JPS63100369A - Ion sensor - Google Patents

Ion sensor

Info

Publication number
JPS63100369A
JPS63100369A JP61120564A JP12056486A JPS63100369A JP S63100369 A JPS63100369 A JP S63100369A JP 61120564 A JP61120564 A JP 61120564A JP 12056486 A JP12056486 A JP 12056486A JP S63100369 A JPS63100369 A JP S63100369A
Authority
JP
Japan
Prior art keywords
layer
ion
selective
function
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61120564A
Other languages
Japanese (ja)
Other versions
JPH0641929B2 (en
Inventor
Hideichiro Yamaguchi
秀一郎 山口
Norio Daikuhara
大工原 範夫
Takeshi Shimomura
猛 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP61120564A priority Critical patent/JPH0641929B2/en
Priority to US07/044,062 priority patent/US4871442A/en
Priority to DE8787401013T priority patent/DE3764862D1/en
Priority to DK220387A priority patent/DK167824B1/en
Priority to KR1019870004231A priority patent/KR900004692B1/en
Priority to EP87401013A priority patent/EP0245168B1/en
Publication of JPS63100369A publication Critical patent/JPS63100369A/en
Publication of JPH0641929B2 publication Critical patent/JPH0641929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To enhance selectivity to interfering ion and to increase response speed by providing an isolating layer having the function to hinder the transfer of the constituting layer of an oxidation reduction function layer and ion selective layer and to transmit the potential difference by contact with the ion from the selective layer to the function layer between the above-mentioned function layer and selective layer. CONSTITUTION:A lead 2 consisting of a coated copper wire is adhered and fixed to the base 1a of a conductive substrate 1 of an ion sensor. The oxidation reduction function layer 5 is formed to the top end of the substrate 1 exposed by polishing. An iron sensitive part of the sensor is constituted of such function layer 5 and the ion selective layer 7. The isolating layer 6 is provided between the function layer 5 and the selective layer 7. The surface of the function layer 5 is coated with the isolating layer 6 to prevent the transfer of the materials constituting the selective layer 7 and the function layer 5 between the respective layers and to transmit the potential difference generated in the selective layer 7 by the contact with the ions from the selective layer 7 to the function layer 5. The change in the inclination of the ion characteristics is prevented for a long period of time and the selectivity to the ions is improved.

Description

【発明の詳細な説明】 10発明の背景 (産業上の利用分野) 本発明は、電極電位応答イオンセンサー、更に詳細には
、内部(標準)溶液を有しない固体型のイオンセンサー
でより好ましくは生体中での測定も可能なイオンセンサ
ーに関する。
Detailed Description of the Invention 10 Background of the Invention (Field of Industrial Application) The present invention relates to an electrode potential responsive ion sensor, more specifically a solid-state ion sensor having no internal (standard) solution, and more preferably This invention relates to an ion sensor that can also perform measurements in living organisms.

(従来の技術及びその問題点) 従来、溶液中のイオン濃度を電極電位応答で測定し、固
体型で小型化が可能なイオンセンサーとして、導電性基
体に酸化還元膜を被着し、さらにイオンキャリヤー膜を
被着した電極電位応答性のイオンセンサーがある。
(Prior art and its problems) Conventionally, the ion sensor in which the ion concentration in a solution is measured by electrode potential response, and which can be made small and solid-state, is made by depositing a redox film on a conductive substrate and further measuring the ion concentration. There are electrode potential responsive ion sensors coated with a carrier film.

しかしながら、導電性基体/酸化還元膜/イオン選択性
膜からなる電極であったため、酸化還元膜組成物のイオ
ン選択性膜中への溶解またはイオン選択膜組成物の酸化
還元膜中への溶解のため電極のイオン特性が(特に感度
が)1ケ月を経過するころから低下してくるという欠点
があった。
However, since the electrode was composed of a conductive substrate/redox membrane/ion-selective membrane, dissolution of the redox membrane composition into the ion-selective membrane or dissolution of the ion-selective membrane composition into the redox membrane was difficult. Therefore, there was a drawback that the ionic characteristics (especially the sensitivity) of the electrode began to deteriorate after one month had passed.

■0発明の目的 従って本発明は、酸化還元機能層を構成する物質とイオ
ン選択性層を構成する物質の相互の溶解溶出が生じない
、イオン特性が長期間安定した、妨害イオンに対する選
択性が高く、イオン応答速度が速いイオンセンサーを提
供することを目的とする。
■0 Purpose of the Invention Therefore, the present invention provides a structure in which the substance constituting the redox functional layer and the substance constituting the ion-selective layer do not mutually dissolve and elute, the ionic properties are stable for a long period of time, and the selectivity to interfering ions is maintained. The purpose of the present invention is to provide an ion sensor with high ion response speed.

上記目的は、イオン感応部を備え、溶液中のイオン濃度
を電極電位応答で測定するイオンセンサーにおいて、前
記イオン感応部は、導電性基体と、該導電性基体の表面
を覆う酸化還元機能層と、該酸化還元機能層の表面を覆
う隔壁層と、該隔壁層の表面を覆うイオン選択性層とを
備え、前記隔壁層は該イオン選択性層および前記酸化還
元機能層へ伝達する機能を有することを特徴とするイオ
ンセンサーにより達成される。さらに上記目的は隔壁層
の厚さが0 、2141〜1.0龍である上記イオンセ
ンサーにより達成される。
The above object is an ion sensor that includes an ion-sensing part and measures the ion concentration in a solution by electrode potential response, wherein the ion-sensing part includes a conductive substrate and a redox functional layer covering the surface of the conductive substrate. , comprising a partition layer covering the surface of the redox functional layer and an ion selective layer covering the surface of the partition layer, the partition layer having a function of transmitting information to the ion selective layer and the redox functional layer. This is achieved by an ion sensor characterized by the following. Further, the above object is achieved by the above ion sensor in which the thickness of the barrier layer is 0.2141 to 1.0 mm.

IIl、発明の詳細な説明 以下、本発明を実施例に基づき具体的に説明する。IIl. Detailed Description of the Invention Hereinafter, the present invention will be specifically explained based on Examples.

本発明の特徴は、第1図及び第1表、第2表を参照する
ことにより一層明瞭に理解できる。
The features of the present invention can be more clearly understood by referring to FIG. 1 and Tables 1 and 2.

