JPS629977B2 - - Google Patents

Info

Publication number
JPS629977B2
JPS629977B2 JP52043207A JP4320777A JPS629977B2 JP S629977 B2 JPS629977 B2 JP S629977B2 JP 52043207 A JP52043207 A JP 52043207A JP 4320777 A JP4320777 A JP 4320777A JP S629977 B2 JPS629977 B2 JP S629977B2
Authority
JP
Japan
Prior art keywords
discharge
cathode
light
anode
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52043207A
Other languages
Japanese (ja)
Other versions
JPS53128173A (en
Inventor
Shinji Mayama
Iwao Kato
Tadataka Koga
Kenichiro Takahashi
Shigeru Sonobe
Yoji Arai
Konosuke Ooishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4320777A priority Critical patent/JPS53128173A/en
Publication of JPS53128173A publication Critical patent/JPS53128173A/en
Publication of JPS629977B2 publication Critical patent/JPS629977B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は水素放電管に係り、特に、分光分析用
の光源として用いられる水素放電管の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen discharge tube, and more particularly to improvements in a hydrogen discharge tube used as a light source for spectroscopic analysis.

近年分光分析装置の高性能化が要求されると共
に、その光源の高輝度化が重要な課題となつてい
る。なかでも原子吸光分析時の補正用光源として
用いられる水素放電管は、長寿命化や取扱い易さ
の改善が望まれている。一般に水素放電管の放電
電流を増せば発光強度は増加する。しかし、単に
電流密度を増すだけでは水素放電管の温度が上昇
し、各電極の耐熱性が問題化し管の冷却が必要に
なつてくる。いわゆる寿命が短縮されるようでは
余り実用的価値はない。
In recent years, spectroscopic analyzers have been required to have higher performance, and increasing the brightness of their light sources has become an important issue. Among these, hydrogen discharge tubes used as correction light sources during atomic absorption spectrometry are desired to have a longer lifespan and be easier to handle. Generally, increasing the discharge current of a hydrogen discharge tube increases the emission intensity. However, simply increasing the current density causes the temperature of the hydrogen discharge tube to rise, making the heat resistance of each electrode problematic and requiring cooling of the tube. If the so-called lifespan is shortened, there is no practical value.

本発明の目的は、長寿命で、高分析精度をもた
らし得る水素放電管を提供することにある。
An object of the present invention is to provide a hydrogen discharge tube that has a long life and can provide high analytical accuracy.

本発明は、管体内に、輻射密度増強孔を有する
陽極室と陰極室放電路孔を有する陰極室と光取出
方向を制限するための光取出窓を有する隔壁とを
備え上記陰極室内に陰極を配置し、上記陽極室内
に陽極を配置し、上記輻射密度増強孔と上記陰極
放電路孔を介して上記陰極と上記陽極間に放電を
行わせ、この放電にともなつて上記輻射密度増強
孔付近で生ずる光を上記光取出窓を通して取り出
す水素放電管において、上記陰極と上記陽極との
間の放電時の放電路および上記光取出窓で制限さ
れる光の通路を妨げない位置に第3の電極を配置
し、上記陰極室は上記光取出窓で制限される光の
通路を妨げない位置に配置し、上記輻射密度増強
孔の大きさを上記陰極放電路孔の大きさより小さ
く形成し、上記陰極と上記陽極の間に断続的に主
放電させるとともに、少なくとも断続的主放電の
停止時間帯に上記陰極と上記陽極の内の一方と上
記第3の電極との間に主放電用電力よりもも小さ
い放電維持電力での補助放電をさせるようにした
ことを特徴とする。
The present invention includes, in a tube, an anode chamber having a radiation density enhancement hole, a cathode chamber having a cathode chamber discharge path hole, and a partition wall having a light extraction window for restricting the direction of light extraction, and a cathode inside the cathode chamber. an anode is placed in the anode chamber, a discharge is caused between the cathode and the anode through the radiation density enhancement hole and the cathode discharge path hole, and as a result of this discharge, the area near the radiation density enhancement hole is In the hydrogen discharge tube, a third electrode is provided at a position that does not obstruct the discharge path during discharge between the cathode and the anode and the path of light restricted by the light extraction window. , the cathode chamber is arranged in a position that does not obstruct the passage of light restricted by the light extraction window, the size of the radiation density enhancement hole is formed smaller than the size of the cathode discharge path hole, and the cathode A main discharge is caused intermittently between the cathode and the anode, and at least during the stop period of the intermittent main discharge, a power that is lower than the main discharge power is applied between the cathode, one of the anodes, and the third electrode. The present invention is characterized in that auxiliary discharge is performed with a small discharge sustaining power.

