal or alkaline earth metal is deposited on the Ag film 13 to form the deposited film 14. Cesium (Cs) is preferable as the alkali metal, and barium (Ba) is preferable as the alkaline earth metal.

〔作用〕[Effect]

AgはCslに比べ光電物質としては安定で、遠紫外光
の使用可能な波長がCslの場合には1930〜240
0人であるのに対し八gは3500〜4000人で、解
像度が向上する。
Ag is more stable as a photoelectric substance than Csl, and the wavelength that can be used for far ultraviolet light is 1930 to 240 in the case of Csl.
While there are 0 people, 8g has 3500 to 4000 people, which improves the resolution.

〔実施例〕〔Example〕

以下、図面を参照して本発明実施例を詳細に説明する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明においては、第1図の透明基板11は光を透過す
る石英、サファイア、ルビー等の材料で形成した。アル
カリ金属としてCsを用いた場合について述べる。
In the present invention, the transparent substrate 11 shown in FIG. 1 is made of a material that transmits light, such as quartz, sapphire, or ruby. The case where Cs is used as the alkali metal will be described.

透明基板11上に例えば蒸着によって金属(Cr。Metal (Cr) is deposited on the transparent substrate 11, for example, by vapor deposition.

Ta、 Wなど)を付着し、それをパターニングして金
属パターン12を形成する。かかる金属は、加熱によっ
てA、が拡散することがない利点をもつ、金属パターン
12の膜厚は、光を十分吸収しうる程度すなわち光を十
分遮断することのできる600〜2000人の厚さにす
る。600人よりも薄いと光を十分に遮断できないし、
2000人よりも厚くしても特に顕著な光吸収効果が得
られるものでないからそれ以上の厚さは無駄である。
(Ta, W, etc.) is deposited and patterned to form the metal pattern 12. Such a metal has the advantage that A does not diffuse when heated.The thickness of the metal pattern 12 is set to a thickness of 600 to 2,000 to sufficiently absorb light, that is, to sufficiently block light. do. If it is thinner than 600, it will not be able to block the light sufficiently,
Even if the thickness is made thicker than 2,000 mm, a particularly remarkable light absorption effect cannot be obtained, so it is wasteful to make it thicker than that.

次に、金属パターン12を含む透明基板上に蒸着または
スパッタによって50〜600人の膜厚にAgを付着し
てAg膜13を作る。前記した厚さは、50人よりも薄
いと光が透過して試料を露光して試料上に転写されるパ
ターンが乱されるからであり、600人よりも大なる膜
厚にすると光電子放出より遥か手前(入射側)で光が吸
収され、光電子放出に寄与しなくなってしまうからであ
る。光電物質としては一般的に酸化1N(Ag−0)が
良く知られているが、酸化させるプロセスの複雑さや、
酸化させる厚さの程度のコントロールの困難さがあり、
光電子転写マスク用の物質としては使用が困難であるの
で、前記した厚さのAg膜を用いた。
Next, Ag is deposited to a thickness of 50 to 600 layers on the transparent substrate including the metal pattern 12 by vapor deposition or sputtering to form an Ag film 13. The reason for this is that if the thickness is thinner than 50 mm, light will pass through and the pattern transferred onto the sample by exposing the sample will be disturbed, and if the thickness is greater than 600 mm, the photoelectron emission will decrease. This is because light is absorbed far before the light (on the incident side) and no longer contributes to photoelectron emission. 1N oxide (Ag-0) is generally well known as a photoelectric material, but the complexity of the oxidation process and
It is difficult to control the degree of oxidation thickness,
Since it is difficult to use as a material for a photoelectronic transfer mask, an Ag film having the thickness described above was used.