第1図は本発明に係わるイオンセンサーの一実施例の構
成図である。導電性基体1(直径1.1m■×長さ3 
、 Omm )の底面1aにテフロン被覆銅線(0,2
+nφ)のリードvA2が導電性接着剤8で固定され、
更に導電性基体1は1.5 mm露出するように熱収縮
チューブ4で外周を被覆絶縁されている。更に露出され
た導電性基体1の先端部は半球状に研磨され、露出部の
表面積が0.064.ff1(平均)になるように調整
され、電解酸化重合により、m電性基体1の露出面上に
酸化還元機能層5が形成されている。
FIG. 1 is a block diagram of an embodiment of an ion sensor according to the present invention. Conductive substrate 1 (diameter 1.1 m × length 3
, Omm) on the bottom surface 1a of the Teflon-coated copper wire (0,2
+nφ) lead vA2 is fixed with conductive adhesive 8,
Furthermore, the outer periphery of the conductive substrate 1 is covered and insulated with a heat shrink tube 4 so that 1.5 mm is exposed. Furthermore, the exposed tip of the conductive substrate 1 is polished into a hemispherical shape, and the surface area of the exposed portion is 0.064. ff1 (average), and a redox functional layer 5 is formed on the exposed surface of the m-conductive substrate 1 by electrolytic oxidative polymerization.

本発明のイオンセンサーに使用される導電性基体1とし
ては、例えばベーサル・プレーン・ピロリティツク。グ
ラファイト(basal plane pyrolyt
icgraphite ;以下BPGという)、グラッ
シーカーボン等の導電性炭素材料;金、白金、銅、銀9
パラジウム、ニッケル、鉄等の金属、特に貴金属又はこ
れらの金属の表面に酸化インジウム、酸化スズ等の半導
体を被覆したものが挙げられる。就中、導電性炭素材料
が好ましく、BPGが特に好ましく、形状としては円柱
状が好ましい。
The conductive substrate 1 used in the ion sensor of the present invention is, for example, basal plane pyrolytic. Graphite (basal plane pyrolyt)
icgraphite (hereinafter referred to as BPG), conductive carbon materials such as glassy carbon; gold, platinum, copper, silver9
Examples include metals such as palladium, nickel, and iron, particularly noble metals, and those whose surfaces are coated with semiconductors such as indium oxide and tin oxide. Among these, conductive carbon materials are preferred, BPG is particularly preferred, and the shape is preferably cylindrical.

また、酸化還元機能を有する層5(以下、酸化還元機能
層ということがある)とは、これを導電性基体表面に被
着してなる電極が酸化還元反応によって導電性基体に一
定電位を発生しうるちのであり、本発明においては特に
酸素ガス分圧によって電位が変動しないものが好ましい
。斯かる酸化還元機能層5としては、例えば■キノンー
ヒドロキる。なお、ここでキノン−ヒドロキノン型の酸
化還元反応とは、重合体の場合を例にとれば、例えば次
の反応式で表されるものをいう。
In addition, the layer 5 having a redox function (hereinafter sometimes referred to as a redox functional layer) means that an electrode formed by depositing this layer on the surface of a conductive substrate generates a constant potential on the conductive substrate through a redox reaction. In the present invention, it is particularly preferable to use a material whose potential does not vary depending on the oxygen gas partial pressure. Such a redox functional layer 5 is, for example, (2) quinone-hydrochloride. In addition, in the case of a polymer, the quinone-hydroquinone type redox reaction herein refers to, for example, one represented by the following reaction formula.

(式中、Rt、Rzは例えば芳香族含有構造の化合物を
示す) また、アミン−キノイド型の酸化還元反応とは、前記同
様重合体の場合を例にとれば、例えば次の反応式で表さ
れるものをいう。
(In the formula, Rt and Rz represent, for example, a compound with an aromatic-containing structure.) In addition, the amine-quinoid type redox reaction is expressed by the following reaction formula, for example, in the case of a polymer as described above. refers to what is done.

(式中、R3,R,)は例えば芳香族含有構造の化合物
を示す) こ−のような酸化還元機能を有する層5を形成しろる化
合物としては、例えば次のla)〜(C)の化合物が挙
げられる。
(In the formula, R3, R,) represents, for example, a compound having an aromatic-containing structure. Examples of compounds that can form the layer 5 having such a redox function include the following la) to (C). Examples include compounds.

(al (OH)mt・ 丈r、→Rs)nz (式中、Ar、は芳香核、各R3は置換基、m2は1な
いしAr1の有効原子価数、n2はOないしAr、の有
効原子価数−1を示す)で表されるヒドロキシ芳香族化
合物。Ar、の芳香核は、例えばベンゼン核のように単
環のものであっても、アントラセン核、ピレン核、クリ
セン核、ペリレン核、コロネン核等のように多環のもの
であってもよく、またベンゼン骨核のみならず複素環骨
核のものであってもよい。
(al (OH)mt・length r,→Rs)nz (wherein, Ar is an aromatic nucleus, each R3 is a substituent, m2 is an effective valence number of 1 to Ar1, and n2 is an effective atom of O to Ar) A hydroxy aromatic compound represented by (having a valence of -1). The aromatic nucleus of Ar may be a monocyclic one such as a benzene nucleus, or a polycyclic one such as an anthracene nucleus, a pyrene nucleus, a chrysene nucleus, a perylene nucleus, a coronene nucleus, etc. Moreover, not only a benzene bone core but also a heterocyclic bone core may be used.

置換MR5としては、例えばメチル基等のアルキル基、
フェニル基等のアリール基、およびハロゲン原子等が挙
げられる。具体的には、例えばジメチルフェノール、フ
ェノール、ヒドロキシピリジン、0−またはm−ベンジ
ルアルコール、0−lm−またはp−ヒドロキシベンズ
アルデヒド、0−またはm−ヒドロキシアセトフェノン
、0−lm−またはp−ヒドロキシプロピオフェノン、
o−lm−またはpヒドロキシベンゾフェノン、o−l
m−またはp−カルボキシフェノール、ジフェニルフェ
ノール、2−メチル−8−ヒドロキシキノリン、5−ヒ
ドロキシ−1,4−ナフトキノン、4−(p−ヒドロキ
シフェニル)2−ブタノン、1.5−ジヒドロキシ −
1,2,3,4−テトラヒドロナフタレン、ビスフェノ
ールA1サリチルアニリド、5−ヒドロキシキノリン、
8−ヒドロキシキノリン、1.8−ジヒドロキシアント
ラキノン、5−ヒドロキシ−1,4−ナフトキノン等が
挙げられる。これらの中では、とくにジメチルフェノー
ルが好ましい。
Substituted MR5 includes, for example, an alkyl group such as a methyl group,
Examples include aryl groups such as phenyl groups, and halogen atoms. Specifically, for example, dimethylphenol, phenol, hydroxypyridine, 0- or m-benzyl alcohol, 0-lm- or p-hydroxybenzaldehyde, 0- or m-hydroxyacetophenone, 0-lm- or p-hydroxypropyl alcohol, Fenon,
o-lm- or p-hydroxybenzophenone, o-l
m- or p-carboxyphenol, diphenylphenol, 2-methyl-8-hydroxyquinoline, 5-hydroxy-1,4-naphthoquinone, 4-(p-hydroxyphenyl)2-butanone, 1,5-dihydroxy-
1,2,3,4-tetrahydronaphthalene, bisphenol A1 salicylanilide, 5-hydroxyquinoline,
Examples include 8-hydroxyquinoline, 1,8-dihydroxyanthraquinone, 5-hydroxy-1,4-naphthoquinone, and the like. Among these, dimethylphenol is particularly preferred.