本発明では、小さい放電維持電力によつて陰極
又は陽極と第3電極の間で補助放電させておくこ
とによつて管体内の空間に浮遊電子を生成し、主
放電のときに高い放電開始電圧が必要とされない
ように配慮されている。発光は、主放電のときば
かりでなく補助放電のときにも生ずるが、補助放
電では供給電力が低いため発光強度は主放電のと
きよりはるかに小さい(通常数十分の一以下であ
る)。本発明では、第3電極も、陰極室も光取出
窓で制限される光の通路を妨げない位置に配置す
る。
In the present invention, by causing an auxiliary discharge between the cathode or the anode and the third electrode using a small discharge sustaining power, floating electrons are generated in the space inside the tube, and a high discharge starting voltage is generated during the main discharge. care has been taken to ensure that this is not required. Light emission occurs not only during the main discharge but also during the auxiliary discharge, but since the supplied power is low in the auxiliary discharge, the luminescence intensity is much lower than that during the main discharge (usually several tenths or less). In the present invention, both the third electrode and the cathode chamber are arranged at positions that do not interfere with the passage of light restricted by the light extraction window.

一般に、放電が、放電路に物理的制約がない状
態でなされる場合は、陽極から遠く陰極に近い領
域で発光現象が生ずる。つまり発光は陰極近傍で
なされる。ところが、放電路に輻射密度増強孔の
ような放電路を狭めるものが存在すると、その孔
によつて放電の電流密度が急激に高められるので
その孔付近で発光現象が生ずる。このようにして
本発明における主放電時には輻射密度増強孔付近
で強い発光が生ずるのである。
Generally, when a discharge occurs without any physical constraints on the discharge path, a light emission phenomenon occurs in a region far from the anode and close to the cathode. In other words, light is emitted near the cathode. However, if something that narrows the discharge path, such as a radiation density enhancement hole, exists in the discharge path, the current density of the discharge is rapidly increased by the hole, and a light emission phenomenon occurs near the hole. In this manner, strong light emission occurs near the radiation density enhancement hole during the main discharge in the present invention.

一方、本発明の望ましい実施例では、第3電極
として、陰極室壁を用いる場合、陽極代用の電極
30を用いる場合、および陰極代用の電極32を
用いる場合を示している。これらの第3電極は本
来の陰極又は陽極との間で低電力で補助放電され
るが、放電にともなつて生ずる微弱光の発光場所
は、主放電のときに取出されるべき光の通路を妨
げない場所であり、その微弱光は光取出窓を有す
る隔壁によつてあるいは陽極自身によつて外部に
漏出するのが防止される。
On the other hand, in preferred embodiments of the present invention, a case is shown in which a cathode chamber wall is used as the third electrode, a case in which an electrode 30 is used in place of an anode, and a case in which an electrode 32 is used in place of a cathode. These third electrodes are used for auxiliary discharge with low power between the original cathode or anode, but the location where the weak light generated during the discharge is emitted is similar to the path of the light that should be taken out during the main discharge. The weak light is prevented from leaking to the outside by a partition wall having a light extraction window or by the anode itself.