次いで、真空中でCsを付着してCs膜14を形成する
。 Csの付着はCsのイオンソースを作り、イオンビ
ームでCsを付着してもよく、またはCs化合物を還元
しCsだけを取り出して付着させてもよい。そのために
はTaボートを用いる方法がある。本発明者の実験によ
ると、Ag膜上にCsを付着する際に、へg膜表面を1
00〜200℃の範囲内で加熱するとAgとCsの反応
を促進し、Csが安定し、その結果光電子を安定に取り
出しうろことが確認された。100℃より低い温度では
AgとCsの反応が著しく遅くなり、また200℃より
高い温度に加熱してもAgとCsの反応にさほどの変化
は発生しない。
Next, Cs is deposited in a vacuum to form a Cs film 14. Cs may be deposited by creating a Cs ion source and depositing Cs with an ion beam, or by reducing the Cs compound and extracting only Cs and depositing it. For this purpose, there is a method using a Ta boat. According to the inventor's experiments, when depositing Cs on the Ag film, the heg film surface was
It was confirmed that heating within the range of 00 to 200°C promoted the reaction between Ag and Cs, stabilized Cs, and as a result, photoelectrons could be stably extracted. At a temperature lower than 100°C, the reaction between Ag and Cs is significantly slowed down, and even when heated to a temperature higher than 200°C, no significant change occurs in the reaction between Ag and Cs.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、前記した方法で
作られたAg−Cs構造のマスクは、きわめて安定な光
電子量が得られるだけでなく、1つのパターンについて
所定のバッチに対し交換することなく使用可能で、露光
プロセスのスループットが著しく向上した。
As described above, according to the present invention, the Ag-Cs structure mask made by the method described above not only provides an extremely stable amount of photoelectrons, but also allows for one pattern to be replaced for a predetermined batch. The throughput of the exposure process has been significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例断面図、 第2図ど第3図は従来例断面図である。 第1図において、 11は透明基板、 12は金属パターン、 13はAg膜、 14はCs膜である。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 ト肥析1批矧断酌圓 第1図 FIG. 1 is a sectional view of an embodiment of the present invention. 2 and 3 are sectional views of a conventional example. In Figure 1, 11 is a transparent substrate; 12 is a metal pattern, 13 is an Ag film; 14 is a Cs film. Agent: Patent attorney: Akira Kukimoto Sub-Agent Patent Attorney Yoshiyuki Osuga Fertility Analysis 1 Criticism Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板上(11)上に光吸収用の金属パターン
(12)が設けられ、 金属パターン(12)を含む前記基板(11)全面に銀
膜(13)が形成され、 前記銀膜(13)上にアルカリ金属またはアルカリ土類
金属からなる膜(14)が形成されてなる構造の光電子
転写用マスク。
(1) A metal pattern (12) for light absorption is provided on a transparent substrate (11), a silver film (13) is formed on the entire surface of the substrate (11) including the metal pattern (12), and the silver film (13) A photoelectronic transfer mask having a structure on which a film (14) made of an alkali metal or an alkaline earth metal is formed.
(2)前記透明基板(11)は石英、サファイアまたは
ルビーを用いたものである特許請求の範囲第1項記載の
マスク。
(2) The mask according to claim 1, wherein the transparent substrate (11) is made of quartz, sapphire, or ruby.
(3)前記金属パターン(12)はクロム、タンタルま
たはタングステンで作られてなる特許請求の範囲第1項
記載のマスク。
(3) The mask according to claim 1, wherein the metal pattern (12) is made of chromium, tantalum, or tungsten.
(4)前記銀膜(13)の膜厚が50〜600Åの範囲
内の厚さのものである特許請求の範囲第1項記載のマス
ク。
(4) The mask according to claim 1, wherein the silver film (13) has a thickness within the range of 50 to 600 Å.
(5)透明基板(11)上に光吸収物質の膜を付着しそ
れをパターニングして金属パターン(12)を形成する
工程、 金属パターン(12)を含む基板(11)上に銀膜(1
3)を付着する工程、および 銀膜(13)上にアルカリ金属またはアルカリ土類金属
を付着する工程を含むことを特徴とする光電子転写用マ
スクの製造方法。
(5) A step of depositing a film of a light-absorbing substance on the transparent substrate (11) and patterning it to form a metal pattern (12); depositing a silver film (1) on the substrate (11) including the metal pattern (12);
3) and a step of depositing an alkali metal or an alkaline earth metal onto the silver film (13).
(6)前記したセシウムの付着において、Ag膜(13
)の表面を100〜200℃の範囲内の温度に加熱する
特許請求の範囲第5項記載の方法。
(6) In the above-mentioned cesium deposition, the Ag film (13
6. The method according to claim 5, wherein the surface of the substrate is heated to a temperature within the range of 100 to 200°C.
JP61245372A 1986-10-17 1986-10-17 Mask for photoelectron transfer Pending JPS63100730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61245372A JPS63100730A (en) 1986-10-17 1986-10-17 Mask for photoelectron transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61245372A JPS63100730A (en) 1986-10-17 1986-10-17 Mask for photoelectron transfer

Publications (1)

Publication Number Publication Date
JPS63100730A true JPS63100730A (en) 1988-05-02

Family

ID=17132683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61245372A Pending JPS63100730A (en) 1986-10-17 1986-10-17 Mask for photoelectron transfer

Country Status (1)

Country Link
JP (1) JPS63100730A (en)

Similar Documents

Publication Publication Date Title
US5831272A (en) Low energy electron beam lithography
US4298803A (en) Process and apparatus for making fine-scale patterns
US4701391A (en) Mask with magnesium diaphragm for X-ray lithography
US4329410A (en) Production of X-ray lithograph masks
KR920005634B1 (en) Photo electron mask and photo cathode image projection method using the same
US4652762A (en) Electron lithography mask manufacture
US6972417B2 (en) Apparatus and methods for patterning a reticle blank by electron-beam inscription with reduced exposure of the reticle blank by backscattered electrons
EP0182665A2 (en) Method of projecting a photoelectron image
US4467026A (en) Process for drawing patterns with extremely fine features in the production of VLSI, LSI and IC systems
JPH0689847A (en) X-ray mask structure and its manufacture, x-ray exposure using the structure, and device manufactured by using the structure
JPS63100730A (en) Mask for photoelectron transfer
JPH03129349A (en) Production of photomask
US4555460A (en) Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same
JPS62106625A (en) Exposure mask
US4981771A (en) Pattern fabricating method
JPS6222262B2 (en)
JPS61123134A (en) Photo electron image transfer method
JPS61123135A (en) Photo electron picture transfer method
JPS6292436A (en) Transferring method for photoelectron image
JPS63100729A (en) Mask for photoelectron transfer and manufacture thereof
JPS61154032A (en) X-ray exposuring method
JPS5934632A (en) Manufacture of x-ray mask
JPS58158925A (en) X-ray exposing system
JPH01289246A (en) Photoelectronic replication apparatus
JPS6289053A (en) Photomask