(式中、Arzは芳香核、各R6は置換基、m3は1な
いしAr2の有効原子価数、n3は。ないしArzの有
効原子価数−1を示す)で表されるアミノ芳香族化合物
(In the formula, Arz is an aromatic nucleus, each R6 is a substituent, m3 is 1 to the effective valence number of Ar2, and n3 is 1 to the effective valence number of Arz - 1).

Arzの芳香核、置換基R5としては化合物(a)にお
けるArl、置換基R3と夫々同様のものが使用される
。アミノ芳香族化合物の具体例を挙げると、アニリン、
1,2−ジアミノベンゼン、アミノピレン、ジアミノピ
レン、アミノクリセン、ジアミノクリセン、1−アミノ
フェナントレン、9−アミノフェナントレン、9.10
−ジアミノフェナントレン、1−アミノアントラキノン
、p−フェノキシアニリン、0−フェニレンジアミン、
p−クロロアニリン、3.5−’;クロロアニリン、2
,4.6−ドリクロロアニリン、N−メチルアニリン、
N−フェニル−p−フェニレンジアミン等である。
As the aromatic nucleus of Arz and the substituent R5, the same ones as Arl and the substituent R3 in compound (a) are used, respectively. Specific examples of amino aromatic compounds include aniline,
1,2-diaminobenzene, aminopyrene, diaminopyrene, aminochrysene, diaminochrysene, 1-aminophenanthrene, 9-aminophenanthrene, 9.10
-diaminophenanthrene, 1-aminoanthraquinone, p-phenoxyaniline, 0-phenylenediamine,
p-chloroaniline, 3.5-'; chloroaniline, 2
, 4.6-drichloroaniline, N-methylaniline,
N-phenyl-p-phenylenediamine and the like.

(C)  1.6−ピレンキノン、1.2,5.8−テ
トラヒドロキシナリザリン、フェナントレンキノン、1
−アミノアントラキノン、プルプリン、1−アミノ−4
−ヒドロキシアントラキノン、アントラルフィン等のキ
ノン類。
(C) 1.6-pyrenequinone, 1.2,5.8-tetrahydroxynarizarin, phenanthrenequinone, 1
-aminoanthraquinone, purpurin, 1-amino-4
-Quinones such as hydroxyanthraquinone and anthralphine.

これらの化合物のうち、特に2,6−キシレノール、1
−アミ/ピレンが好ましい。
Among these compounds, especially 2,6-xylenol, 1
-Ami/pyrene is preferred.

更に、実施例に係る酸化還元機能層5を形成しうる化合
物としては、 (d)  ポリ(N−メチルアニリン)〔大貫、松田、
小山、日本化学会誌、1801−1809(1984)
) 、ポリ(2,6−シメチルー1.4−フェニレンエ
ーテル)、ポリ(O−フェニレンジアミン)、ポリ(フ
ェノール)、ポリ2,6キシレノール;ピラゾロキノン
系ビニルモノマーの重合体、イソアロキサジン系ビニル
モノマーの重合体等のキノン系ビニルポリマー縮重合化
合物のような(a)〜(C)の化合物を含有する有機化
合物、(a)〜(C)の化合物の低重合度高分子化合物
(オリゴマー)、あるいは(al〜(C)をポリビニル
化合物、ポリアミド化合物等の高分子化合物に固定した
もの等の当該酸化還元反応性を有するものが挙げられる
。これらの中ではとくにポリ(2,6キシレノール)が
好ましい。
Furthermore, as a compound that can form the redox functional layer 5 according to the example, (d) poly(N-methylaniline) [Onuki, Matsuda,
Koyama, Journal of the Chemical Society of Japan, 1801-1809 (1984)
), poly(2,6-dimethyl-1,4-phenylene ether), poly(O-phenylenediamine), poly(phenol), poly2,6 xylenol; polymers of pyrazoquinone vinyl monomers, polymers of isoalloxazine vinyl monomers An organic compound containing the compounds (a) to (C) such as a quinone-based vinyl polymer condensation compound, a low polymerization degree polymer compound (oligomer) of the compound (a) to (C), or ( Examples include those having the redox reactivity, such as those in which al~(C) is fixed to a polymer compound such as a polyvinyl compound or a polyamide compound.Among these, poly(2,6 xylenol) is particularly preferred.

なお、本明細書において、重合体という語は単独重合体
及び共重合体等の相互重合体の双方を含む。
Note that in this specification, the term polymer includes both homopolymers and interpolymers such as copolymers.

畝上の酸化還元機能層5を形成しうる化合物が導電性基
体1の表面に被着されるためには、アミノ芳香族化合物
、ヒドロキシ芳香族化合物等を電解酸化重合法または電
解析出法によって基体表面上で直接重合させる方法、あ
るいは電子線照射。
In order for the compound capable of forming the redox functional layer 5 on the ridges to be deposited on the surface of the conductive substrate 1, an amino aromatic compound, a hydroxy aromatic compound, etc. are applied by an electrolytic oxidation polymerization method or an electrolytic deposition method. Direct polymerization on the substrate surface or electron beam irradiation.

乾燥により基体表面に固定する方法、更には重合体膜を
化学的処理、物理的処理もしくは照射処理によって基体
表面に直接固定する方法を採ることができる。これらの
方法の中では、特に電解酸化重合法によるのが好ましい
A method of fixing to the substrate surface by drying or a method of directly fixing the polymer film to the substrate surface by chemical treatment, physical treatment, or irradiation treatment can be adopted. Among these methods, electrolytic oxidative polymerization is particularly preferred.