第1図は本発明の一実施例である水素放電管の
構造を示す断面図、第2図は第1図のA―A′断
面図であるコイル形熱陰極1は陰極室10の中央
にあり、陽極2は陽極室9内に置かれている。こ
れらの陰極室10と放電発光室11は上下方向が
開放された筒状で、陽極室9は上下方向も閉じら
れた箱形に一体に形成され導体12によつてステ
ム8に支持されている。また、上記陰極1および
陽極2も導体によつて同様にステム8に支えら
れ、これらの導体は管体7の下部に突出してい
る。。
FIG. 1 is a sectional view showing the structure of a hydrogen discharge tube according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line A-A' in FIG. The anode 2 is placed in the anode chamber 9. The cathode chamber 10 and the discharge light emitting chamber 11 have a cylindrical shape that is open in the vertical direction, and the anode chamber 9 is integrally formed in a box shape that is closed in the vertical direction and is supported by the stem 8 by a conductor 12. . Further, the cathode 1 and the anode 2 are similarly supported by the stem 8 by conductors, and these conductors protrude from the lower part of the tube body 7. .

第2図に示すように、管体7は円筒形のガラス
管球でその一部を突出させその先端に紫外線も良
く透過するガラス板を光線23に垂直になるよう
に取付け重水素を封入している。上記陰極室10
と放電発光室11との間の隔壁には陰極放電路孔
6、放電発光室11と陽極室9との間の隔壁には
輻射密度増強孔4があり、放電発光室11の光出
口には光取出し窓5をもつている。
As shown in FIG. 2, the tube body 7 is a cylindrical glass tube with a part thereof protruding, and a glass plate that transmits ultraviolet rays well is attached to the tip of the tube so as to be perpendicular to the light beam 23, and deuterium is sealed therein. ing. The above cathode chamber 10
A cathode discharge path hole 6 is provided in the partition wall between the discharge light emitting chamber 11 and the discharge light emitting chamber 11, a radiation density enhancement hole 4 is provided in the partition wall between the discharge light emitting chamber 11 and the anode chamber 9, and a light outlet of the discharge light emitting chamber 11 is provided with a radiation density enhancement hole 4. It has a light extraction window 5.

以上のような構成の水素放電管において、陰極
1を適当に加熱し陰極1と陽極2との間に直流電
力を連続的に印加して連続発光を生じさせると、
受光処理する電気回路が複雑になり、発熱量が大
となる制約を受けるため強力な発光を得ることが
できない。一方、陰極1と陽極2との間に直流電
力を断続的に印加して矩形波状パルスを生じさせ
ると、電力を印加する度毎に大きい放電開始電圧
が必要となり、この高電圧で加速されたイオンが
陰極に衝突して陰極を消耗し水素放電管の劣化を
速める。
In the hydrogen discharge tube configured as above, when the cathode 1 is appropriately heated and DC power is continuously applied between the cathode 1 and the anode 2 to cause continuous light emission,
The electric circuit for receiving and processing the light becomes complicated, and the amount of heat generated is limited, making it impossible to obtain strong light emission. On the other hand, if DC power is intermittently applied between cathode 1 and anode 2 to generate a rectangular wave pulse, a large discharge starting voltage will be required each time power is applied, and this high voltage will accelerate the discharge. The ions collide with the cathode and consume it, accelerating the deterioration of the hydrogen discharge tube.

本実施例の水素放電管では、電極室9,10お
よび放電発光室11を形成している共通の金属板
隔壁3を電源に接続し、陰極1と陰極室壁との間
で補助放電するようにしたものである。
In the hydrogen discharge tube of this embodiment, the common metal plate partition 3 forming the electrode chambers 9, 10 and the discharge luminous chamber 11 is connected to a power source, and an auxiliary discharge is generated between the cathode 1 and the cathode chamber wall. This is what I did.