電解酸化重合法は、溶媒中で適当な支持電解質の存在下
、アミノ芳香族化合物、ヒドロキシ芳香条件としては一
20℃、電極電位0.0〜1.5V(対飽和塩化ナトリ
ウムカロメル電極; 5SCE)で3回帰用(掃引速度
50mV/5ec)後、1.5■で10分間電解反応さ
せる条件が好ましい。溶媒としては、例えばアセトニト
リル、水、ジメチルホルムアミド、ジメチルスルホキシ
ド、プロピレンカーボネート等が挙げられ、これらの中
でとくにアセトニトリルが好ましい。また支持電解質と
しては、例えば過塩素酸ナトリウム、硫酸、硫酸二ナト
リウム、リン酸、ホウ酸、テトラフルオロホウ素酸塩、
テトラフルオロリン酸カリウム、4級アンモニウム塩な
どが好適なものとして挙げられ、これらの中では薄膜で
あっても酸素の透過を阻止することができる。然し、本
発明に使用しうるためには、酸化還元機能層5は当該酸
化還元反応性を有するものであれば特に制限はなく、層
の緻密の如何は問わない。
The electrolytic oxidation polymerization method uses an amino aromatic compound in the presence of a suitable supporting electrolyte in a solvent, hydroxy aromatic conditions are -20°C, and an electrode potential of 0.0 to 1.5 V (vs. saturated sodium chloride calomel electrode; 5SCE). It is preferable to carry out an electrolytic reaction at 1.5 cm for 10 minutes after 3 regressions (sweep rate: 50 mV/5 ec). Examples of the solvent include acetonitrile, water, dimethylformamide, dimethyl sulfoxide, propylene carbonate, and among these, acetonitrile is particularly preferred. Supporting electrolytes include, for example, sodium perchlorate, sulfuric acid, disodium sulfate, phosphoric acid, boric acid, tetrafluoroborate,
Preferred examples include potassium tetrafluorophosphate and quaternary ammonium salts, and among these, even a thin film can block oxygen permeation. However, in order to be usable in the present invention, the redox functional layer 5 is not particularly limited as long as it has the redox reactivity, and it does not matter how dense the layer is.

酸化還元機能層5の厚さは0.1μm〜0.5鰭となる
ようにするのが好ましい。0.1μmより薄い場好まし
くない。
The thickness of the redox functional layer 5 is preferably 0.1 μm to 0.5 μm. If it is thinner than 0.1 μm, it is not preferable.

また、酸化還元機能層5は、これに電1解質を含浸させ
て使用することができる。電解質としては、例えばリン
酸水素二カリウム、過塩素酸ナトリウム、硫酸、テトラ
フルオロホウ酸塩、テトラフェニルホウ酸塩等が挙げら
れる。これらの中ではとくに過塩素酸ナトリウムが好ま
しい。酸化還元機溶液に浸漬する方法が簡便である。
Further, the redox functional layer 5 can be used by impregnating it with an electrolyte. Examples of the electrolyte include dipotassium hydrogen phosphate, sodium perchlorate, sulfuric acid, tetrafluoroborate, and tetraphenylborate. Among these, sodium perchlorate is particularly preferred. A method of immersion in a redox solution is simple.

畝上の如くして導電性基体1に酸化還元機能層5が被覆
された電極の表面に更に重ねて被覆される隔壁層6は、
酸化還元機能層5およびイオン選択性層7との間でそれ
ぞれの層を構成する物質の移動を妨げかつイオンとの接
触によりイオン選択性層7に生じる電位差とイオンを酸
化還元機能層5へ伝達する機能を有するものである。こ
のような機能を有する層としては、電解質液又は水溶液
を保有する高分子層セルロース誘導体層、水溶性り 高分子層などが挙げられ、この中ではとくにポリビニル
アルコール(以下PVAと略す)層が好適なものとして
挙げられる。隔壁層6を酸化還元機能層5に被覆するに
は例えばPVAの10%水溶液あるいは電解液を含むP
VAl0%水溶液を作暑しこの溶液中に酸化還元電極を
十分浸漬、引き上げ、風乾、150℃で乾燥という工程
を繰り返し、所望の厚さに調整して得られる。電解液と
しては、pH緩衝液が好ましく、水素イオンに対しては
、クエン酸塩、リン酸塩液が好ましい。pHの範囲とし
ては、生体中でのpH範囲とほぼ等しい4.8〜7.4
が好ましく、と(に6.0〜7.4が好ましい。PVA
0層の厚さとしては0.2μm〜10m−がよ(、好ま
しくは200μm〜800μm1とくに好ましくは40
0μm〜600μmである。隔壁層6の表面に更に被覆
されるイオン選択性層7としては、被検イオンのイオン
キャリヤー物質及び必要により電解質塩を高分子化合物
に担持せしめた層が使用される。イオンキャリヤー物質
としては被検イオンに応じて例えば次のものが使用れさ
る。
The partition layer 6 is further coated on the surface of the electrode in which the redox functional layer 5 is coated on the conductive substrate 1 in a ridge-like manner.
It prevents the movement of substances constituting each layer between the redox functional layer 5 and the ion-selective layer 7, and transmits the potential difference and ions generated in the ion-selective layer 7 due to contact with ions to the redox functional layer 5. It has the function of Examples of the layer having such a function include a polymer layer containing an electrolyte solution or an aqueous solution, a cellulose derivative layer, a water-soluble polymer layer, etc. Among these, a polyvinyl alcohol (hereinafter abbreviated as PVA) layer is particularly suitable. It is mentioned as something. In order to cover the redox functional layer 5 with the partition layer 6, for example, a 10% aqueous solution of PVA or P containing an electrolytic solution is used.
The desired thickness is obtained by preparing a 0% VAl aqueous solution, thoroughly immersing the redox electrode in this solution, pulling it up, air drying, and repeating the steps of drying at 150° C. to obtain the desired thickness. As the electrolytic solution, a pH buffer solution is preferred, and for hydrogen ions, citrate and phosphate solutions are preferred. The pH range is 4.8 to 7.4, which is almost the same as the pH range in living organisms.
is preferable, and (6.0 to 7.4 is preferable. PVA
The thickness of the zero layer is 0.2 μm to 10 m (preferably 200 μm to 800 μm, particularly preferably 40 m).
It is 0 μm to 600 μm. As the ion-selective layer 7 further coated on the surface of the partition layer 6, there is used a layer in which a polymer compound supports an ion carrier substance for the analyte ions and, if necessary, an electrolyte salt. For example, the following ion carrier substances are used depending on the ion to be detected.

(i)水素イオン 水素イオンートヤリャー物質としては、例えば次式 (式中、R?、R,およびR1は同一もしくは異なった
アルキル基を示し、そのうち少なくとも2つは炭素数8
〜18のアルキル基を示す)で表されるアミン類、およ
び次式 (式中、RIGは炭素数8〜1日のアルキル基を示す) で表される化合物等を挙げることができ、好ましいもの
としてはトリーn−ドデシルアミンが挙げられる。
(i) Hydrogen ion hydrogen ion toner substances may, for example, be expressed by the following formula (wherein R?, R, and R1 represent the same or different alkyl groups, at least two of which have 8 carbon atoms.
Preferred examples include amines represented by the following formula (in which RIG represents an alkyl group having 8 to 1 carbon atoms): Examples include tri-n-dodecylamine.

この中ではとくにトリドデシルアミンが好ましい。Among these, tridodecylamine is particularly preferred.

(ii)カリウムイオン パリノマイシン;ノナクチン、モナクチン;ジシクロへ
キシル−18−クラウン−6、ナフト−15−クラウン
−5、ビス(15−クラウン−5)等のクラウンエーテ
ル化合物等が挙げられ、就中、パリノマイシン、ビス(
15−クラウン−5)が好適である。この中ではとくに
パリノマイシンが好ましい。
(ii) Potassium ion palinomycin; nonactin, monactin; crown ether compounds such as dicyclohexyl-18-crown-6, naphtho-15-crown-5, bis(15-crown-5); Medium, palinomycin, bis(
15-crown-5) is preferred. Among these, palinomycin is particularly preferred.

(iii)ナトリウムイオン 芳香族系アミドもしくはジアミド類、脂肪族系アミドも
しくはジアミド類、クラウン化合物、例えばビス〔(1
2−クラウン−4)メチル〕 ドデシルマロネート、N
、N、N、N−テトラプロピル−3,6−シオキサネー
トージアミド、N、N、N’ 、N’−テトラベンジル
−1,2−エチレンジオキシジアセトアミド、N、N”
−ジベンジル−N、N’−ジフェニル−1,2−フェニ
レンジアセトアミド、NIN’、N”−トリへブチル−
N、N’、N”−トリメチル−4,4’、4”−プロピ
リジントリス(3−オキサブチルアミド)、3−メトキ
シ−N、N、N、N−テトラプロピル−1,2−フェニ
レンジオキシジアセトアミド、(−)−(R,R)−4
,5−ジメチル−N、 N、 N、 N=テトラプロピ
ル−3,6−シオキサオクタンジアミド、4−メチル−
N、N、N、N−テトラプロピル−3,6−シオキサオ
クタンージアミド、N、N、N。
(iii) Sodium ion aromatic amides or diamides, aliphatic amides or diamides, crown compounds such as bis[(1
2-crown-4) methyl] dodecyl malonate, N
, N, N, N-tetrapropyl-3,6-thioxanetodiamide, N, N, N', N'-tetrabenzyl-1,2-ethylenedioxydiacetamide, N, N''
-dibenzyl-N,N'-diphenyl-1,2-phenylene diacetamide, NIN',N''-trihebutyl-
N,N',N"-trimethyl-4,4',4"-propyridine tris(3-oxbutylamide), 3-methoxy-N,N,N,N-tetrapropyl-1,2-phenylenedi Oxydiacetamide, (-)-(R,R)-4
,5-dimethyl-N, N, N, N=tetrapropyl-3,6-thioxaoctanediamide, 4-methyl-
N,N,N,N-tetrapropyl-3,6-thioxaoctane-diamide, N,N,N.

N−テトラプロピル−1,2−フェニレンジオキシジア
セトアミド、N、N、N、N −テトラプロピル−2,
3−ナフタレンジオキシジアセトアミド、4−t−ブチ
ル−N、N、N、N−テトラプロピル−1,2−シクロ
ヘキサンジオキシ−ジアセトアミド、シスーN、N、N
、N−テトラプロピル−1,2−シクロヘキサンジオキ
シジアセトアミド、トランス−N。
N-tetrapropyl-1,2-phenylenedioxydiacetamide, N,N,N,N-tetrapropyl-2,
3-Naphthalenedioxydiacetamide, 4-t-butyl-N,N,N,N-tetrapropyl-1,2-cyclohexanedioxy-diacetamide, cis-N,N,N
, N-tetrapropyl-1,2-cyclohexanedioxydiacetamide, trans-N.

N、 N、 N−テトラプロピル−1,2シクロヘキサ
ンジオキシジアセトアミド等が挙げられ、この中ではと
くにビス〔(12−クラウン−4)メチル〕 ドデシル
マロネートが好ましい。
Examples include N, N, N-tetrapropyl-1,2 cyclohexanedioxydiacetamide, and among these, bis[(12-crown-4)methyl]dodecylmalonate is particularly preferred.

(iv )塩素イオン 次式 なっで炭素数8〜18のアルキル基を、R1゜は水素ま
たは炭素数1〜8のアルキル基を示す)で表される四級
アンモニウムの塩及び次式で表されるトリフェニルスズ
クロライド等が挙げられる。この中ではとくにトリフェ
ニルスズクロライドが好ましい。
(iv) Chlorine ion A quaternary ammonium salt represented by the following formula (where R1° represents hydrogen or an alkyl group having 1 to 8 carbon atoms) and a quaternary ammonium salt represented by the following formula: Examples include triphenyltin chloride. Among these, triphenyltin chloride is particularly preferred.

(V)カルシウムイオン カルシウム−ビス〔ジー(n−オクチルフェニル)ホス
フェ−))、(−1〜(R,R) −N、N’−ビス(
(11−エトキシカルボニル)ウンデシル) −N。
(V) Calcium ion Calcium-bis[di(n-octylphenyl)phosphate)), (-1~(R,R)-N,N'-bis(
(11-ethoxycarbonyl)undecyl) -N.

N’、4.5−テトラメチル−3,6−シオキサオクタ
ンージアミド、カルシウムビス〔ジ(n−デシル)ホス
フェート〕等が好適なものとして挙げられる。この中で
はとくにカルシウムビス〔ジー(n−オクチルフェニル
)ホスフェート〕が好ましい。
Preferred examples include N', 4,5-tetramethyl-3,6-thioxaoctanediamide, calcium bis[di(n-decyl)phosphate], and the like. Among these, calcium bis[di(n-octylphenyl)phosphate] is particularly preferred.