第3図は本実施例の水素放電管を発光させるた
めの電源回路である。本実施例の管体7内には陰
極1と陽極2が配置され、陽極2は直流電源13
を介してリレー15の接点17に、陰極1は陰極
加熱入力19を流すと共にその導体はリレー15
の接点16に接続されている。一方第3電極(金
属隔壁板)3は直流電源14を介してリレー15
の接点18に接続されている。まず第3図の如く
第3電極3と陰極1を接続して放電を生ずる程度
の低い直流電流を流し放電を開始させる。次に接
点16の接触片を接点17の方に切換えて陰極1
と陽極2間に強い電流を流して放電させ、これを
交互に行なう。即ち、陰極1と第3電極3との間
には低電流を流し、陰極1と陽極2との間には強
電流を流して放電させる。
FIG. 3 shows a power supply circuit for causing the hydrogen discharge tube of this embodiment to emit light. A cathode 1 and an anode 2 are arranged in the tube body 7 of this embodiment, and the anode 2 is connected to the DC power source 13.
The cathode 1 conducts a cathode heating input 19 to the contacts 17 of the relay 15 through the conductor of the relay 15.
It is connected to the contact 16 of. On the other hand, the third electrode (metal partition plate) 3 is connected to the relay 15 via the DC power supply 14.
It is connected to the contact 18 of. First, as shown in FIG. 3, the third electrode 3 and the cathode 1 are connected and a low direct current is applied to generate a discharge to start the discharge. Next, switch the contact piece of contact 16 to contact 17, and
A strong current is passed between the anode 2 and the anode 2 to cause a discharge, and this is done alternately. That is, a low current is passed between the cathode 1 and the third electrode 3, and a strong current is passed between the cathode 1 and the anode 2 to cause discharge.

第4図は本実施例の水素放電管より取出される
光と電力供給状況との関係を示す線図であり、横
軸は時間を示している。最上段のパルス状曲線2
0は陰極1と陽極2間に供給した電力を示すもの
で、中段の曲線21はそれに応じて発光している
外部への取出光の強度を示すものである。最下段
の曲線は陰極1と第3電極3との間に供給される
電力を示すものである。
FIG. 4 is a diagram showing the relationship between the light extracted from the hydrogen discharge tube of this embodiment and the power supply status, and the horizontal axis represents time. Top pulse-shaped curve 2
0 indicates the electric power supplied between the cathode 1 and the anode 2, and the middle curve 21 indicates the intensity of the light emitted and extracted to the outside accordingly. The lowest curve shows the power supplied between the cathode 1 and the third electrode 3.

第2図に戻つて第3図、第4図の関係を説明す
る。陰極1と第3電極の間への断続供給される曲
線22の如き電力の印加によつて、陰極1と陰極
室壁との間で補助放電する。この放電によつて陰
極1の近傍が発光するが、陰極放電路孔6付近で
は電流密度が高められるので陰極放電路孔6付近
でも発光する。この発光は比較的微弱ではあるが
分析計の測光系へ漏出するとノイズを増大する原
因となる。この例では、光取出し窓5の周囲の隔
壁部分が遮蔽板の働きをするので、陰極放電路孔
6付近からの光は光取出し窓5を通して光線23
の方向に取出すことができない。一方、陰極1と
陽極2間の放電は陰極放電路孔6よりも大きさの
小さい輻射密度増強孔4を通して行われるので、
断続的高電力印加にともなう第4図の曲線21に
示すような強力な発光が輻射密度増強孔4付近で
生ずる。この主放電にともなう光は光取出し窓5
を通して取り出すことができる。この場合、上記
陰極1と第3電極3との間に加える放電電力はこ
の水素放電管が放電を維持することができる最抵
電力にしておけば良いので、本実施例の水素放電
管稼動時の温度上昇を低減できると共に、陰極1
へのイオン衝撃を減少させ陰極の消耗を減少して
長寿命とし電力消費量を節約しその電源回路が簡
単で済むという利点が生ずる。
Returning to FIG. 2, the relationship between FIGS. 3 and 4 will be explained. By applying power as shown in curve 22 intermittently between the cathode 1 and the third electrode, an auxiliary discharge occurs between the cathode 1 and the wall of the cathode chamber. Due to this discharge, light is emitted near the cathode 1, but since the current density is increased near the cathode discharge path hole 6, light is also emitted near the cathode discharge path hole 6. Although this light emission is relatively weak, if it leaks into the photometry system of the analyzer, it causes an increase in noise. In this example, the partition wall around the light extraction window 5 functions as a shielding plate, so that the light from the vicinity of the cathode discharge path hole 6 passes through the light extraction window 5 into the light beam 23.
It cannot be taken out in the direction of On the other hand, since the discharge between the cathode 1 and the anode 2 is carried out through the radiation density enhancement hole 4, which is smaller in size than the cathode discharge path hole 6,
With the intermittent application of high power, strong light emission as shown by the curve 21 in FIG. 4 occurs near the radiation density enhancement hole 4. The light accompanying this main discharge is transmitted through the light extraction window 5.
It can be taken out through. In this case, the discharge power applied between the cathode 1 and the third electrode 3 may be set to the lowest resistance power at which this hydrogen discharge tube can maintain discharge, so when the hydrogen discharge tube of this embodiment is in operation. It is possible to reduce the temperature rise of the cathode 1.
The advantages are reduced ion bombardment and reduced cathode wear, resulting in longer life, reduced power consumption, and simpler power supply circuitry.