(vi)炭酸水素イオン 次式 (式中、R111R121R13は各々同−又は異なっ
て炭素数8〜18のアルキル基を、R14は水素原子又
は炭素数1〜4のアルキル基を、X−はC1−、Br−
又はOH−を示す) で表される4級アンモニウム塩;次式 (式中、RISはフェニル基、水素原子又はメチル基を
、RISは水素原子又はメチル基を、R1?は水素原子
、メチル基又はオクタデシル基を示す) で表される3級アミン化合物;更に次式8式% で表される化合物等が挙げられる。この中ではとくにト
リ(n−ドデシル)アンモニウムクロライドが好ましい
(vi) Hydrogen carbonate ion The following formula (in the formula, R111R121R13 are the same or different and each represents an alkyl group having 8 to 18 carbon atoms, R14 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and X- is a C1- , Br-
or OH-); a quaternary ammonium salt represented by the following formula (wherein, RIS represents a phenyl group, a hydrogen atom, or a methyl group; RIS represents a hydrogen atom or a methyl group; R1? represents a hydrogen atom, a methyl group; or an octadecyl group); furthermore, compounds represented by the following formula 8 and the like can be mentioned. Among these, tri(n-dodecyl)ammonium chloride is particularly preferred.

電解質塩としては、例えばナトリウムテトラキス(p−
クロロフェニル)ボレート、カリウムテトラキス(p−
クロロフェニル)ボレート、および次式 %式% (式中、R111はアルキル基、好ましくは炭素数2〜
6のアルキル基を示す) で表される化合物が挙げられる。この中では、水素イオ
ン、カリウムイオン、ナトリウムイオン、炭酸水素イオ
ンに対してはテトラキス(p−クロロフェニル)ホウ酸
カリウム、塩素イオンに対してはテトラクロロボレート
、カルシウムイオンに対してはジー(n−オクチルフェ
ニル)ホスフェートがとくに好ましい。
Examples of electrolyte salts include sodium tetrakis (p-
chlorophenyl)borate, potassium tetrakis(p-
chlorophenyl) borate, and the following formula % formula % (wherein R111 is an alkyl group, preferably having 2 to 2 carbon atoms)
(6) shows the alkyl group. Among them, potassium tetrakis(p-chlorophenyl)borate is used for hydrogen ions, potassium ions, sodium ions, and hydrogen carbonate ions, tetrachloroborate is used for chlorine ions, and di(n- Particularly preferred is octylphenyl) phosphate.

また、イオンキャリヤー物質を担持せしめる層材につい
ては高分子化合物として、例えば塩化ビニル樹脂、塩化
ビニル−エチレン共重合体。
Further, for the layer material supporting the ion carrier substance, examples of the polymer compound include vinyl chloride resin and vinyl chloride-ethylene copolymer.

ポリエステル、ポリアクリルアミド、ポリウレタンなど
の有機高分子化合物およびシリコーン樹脂などの無機高
分子化合物を挙げることができる。この中ではとくに塩
化ビニルが閂如*好ましい。使用される可塑剤は、溶出
しにくいものが使用される。このような可塑剤としては
、例えばセバシン酸ジオクチルエステル、アジピン酸ジ
オクチルエステル、マレイン酸ジオクチルエステル、ジ
−n−オクチルフェニルホスホネート等が挙げられる。
Examples include organic polymer compounds such as polyester, polyacrylamide, and polyurethane, and inorganic polymer compounds such as silicone resins. Among these, vinyl chloride is particularly preferred. The plasticizer used is one that is difficult to dissolve. Examples of such plasticizers include dioctyl sebacate, dioctyl adipate, dioctyl maleate, di-n-octylphenylphosphonate, and the like.

この中ではセバシン酸ジオクチル(D OS)、セバシ
ン酸ジ(2−エチルヘキシル)が好ましい。
Among these, dioctyl sebacate (DOS) and di(2-ethylhexyl sebacate) are preferred.

また溶媒としては、テトラヒドロフラン(THF)がと
くに好ましい。イオン選択性層7が被覆されるには例え
ばテトラヒドロフラン等の溶媒に高分子化合物、可塑剤
、イオンキャリヤー物質に調整することにより得られる
。イオン選択性層7の厚さとしては0.1μm〜101
1、特に0.4〜2 、 Osmとなるようにするのが
好ましい。
Moreover, as a solvent, tetrahydrofuran (THF) is particularly preferable. The ion-selective layer 7 can be coated, for example, by adjusting a polymer compound, a plasticizer, and an ion carrier substance in a solvent such as tetrahydrofuran. The thickness of the ion selective layer 7 is 0.1 μm to 10 μm.
1, especially 0.4 to 2 Osm.

上述の如く作成された、酸化還元機能層とイオン選択性
層との間に隔壁層を備えた水素イオンセンサーについて
、水素イオンセンサーを作用電極。
For the hydrogen ion sensor prepared as described above, which includes a barrier layer between the redox functional layer and the ion selective layer, the hydrogen ion sensor is used as a working electrode.

飽和塩化ナトリウムカロメル電極(SSCE)を基準電
極として用い5SCEに対する起電力をpHに対しプロ
ットしネルンストプロットの傾きの経時時間依存性を調
べることにより酸化還元機能層を構成する物質のイオン
選択性層への溶出の有無を調べた。
Using a saturated sodium chloride calomel electrode (SSCE) as a reference electrode, the electromotive force for 5SCE is plotted against pH, and the dependence of the slope of the Nernst plot over time is investigated to determine the ion-selective layer of the substance that constitutes the redox functional layer. The presence or absence of elution was investigated.

酸素ガス依存性については、pH7,4リン酸緩衝液に
窒素ガスを1時間バブリングした後測定した電位と、酸
素ガスを1時間バブリングした後測定した電位との差を
比較して調べた。炭酸ガス依存性は、pH7,4リン酸
緩衝液に二酸化炭酸ガスを溶解させて電位の変化の有無
により調べた。また、20℃、30℃、37℃、45℃
におけるpH−起電力の関係式をもとめ、ネルンストプ
ロットの傾きを調べた。
Oxygen gas dependence was investigated by comparing the difference between the potential measured after bubbling nitrogen gas into the pH 7.4 phosphate buffer for 1 hour and the potential measured after bubbling oxygen gas for 1 hour. Carbon dioxide dependence was examined by dissolving carbon dioxide gas in a pH 7,4 phosphate buffer and checking for the presence or absence of a change in potential. Also, 20℃, 30℃, 37℃, 45℃
The relationship between pH and electromotive force was determined, and the slope of the Nernst plot was examined.

また、酸化還元機能層構成物質の水素イオン選択性層へ
の溶出の有無、水素イオン選択性構成物質の酸化還元機
能層への溶出の有無についても調べた。結果を第1表、
第2表に示す。
In addition, the presence or absence of elution of the constituent substances of the redox functional layer into the hydrogen ion selective layer and the presence or absence of elution of the constituent substances of hydrogen ion selectivity into the redox functional layer were also investigated. The results are shown in Table 1.
Shown in Table 2.

(以下余白) 日経過してのちは理論値61.55によく一致し、しか
も3ケ月の間ネルンストプロットの傾きが殆ど変化せず
安定した値を示していることがわかる。
(Left below) It can be seen that after a day has passed, it agrees well with the theoretical value of 61.55, and moreover, the slope of the Nernst plot has hardly changed for three months, showing a stable value.

また酸化還元機能層を構成する物質の水素イオン選択性
層への溶出、水素イオン選択性層を構成する物質の酸化
還元機能層への溶出がないことがわかる。また、95%
応答速度は5秒以内であることが確認された。
It can also be seen that there is no elution of the substance constituting the redox functional layer into the hydrogen ion selective layer, and no elution of the substance constituting the hydrogen ion selective layer into the redox functional layer. Also, 95%
It was confirmed that the response speed was within 5 seconds.

本発明、イオンセンサーは90日経過した後に、イオン
選択性層を剥離して観察してみると、酸化還元機能層中
のキノイド化合物(赤褐色)のイオン選択性層への溶出
による層の色変化がまったく観察されなかった。一方、
従来のものは作製後20日前後からイオン選択性層が黄
色に変色するのが観測された。溶出のを無の検査は、前
記目視による検査の他にスペクトル分析(吸光光度法な
ど)、ガスクロマトグラフィー、液体クロマトグラフィ
ーなどがある。さらにまた、酸素ガスおよび二酸化炭素
による影客をうけないことがわかる。なお、本実施例は
本発明の1例でありこれに限定されるものでなく、各層
をなす構成物質の組成についてもこれに限定されるもの
ではない。
When the ion sensor of the present invention peels off the ion-selective layer after 90 days and observes it, the color change of the layer is due to the elution of the quinoid compound (reddish brown) in the redox functional layer into the ion-selective layer. was not observed at all. on the other hand,
In the conventional case, the ion-selective layer was observed to turn yellow around 20 days after production. In addition to the visual inspection described above, spectral analysis (absorption photometry, etc.), gas chromatography, liquid chromatography, and the like can be used to check for elution. Furthermore, it can be seen that it is not affected by oxygen gas and carbon dioxide. It should be noted that this embodiment is an example of the present invention and is not limited thereto, and the composition of the constituent materials forming each layer is not limited thereto either.

カリウムイオンセンサー、ナトリウムイオンセンサー、
塩素イオンセンサー、カルシ1〉ムイオンセンサーにつ
いても、ネルンストプロットの傾きの特性、酸化還元機
能層を構成する物質のイオン選択性層への溶出の有無、
イオン選択性層を構成する物質の酸化還元機能層への溶
出の有無、酸素ガスおよび二酸化炭素依存性についても
上記水素イオンセンサーと同様の結果が確認された。
potassium ion sensor, sodium ion sensor,
Regarding chloride ion sensors and calcium ion sensors, the characteristics of the slope of the Nernst plot, the presence or absence of elution of substances constituting the redox functional layer into the ion-selective layer,
Results similar to those of the hydrogen ion sensor were confirmed regarding the presence or absence of elution of the substance constituting the ion-selective layer into the redox functional layer and the dependence on oxygen gas and carbon dioxide.

実施例4〜7において、20℃〜45°Cで、ネルンス
トプロットの傾き(+*V/pH)は、理論値によく近
似しており等温点がp)15〜6の範囲に存在するため
生体中でのpH範囲とほぼ等しいpH6,0〜8.0の
領域では、温度依存性が非常に小さいことがわかる。
In Examples 4 to 7, at 20°C to 45°C, the slope of the Nernst plot (+*V/pH) closely approximates the theoretical value, and the isothermal point exists in the range of p) 15 to 6. It can be seen that the temperature dependence is extremely small in the pH range of 6.0 to 8.0, which is approximately the same as the pH range in living organisms.

第2表には記載しないが、酸化還元機能層構成物質の水
素イオン選択性層への溶出の有無、水素イオン選択性層
構成物質の酸化還元機能層への溶出の有無については実
施例1〜3と同様の結果が得られた。これは、隔壁層に
水溶液が浸透し膨潤することにより、隔壁層が従来の液
膜型のイオン電極、例えばガラス電極の内部液層として
の内部基準液の作用をすることによるものである。隔壁
層が 78m以下では、上記のような結果は示さない。
Although not listed in Table 2, the presence or absence of elution of the substance constituting the redox functional layer into the hydrogen ion selective layer and the presence or absence of elution of the substance constituting the hydrogen ion selective layer into the redox functional layer are as follows from Examples 1 to 2. Results similar to those in Example 3 were obtained. This is because when the aqueous solution permeates the partition layer and causes it to swell, the partition layer acts as an internal reference liquid as an internal liquid layer of a conventional liquid film type ion electrode, such as a glass electrode. When the partition layer is 78 m or less, the above results are not obtained.

カリウムイオンセンサー、ナトリウムイオンセンサー、
塩素イオンセンサー、カルシウムイオンセンサーについ
ても上記実施例4〜6と同様の結果が得られた。
potassium ion sensor, sodium ion sensor,
The same results as in Examples 4 to 6 were obtained for the chloride ion sensor and the calcium ion sensor.

隔壁層のイオン濃度を変えることにより任意のイオン濃
度領域に等温点を設定でき、被測定範囲での温度依存性
を小さくすることができる。
By changing the ion concentration of the partition layer, an isothermal point can be set in any ion concentration region, and temperature dependence in the measurement range can be reduced.

■0発明の効果 本発明は、酸化還元機能層とイオン選択性層の間に、そ
れぞれの層を構成する物質の相互移動を妨げかつイオン
との接触によりイオン選択性層に生ずる電位差をイオン
選択性層から酸化還元機能層へ伝達する機能を有する隔
壁層を設けたことにより、酸化還元機能層組成物質とイ
オン選択性層の組成物質の相互の溶解・溶出が生じなく
なりイオン特性すなわちネルンストプロットの傾きが長
期間変化することがなく妨害イオンに対する選択性が高
くなり、イオン応答速度が速い。
■0 Effects of the invention The present invention prevents the mutual movement of substances constituting each layer between the redox functional layer and the ion-selective layer, and selects ions by reducing the potential difference that occurs in the ion-selective layer due to contact with ions. By providing the partition layer that has the function of transmitting information from the selective layer to the redox functional layer, mutual dissolution and elution of the redox functional layer constituent material and the constituent material of the ion selective layer do not occur, and the ionic characteristics, that is, the Nernst plot. The slope does not change over a long period of time, resulting in high selectivity to interfering ions and fast ion response speed.