第3電極として機能する陰極室壁は利用される
光の通路を妨げないように光取出し線から離れた
場所に設けてあり、陰極放電路孔6付近で連続的
に発光している放電光は光取出し窓5より光線2
3の方向へ取り出されないので、原子吸光分析時
のバツククランド補正の精度が向上するという利
点をもつている。
The cathode chamber wall, which functions as the third electrode, is located away from the light extraction line so as not to obstruct the path of the light being used, and the discharge light that is continuously emitted near the cathode discharge path hole 6 is Light beam 2 from light extraction window 5
Since it is not taken out in the direction 3, it has the advantage that the accuracy of background correction during atomic absorption analysis is improved.

このような封入型の水素放電管は近紫外領域で
の光電分光光度計の光源として用いられることが
多いので、その発光量が波長によつて大きく変化
しないことが要件となる。また、上記のごとくで
きるだけ低電力でパルス発光させることが水素放
電管の寿命を伸ばすためにも肝要であり、そのた
めに、パルス発光を休止している間に放電電圧を
低下させて連続的な放電を行なわせているのであ
る。
Since such a sealed hydrogen discharge tube is often used as a light source for a photoelectric spectrophotometer in the near-ultraviolet region, it is required that the amount of light emitted does not change significantly depending on the wavelength. In addition, as mentioned above, it is important to emit pulsed light at as low a power as possible in order to extend the life of the hydrogen discharge tube, and for this purpose, the discharge voltage is lowered while the pulsed emitted light is paused to allow continuous discharge. I am making them do this.

したがつて、上記の光取出し窓5からは水素に
よる連続スペクトル光が得られるので、原子吸光
光度計におけるバツクグランド補正が好適に行な
われて分析精度は向上する。
Therefore, since continuous spectrum light due to hydrogen is obtained from the light extraction window 5, background correction in the atomic absorption photometer is suitably performed, and analysis accuracy is improved.

第5図は本発明の他の実施例である水素放電管
の断面図、第6図は第5図の側面図、第7図は第
5図のB―B′断面図である。第1図〜第3図に示
す前の実施例と同じ部材には同一符号を付してあ
るが、本実施例の異なる所は第3の電極を隔壁板
とは別個に設けたことにある。第7図において、
第3の電極30を放電発光室11内に設け、陰極
1とこの第3の電極30との間に放電維持電力を
連続的に加える。陽極代用の第3電極30は主放
電のときの光取出窓で制限される利用光の通路を
妨げない位置にある。このときの補助放電では放
電発光室11内で発光が生ぜず、陰極放電路孔6
付近に微弱発光が生ずるのであるが、この微弱発
光は先の例と同様に光線23の方向には取り出さ
れない。それと同時に陰極1と陽極2との間に矩
形波状の強電力を加えれば強力なパルス状発光の
光線を取り出すことができる。
FIG. 5 is a sectional view of a hydrogen discharge tube according to another embodiment of the present invention, FIG. 6 is a side view of FIG. 5, and FIG. 7 is a sectional view taken along line BB' of FIG. The same members as in the previous embodiment shown in FIGS. 1 to 3 are given the same reference numerals, but the difference in this embodiment is that the third electrode is provided separately from the partition plate. . In Figure 7,
A third electrode 30 is provided in the discharge light emitting chamber 11, and discharge sustaining power is continuously applied between the cathode 1 and the third electrode 30. The third electrode 30, which serves as an anode, is located at a position where it does not obstruct the path of the light that is restricted by the light extraction window during main discharge. In the auxiliary discharge at this time, no light is generated in the discharge light emitting chamber 11, and the cathode discharge path hole 6
Although weak light emission occurs in the vicinity, this weak light emission is not extracted in the direction of the light beam 23 as in the previous example. At the same time, by applying strong power in the form of a rectangular wave between the cathode 1 and the anode 2, a strong pulsed light beam can be extracted.

第8図は第7図の水素放電管より取出される光
と電力供給状況との関係を示す線図である。最下
段の台状の曲線31は本実施例の陰極1と第3電
極30との間に流す放電維持電力を示し、最上段
の曲線20は前記陰極1と陰極2との間の矩形波
状電力であり、中段の曲線21は管体外に取出さ
れる光強度である。
FIG. 8 is a diagram showing the relationship between the light extracted from the hydrogen discharge tube of FIG. 7 and the power supply situation. The trapezoidal curve 31 at the bottom shows the discharge sustaining power flowing between the cathode 1 and the third electrode 30 of this embodiment, and the curve 20 at the top shows the rectangular waveform power between the cathode 1 and the cathode 2. The middle curve 21 is the light intensity taken out of the tube.

本実施例は前実施例の水素放電管と同様な効果
があると共に、放電維持電力を断続させる必要が
なく、陰極と第3電極が直接対向しているので放
電し易く放電維持力がより少ないという利点があ
る。
This example has the same effect as the hydrogen discharge tube of the previous example, does not require intermittent discharge sustaining power, and because the cathode and the third electrode directly face each other, it is easier to discharge and the discharge sustaining force is less. There is an advantage.

第7図には、陽極室9内に陰極の代用をする第
3電極32を設け、この第3電極32と陽極2の
間で補助放電をさせる例をも併せて示している。
低い放電維持電力を陽極2と第3電極32との間
に加え、管体7内に浮遊電子を生成させておく。
第3電極32と陽極2の間の補助放電で電極32
付近に微弱光が生ずるが、陽極2に妨げられて光
線32の方向へ取り出されない。大電力による発
光放電は陰極1と陽極2との間で行わせる。この
ときの水素放電管より取出される光と電力供給状
況との関係は第8図と同様の関係となる。
FIG. 7 also shows an example in which a third electrode 32 is provided in the anode chamber 9 to serve as a cathode, and an auxiliary discharge is caused between the third electrode 32 and the anode 2.
A low discharge sustaining power is applied between the anode 2 and the third electrode 32 to generate floating electrons within the tube body 7.
An auxiliary discharge between the third electrode 32 and the anode 2 causes the electrode 32 to
Although weak light is generated nearby, it is blocked by the anode 2 and is not extracted in the direction of the light beam 32. Luminous discharge with high power is caused to occur between the cathode 1 and the anode 2. At this time, the relationship between the light extracted from the hydrogen discharge tube and the power supply status is similar to that shown in FIG. 8.

上述の各実施例によつて長寿命化される理由
は、水素放電管の寿命が陰極の消耗と管体に封入
されているガスの稀薄化に依存する所が大きく、
各実施例ではこれらの点が改善されるからであ
る。これらの変化は電極に加える供給電力に比例
するので、本発明の実施例では放電維持電力を低
下させると共に発光用電力をパルス状に加えて総
電力を少なくした。また、陰極を補助放電に利用
する例では陰極側を主体として考えれば連続放電
の状態にあるので、取出し光の断続の都度高い放
電開始電圧は不要となり比較的簡単な電源回路で
済むことになると共に、加速イオン衝撃による陰
極の消耗が少ないという利点も加わつている。本
発明による水素放電管は強力なパルス的発光が得
られるのでSN比は大となり、パルス発光に重畳
する低圧連続発光の光が光取出し窓5から取出さ
れることがないので分析精度が向上する。
The reason why the lifespan is extended by each of the above-mentioned embodiments is that the lifespan of a hydrogen discharge tube largely depends on the consumption of the cathode and the dilution of the gas sealed in the tube body.
This is because each embodiment improves these points. Since these changes are proportional to the power supplied to the electrodes, in the embodiment of the present invention, the discharge sustaining power was lowered and the light emitting power was applied in pulses to reduce the total power. In addition, in an example where the cathode is used for auxiliary discharge, if the cathode side is considered as the main one, it is in a continuous discharge state, so a high discharge starting voltage is not required each time the extraction light is interrupted, and a relatively simple power supply circuit can be used. An additional advantage is that the cathode is less consumed by accelerated ion bombardment. Since the hydrogen discharge tube according to the present invention can produce strong pulsed light emission, the signal-to-noise ratio is large, and since the low-pressure continuous light that is superimposed on the pulsed light emission is not extracted from the light extraction window 5, analysis accuracy is improved. .

以上のように本発明は、原子吸光分析時に低バ
ツクグランドをもたらし得、長寿命となるという
効果がある。
As described above, the present invention has the advantage of providing low background during atomic absorption spectrometry and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である水素放電管の
構造を示す断面図、第2図は第1図のA―A′断
面図、第3図は本実施例の水素放電管を発光させ
るための電源回路図、第4図は第1図の実施例の
水素放電管より取出される光と電力供給状況との
関係を示す線図、第5図は本発明の他の実施例で
ある水素放電管の断面図、第6図は第5図の側面
図、第7図は第5図のB―B′断面図、第8図は第
7図の水素放電管より取出される光と電力供給状
況との関係を示す線図である。 1…陰極、2…陽極、3,30,32…第3の
電極、5…光取出し窓、7…管体、9…陽極室、
10…陰極室、11…放電発光室。
Fig. 1 is a sectional view showing the structure of a hydrogen discharge tube according to an embodiment of the present invention, Fig. 2 is a sectional view taken along line AA' in Fig. 1, and Fig. 3 is a sectional view showing the structure of a hydrogen discharge tube according to this embodiment. FIG. 4 is a diagram showing the relationship between the light extracted from the hydrogen discharge tube of the embodiment of FIG. 1 and the power supply status, and FIG. 5 is a diagram of another embodiment of the present invention. A cross-sectional view of a certain hydrogen discharge tube, Figure 6 is a side view of Figure 5, Figure 7 is a BB' cross-sectional view of Figure 5, and Figure 8 is the light extracted from the hydrogen discharge tube of Figure 7. FIG. 4 is a diagram showing the relationship between the power supply status and the power supply status. 1... Cathode, 2... Anode, 3, 30, 32... Third electrode, 5... Light extraction window, 7... Tube body, 9... Anode chamber,
10...Cathode chamber, 11...Discharge luminescence chamber.

Claims (1)

【特許請求の範囲】 1 管体内に、輻射密度増強孔を有する陽極室と
陰極放電路孔を有する陰極室と光取出方向を制限
するための光取出窓を有する隔壁とを備え、上記
陰極室内に陰極を配置し、上記陽極室内に陽極を
配置し、上記輻射密度増強孔と上記陰極放電路孔
を介して上記陰極と上記陽極間に放電を行わせ、
この放電にともなつて上記輻射密度増強孔付近で
生ずる光を上記光取出窓を通して取り出す水素放
電管において、上記陰極と上記陽極との間の放電
時の放電路および上記光取出窓で制限される光の
通路を妨げない位置に第3の電極を配置し、上記
陰極室は上記光取出窓で制限される光の通路を妨
げない位置に配置し、上記輻射密度増強孔の大き
さを上記陰極放電路孔の大きさより小さく形成
し、上記陰極と上記陽極の間に断続的に主放電用
電力を供給するとともに、少なくとも上記断続的
主放電の停止時間帯に上記陰極と上記陽極の内の
一方と上記第3の電極との間に上記主放電用電力
よりも小さい放電維持電力を供給する電力供給源
を設けたことを特徴とする水素放電管。 2 特許請求の範囲第1項記載の水素放電管にお
いて、上記第3の電極は、上記陰極室の壁材を兼
ねていることを特徴とする水素放電管。
[Scope of Claims] 1. An anode chamber having a radiation density enhancement hole, a cathode chamber having a cathode discharge path hole, and a partition wall having a light extraction window for restricting the direction of light extraction are provided in the tube, and the cathode chamber a cathode is disposed in the anode chamber, an anode is disposed in the anode chamber, and a discharge is caused between the cathode and the anode through the radiation density enhancement hole and the cathode discharge path hole;
In a hydrogen discharge tube in which light generated in the vicinity of the radiation density enhancement hole during this discharge is extracted through the light extraction window, the light is limited by the discharge path during discharge between the cathode and the anode and the light extraction window. The third electrode is arranged at a position where it does not obstruct the passage of light, the cathode chamber is arranged at a position where it does not obstruct the passage of light restricted by the light extraction window, and the size of the radiation density enhancement hole is set so that it does not obstruct the passage of light. The discharge path hole is formed smaller than the size of the discharge path hole, and main discharge power is intermittently supplied between the cathode and the anode, and one of the cathode and the anode is formed at least during the period when the intermittent main discharge is stopped. A hydrogen discharge tube characterized in that a power supply source for supplying discharge sustaining power smaller than the main discharge power is provided between the main discharge power and the third electrode. 2. The hydrogen discharge tube according to claim 1, wherein the third electrode also serves as a wall material of the cathode chamber.
JP4320777A 1977-04-14 1977-04-14 Hydrogen discharge tube Granted JPS53128173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4320777A JPS53128173A (en) 1977-04-14 1977-04-14 Hydrogen discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4320777A JPS53128173A (en) 1977-04-14 1977-04-14 Hydrogen discharge tube

Publications (2)

Publication Number Publication Date
JPS53128173A JPS53128173A (en) 1978-11-08
JPS629977B2 true JPS629977B2 (en) 1987-03-03

Family

ID=12657465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4320777A Granted JPS53128173A (en) 1977-04-14 1977-04-14 Hydrogen discharge tube

Country Status (1)

Country Link
JP (1) JPS53128173A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5763763A (en) * 1980-10-03 1982-04-17 Hitachi Ltd Light source device
JP5117774B2 (en) * 2007-06-28 2013-01-16 浜松ホトニクス株式会社 Light source device, discharge lamp and control method thereof

Also Published As

Publication number Publication date
JPS53128173A (en) 1978-11-08

Similar Documents

Publication Publication Date Title
US5247534A (en) Pulsed gas-discharge laser
JPH0877965A (en) Gas discharge tube and its lighting device
JPS59215654A (en) Improved compound illuminant lamp
US8319432B2 (en) Cathode shielding for deuterium lamps
JPS629977B2 (en)
JPH06310101A (en) Deuterium discharge tube
EP0567274A1 (en) Hollow cathode discharge tube
US4833366A (en) High performance hollow cathode lamp
US3406308A (en) Electron discharge device for generation of spectral radiation having an auxiliary discharge of low current
JP2000243356A (en) Hollow cathode lamp
EP1154462B1 (en) Gas discharge tube
US3476970A (en) Hollow cathode electron discharge device for generating spectral radiation
JPH07288106A (en) Heavy hydrogen electric discharge tube
US2020723A (en) Electric gaseous discharge device
US3341727A (en) Ionization gauge having a photocurrent suppressor electrode
US5589735A (en) Emission device with a cadmium lamp
JPH076737A (en) Deutrium discharge tube
RU1407365C (en) Metal-vapor laser
WO2005093786A1 (en) Flash lamp
SU917239A1 (en) Method and device for producing radiation in gas discharge
SU760241A1 (en) Light source
JPH0864179A (en) Deuterium discharge lamp
RU2210140C2 (en) Method and device for producing optical radiation
JPS61179052A (en) Hydrogen luminous tube
JPS62157656A (en) Display element