隔壁層の膜厚を0.2μm〜1.0mmにすることによ
す20℃〜45℃において、生体中でのpl+範囲とほ
ぼ等しい6.0〜8.0で、温度依存性がなく、従来の
内部液室を有するガラス電極と類似した温度特性を示す
By setting the thickness of the partition layer to 0.2 μm to 1.0 mm, at 20° C. to 45° C., the pl+ range is 6.0 to 8.0, which is almost the same as the in-vivo range, and there is no temperature dependence. It exhibits similar temperature characteristics to a conventional glass electrode with an internal liquid chamber.

また、内部に液室を有するガラス型の電極と異なる固体
型のセンサーであるため、取り扱いが簡単で、小型化が
図られ、しかもガラス電極と異なり、破損し難いのでガ
イドワイヤー、カテーテル等と組み合わせることができ
医療用イオンセンサーとして生体内中で被検イオンを測
定できる。
In addition, since it is a solid-state sensor, unlike glass-type electrodes that have a liquid chamber inside, it is easy to handle and can be miniaturized.Moreover, unlike glass electrodes, it is difficult to break, so it can be combined with guide wires, catheters, etc. It can be used as a medical ion sensor to measure test ions in vivo.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオンセンサーの構成図である。 1・・・導電性基体、1a・・・導電性基体底面、2・
・・リード線、3・・・テフロン被覆部、4・・・熱収
縮チューブ、5・・・酸化還元機能層、6・・・隔壁層
、7・・・イオン選択性層、8・・・導電性接着剤、9
・・・絶縁体。 ゛た王/ 第1図
FIG. 1 is a block diagram of the ion sensor of the present invention. 1... Conductive substrate, 1a... Bottom surface of conductive substrate, 2.
... Lead wire, 3 ... Teflon coating part, 4 ... Heat shrinkable tube, 5 ... Redox functional layer, 6 ... Partition layer, 7 ... Ion selective layer, 8 ... conductive adhesive, 9
···Insulator. The King/Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)イオン感応部を備え、溶液中のイオン濃度を電極
電位応答で測定する固体型のイオンセンサーにおいて、
前記イオン感応部は、導電性基体と、該導電性基体の表
面を覆う酸化還元機能層と、該酸化還元機能層の表面を
覆う隔壁層と、該隔壁層の表面を覆うイオン選択性層と
を備え、前記隔壁層は該イオン選択性層および前記酸化
還元機能層との間でそれぞれの層を構成する物質の移動
を妨げかつイオンとの接触により該イオン選択性層に生
じる電位差を該イオン選択性層から酸化還元機能層へ伝
達する機能を有することを特徴とするイオンセンサー。
(1) In a solid-state ion sensor that is equipped with an ion-sensing part and measures the ion concentration in a solution by electrode potential response,
The ion sensitive section includes a conductive substrate, a redox functional layer covering the surface of the conductive substrate, a partition layer covering the surface of the redox functional layer, and an ion selective layer covering the surface of the partition layer. The partition layer prevents the movement of substances constituting each layer between the ion-selective layer and the redox functional layer, and reduces the potential difference generated in the ion-selective layer by contact with ions. An ion sensor characterized by having a function of transmitting information from a selective layer to a redox functional layer.
(2)隔壁層の厚さが0.2μm〜1.0mmである特
許請求の範囲第1項記載のイオンセンサー。
(2) The ion sensor according to claim 1, wherein the partition layer has a thickness of 0.2 μm to 1.0 mm.
JP61120564A 1985-05-26 1986-05-26 Ion sensor Expired - Fee Related JPH0641929B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61120564A JPH0641929B2 (en) 1986-05-01 1986-05-26 Ion sensor
US07/044,062 US4871442A (en) 1986-05-01 1987-04-29 Ion sensor
DE8787401013T DE3764862D1 (en) 1986-05-01 1987-04-30 ION SENSOR.
DK220387A DK167824B1 (en) 1986-05-01 1987-04-30 The ion sensor
KR1019870004231A KR900004692B1 (en) 1985-05-26 1987-04-30 Ion sensor
EP87401013A EP0245168B1 (en) 1986-05-01 1987-04-30 Ion sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10172486 1986-05-01
JP61-101724 1986-05-01
JP61120564A JPH0641929B2 (en) 1986-05-01 1986-05-26 Ion sensor

Publications (2)

Publication Number Publication Date
JPS63100369A true JPS63100369A (en) 1988-05-02
JPH0641929B2 JPH0641929B2 (en) 1994-06-01

Family

ID=26442548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61120564A Expired - Fee Related JPH0641929B2 (en) 1985-05-26 1986-05-26 Ion sensor

Country Status (1)

Country Link
JP (1) JPH0641929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428554A (en) * 1987-07-24 1989-01-31 Terumo Corp Ion sensor and manufacture thereof
WO2017047374A1 (en) * 2015-09-14 2017-03-23 株式会社日立製作所 Ion-selective electrode, method of manufacture thereof, and cartridge

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6428554A (en) * 1987-07-24 1989-01-31 Terumo Corp Ion sensor and manufacture thereof
JPH0569464B2 (en) * 1987-07-24 1993-10-01 Terumo Corp
WO2017047374A1 (en) * 2015-09-14 2017-03-23 株式会社日立製作所 Ion-selective electrode, method of manufacture thereof, and cartridge
JPWO2017047374A1 (en) * 2015-09-14 2018-07-05 株式会社日立ハイテクノロジーズ Ion selective electrode, method for producing the same, and cartridge
US10871464B2 (en) 2015-09-14 2020-12-22 Hitachi High-Tech Corporation Ion-selective electrode, method of manufacture thereof, and cartridge

Also Published As

Publication number Publication date
JPH0641929B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
KR900004691B1 (en) Ion selective fet sensor
KR900002501B1 (en) Gas sensor
US5133856A (en) Ion sensor
KR890002940B1 (en) Ion sensor
KR900004692B1 (en) Ion sensor
US5139626A (en) Ion concentration measurement method
JPS61251764A (en) Ph sensor
JPS63100369A (en) Ion sensor
EP0218530B1 (en) Ionic concentration measurement method
US5190636A (en) Ion-sensitive film, method of producing the same and ion sensor
JPH0376863B2 (en)
JPS61194343A (en) Ph sensor
JPS61213662A (en) Ph sensor
JPS6252449A (en) Calcium ion sensor
KR900005620B1 (en) Ion - selective fet sensor
JPH0375064B2 (en)
JPS62265559A (en) Hydrogen carbonate ion sensor
JPS62276452A (en) Ion selective fet sensor
JPH0795060B2 (en) Ion-selective FET sensor-
JPH0376861B2 (en)
JPH0362225B2 (en)
JPS63154957A (en) Film cover sensor and manufacture thereof
JPH0376862B2 (en)
JPS61213661A (en) Ph sensor
JPH0362226B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees