JPS6299691A - Rolling piston type rotary machine - Google Patents

Rolling piston type rotary machine

Info

Publication number
JPS6299691A
JPS6299691A JP23799085A JP23799085A JPS6299691A JP S6299691 A JPS6299691 A JP S6299691A JP 23799085 A JP23799085 A JP 23799085A JP 23799085 A JP23799085 A JP 23799085A JP S6299691 A JPS6299691 A JP S6299691A
Authority
JP
Japan
Prior art keywords
vane
chamber
rotor
discharge
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23799085A
Other languages
Japanese (ja)
Other versions
JPH0633781B2 (en
Inventor
Nobuaki Ishihara
宣昭 石原
Koji Okazaki
岡崎 孝治
Toshihiro Takei
竹井 敏博
Yoshiyuki Hattori
義之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60237990A priority Critical patent/JPH0633781B2/en
Priority to US06/798,021 priority patent/US4669963A/en
Priority to US07/032,026 priority patent/US4793780A/en
Publication of JPS6299691A publication Critical patent/JPS6299691A/en
Publication of JPH0633781B2 publication Critical patent/JPH0633781B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3562Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F01C1/3564Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution

Abstract

PURPOSE:To prevent noise and driving torque from increasing by decreasing the communicated sectional area of a communicating path between a discharge chamber and a vane chamber into nothing when all the vanes have been received in the vane chamber, to prevent discharged fluid from flowing backward into a suction port through the discharge chamber. CONSTITUTION:A plane on the side of a discharge chamber 10a for a vane 4 is provided with two communicating grooves 20 extending from one end plane 41 to the other end plane 42, and a communicating path 22 formed by the communicating grooves 20 and the inner wall plane of a vane chamber 11 causes the discharge chamber 10a to communicate with the vane chamber 11. Thus, until a rotor 3 reaches its lowest position from its highest one in a drawing, the communicated area of the communicating path 22 increases with its revolution, and on the other hand until it reaches its highest position from its lowest one, the above mentioned area decreases with its revolution, and becomes practically zero when the rotor 3 arrives at the highest position. Consequently, it becomes possible to prevent discharge fluid from flowing backward from a discharge port to a suction port 9 through the discharge chamber 10a, thus an increase in noise and driving torque can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はローリングピストン式回転機械に関するもので
、例えばディーゼルエンジン車に用いられる負圧源、あ
るいはブレーキブースターに負圧を供給する負圧源とし
ての負圧ポンプとして用いて有効である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a rolling piston type rotating machine, and is used as a negative pressure source used in, for example, a diesel engine vehicle or a negative pressure source that supplies negative pressure to a brake booster. It is effective when used as a negative pressure pump.

〔従来の技術〕[Conventional technology]

従来のローリングピストン式回転機械では第8図に示す
様に吸入口9′と吐出口10′はベーン4′を間に挟ん
で両側に設けられている。この場合、第8図に示すよう
にロータ3′が図中最上位置に来た場合、吸入口9′と
吐出口10′がロータ3′の図中下方側を介して連通し
てしまう。ロータ3′が高速回転した場合、チェックバ
ルブ8′がその回転に追従できなくなることがあり、吐
出口10′の閉鎖が不充分となってチェックバルブ8′
及び吐出口10′を通して吸入室9′aに吐出流体の逆
流が起こる。その結果、騒音の発生、駆動トルクの増大
、真空度の悪化という問題があった。
In a conventional rolling piston rotary machine, as shown in FIG. 8, an inlet 9' and an outlet 10' are provided on both sides with a vane 4' in between. In this case, when the rotor 3' is at the uppermost position in the figure as shown in FIG. 8, the suction port 9' and the discharge port 10' communicate with each other through the lower side of the rotor 3' in the figure. When the rotor 3' rotates at high speed, the check valve 8' may not be able to follow the rotation, and the discharge port 10' may not be closed sufficiently, causing the check valve 8'
A backflow of the discharge fluid occurs into the suction chamber 9'a through the discharge port 10'. As a result, there were problems such as generation of noise, increase in driving torque, and deterioration of the degree of vacuum.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述したように吐出用チェックバルブの追従不
可能による吐出口と吸入口の連通という問題点を解決す
るものである。
As described above, the present invention solves the problem of communication between the discharge port and the suction port due to the inability of the discharge check valve to follow the flow.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明では次の様な手段
を講じた。すなわち、筒状内周面を有するシリンダと、
このシリンダ内に配され前記筒状内周面に摺接しながら
公転運動を行うロータと、このロータ外周面に摺接し、
このロータの軸直角方向に往復動しながら前記シリンダ
と前記ロータとによって形成される空間を吸入室と吐出
室に区画形成する板状のベーンと、このベーンを収納す
るために前記シリンダに形成されたベーン室と、前記吸
入室に流体を吸入するために前記吸入室に向けて開口す
る吸入口と、前記吐出室内の流体を吐出するために前記
ベーン室に向けて開口する吐出口とを備え、前記ベーン
の前記吐出室側の面には連通溝が形成されておりこの連
通溝と前記ベーン室の内壁面とで形成される連通路によ
って前記吐出室と前記ベーン室とは連通されており、前
記ベーンが前記ベーン室内に収納されるに従って前記連
通路の連通断面積が徐々に減少し、少なくとも前記ベー
ンが全て前記ベーン室内に収納された場合には前記連通
路の連通断面積が実質零となることを特徴とするローリ
ングピストン式回転機械とした。
In order to solve the above problems, the present invention takes the following measures. That is, a cylinder having a cylindrical inner peripheral surface,
a rotor disposed within the cylinder that performs revolution movement while slidingly contacting the cylindrical inner circumferential surface;
A plate-shaped vane that reciprocates in a direction perpendicular to the axis of the rotor and divides the space formed by the cylinder and the rotor into a suction chamber and a discharge chamber, and a plate-shaped vane formed in the cylinder to accommodate the vane. a vane chamber, a suction port that opens toward the suction chamber for sucking fluid into the suction chamber, and a discharge port that opens toward the vane chamber for discharging the fluid in the discharge chamber. A communication groove is formed in a surface of the vane on the discharge chamber side, and the discharge chamber and the vane chamber are communicated with each other by a communication path formed by the communication groove and an inner wall surface of the vane chamber. , as the vanes are stored in the vane chamber, the communication cross-sectional area of the communication path gradually decreases, and at least when all the vanes are stored in the vane chamber, the communication cross-sectional area of the communication path becomes substantially zero. This is a rolling piston rotating machine that is characterized by:

〔実施例〕〔Example〕

次に本発明をブレーキブースタ用バキュームポンプとし
て用いた場合の実施例について説明する。
Next, an embodiment in which the present invention is used as a vacuum pump for a brake booster will be described.

第1図及び第2図において、主軸2は玉軸受17を介し
てフロントハウジング6、リヤハウジング7Gこ軸支さ
れている。この主軸2の中央部には、主軸2の回転を滑
らかにするためのバランサー13が設けられ、このバラ
ンサ13の両側には軸心より所定量偏心とした偏心軸1
4が形成されている。そして、この偏心軸14には玉軸
受15を介して円筒状のロータ3が軸支されている。前
記フロントハウジング6及び前記リヤハウジング7の間
には、円筒状内面1aを有するケーシング1が挟持され
ており、この円筒状内面1aの中心と前記ロータ3の中
心とは所定量偏心している。さらに、ロータ3の側面に
は前記フロントハウジング6及びリヤハウジング7の各
々の間に側板5a。
1 and 2, the main shaft 2 is supported via a ball bearing 17 by a front housing 6 and a rear housing 7G. A balancer 13 is provided at the center of the main shaft 2 to smooth the rotation of the main shaft 2, and on both sides of the balancer 13 are eccentric shafts 1 that are eccentric by a predetermined amount from the shaft center.
4 is formed. A cylindrical rotor 3 is supported on the eccentric shaft 14 via a ball bearing 15. A casing 1 having a cylindrical inner surface 1a is sandwiched between the front housing 6 and the rear housing 7, and the center of the cylindrical inner surface 1a and the center of the rotor 3 are offset by a predetermined amount. Further, on the side surface of the rotor 3, a side plate 5a is provided between each of the front housing 6 and the rear housing 7.

5bが配されており、前記ケーシング1、側板5a、5
bによってシリンダが形成されている。
5b is arranged, and the casing 1, side plates 5a, 5
b forms a cylinder.

前記ケーンングIには軸方向に開口するベーン室11が
形成されており、このベーン室11内には板状のベーン
4が挿入されている。このベーン4社はスプリング受は
穴4aが形成されており、このスプリング受は穴4aと
前記ベーン室の底面との間にはスプリング12が配され
ている。そして、このスプリング12の付勢力によって
ベーン4は常に前記ロータ3の外周面に当接しており、
ロータ3がシリンダ内を偏心運動すると、このロータ3
の運動に伴なってベーン4はベーン室11内を往復運動
する。また、このベーン4は前記シリンダ内面と前記ロ
ータ3の外周面とによって形成されるシリンダ室を吸入
室9aと吐出室10aとに区画し、ている。そして、前
記ケーシング1には、前記吸入室9aに空気を導く吸入
口9が形成され、吐出室10a内の空気を吐出するため
の吐出口10が前記ベーン室11に開口して設けられて
いる。また、吐出口10には吐出口10から外部に向う
空気のみを通過させるチェックバルブ8がバルブ受け1
9によって設けられている。尚、前記側板5a、5bは
ビン16によってフロントハウジング6及びリヤハウジ
ング7に位置決めされており、フロントハウジング6、
ケーシング1゜リヤハウジング7は互いにボルト18に
よって締結されている。
A vane chamber 11 that opens in the axial direction is formed in the cane I, and a plate-shaped vane 4 is inserted into the vane chamber 11. In this vane company 4, a spring receiver is formed with a hole 4a, and a spring 12 is disposed between the hole 4a and the bottom surface of the vane chamber. The vane 4 is always in contact with the outer peripheral surface of the rotor 3 due to the biasing force of the spring 12.
When the rotor 3 moves eccentrically inside the cylinder, this rotor 3
As the vane 4 moves, the vane 4 reciprocates within the vane chamber 11. Further, the vane 4 divides a cylinder chamber formed by the inner surface of the cylinder and the outer peripheral surface of the rotor 3 into a suction chamber 9a and a discharge chamber 10a. The casing 1 is formed with a suction port 9 for guiding air into the suction chamber 9a, and a discharge port 10 for discharging air in the discharge chamber 10a is provided to open into the vane chamber 11. . In addition, a check valve 8 is provided at the discharge port 10 to allow only the air directed to the outside from the discharge port 10 to pass through the valve receiver 1.
9. The side plates 5a and 5b are positioned on the front housing 6 and the rear housing 7 by means of pins 16, and the front housing 6,
The casing 1° and the rear housing 7 are fastened to each other by bolts 18.

次に前記ベーン4の形状を第3図に基づいて説明する。Next, the shape of the vane 4 will be explained based on FIG. 3.

このベーン4は板状部材からなるもので、前記ロータ3
の外周面に摺接する一端面41は円弧状をなしており、
他端面42には前記スプリング受は穴4aが穿設されて
いる。また、前記吐出室10aに対する面には一端面4
1側から他端面42側に向って延びる2本の連通溝20
 (溝長さLを有する)が形成されている。この連通溝
20は前記ベーン4の一端面41から所定距離Hをおい
て形成し始められており、一端面41側から他端面42
側に向うに従って徐々に溝深さが深くなり、他端面42
において開口している。
This vane 4 is made of a plate-like member, and is
One end surface 41 in sliding contact with the outer circumferential surface of is in the shape of an arc,
A hole 4a is bored in the other end surface 42 of the spring receiver. Further, one end surface 4 is provided on the surface facing the discharge chamber 10a.
Two communication grooves 20 extending from the first side toward the other end surface 42 side
(having groove length L) is formed. The communication groove 20 is formed at a predetermined distance H from one end surface 41 of the vane 4, and is formed from the one end surface 41 side to the other end surface 42.
The groove depth gradually becomes deeper toward the side, and the other end surface 42
It is open at .

前記ベーン4は前記ベーン室11内に嵌り合うようにし
て収納されており、前記吐出室10aと前記ベーン室1
1とを結ぶ。連通路22が前記連通溝20と前記ベーン
室11の内壁とによって形成されている。
The vane 4 is housed in the vane chamber 11 so as to fit into the vane chamber 11, and the discharge chamber 10a and the vane chamber 1 are connected to each other.
Connect with 1. A communication path 22 is formed by the communication groove 20 and the inner wall of the vane chamber 11.

次に各構成部品の材質について述べる。ケーシング1及
び偏心ロータ3は、たとえば鉄にテフロンコーティング
したもの、あるいは炭素繊維、SiC,5izN4スイ
スカー等を配合したアルミニウム複合材料(FRM)な
ど、玉軸受15と同等の熱膨張係数を持つ材料から成る
。ベーン4は、樹脂含浸の焼結カーボン、側板5は金属
含浸の焼結カーボンから成る。
Next, we will discuss the materials of each component. The casing 1 and the eccentric rotor 3 are made of a material having a coefficient of thermal expansion equivalent to that of the ball bearing 15, such as steel coated with Teflon, or an aluminum composite material (FRM) containing carbon fiber, SiC, 5izN4 Swisscar, etc. . The vane 4 is made of resin-impregnated sintered carbon, and the side plate 5 is made of metal-impregnated sintered carbon.

次に本実施例の作動について説明する。Next, the operation of this embodiment will be explained.

原動機(図示せず)により駆動される主軸2の回転に伴
い偏心軸14は主軸2の周囲を偏心回転する。この時、
ロータ3は、玉軸受15を介して偏心軸14に対し回転
自在に支承されてしするため、ケーシング1内部で第2
図矢印R方向Gこ公重云運動を行なう。この時、ベーン
4は圧縮機コイルノ\′ネ12の押付は力により、偏心
ロータ3の外周@bGこ当接し、偏心ロータ3の回転揺
動運動Gこ(半し)ベーン室11内の往復運動を行なう
。これ番こより、吸入室9a及び吐出室tOaは拡大、
縮小を繰り返し、ポンプ作用を行なう。すなわち、主軸
2の回転に伴い、吸入室9aが最大となるまでは例えば
ブレーキブースタの真空タンク(図示せず)内の空気を
吸入口9を通じて吸入室9aに吸入する。
The eccentric shaft 14 eccentrically rotates around the main shaft 2 as the main shaft 2 is rotated by a prime mover (not shown). At this time,
Since the rotor 3 is rotatably supported on the eccentric shaft 14 via a ball bearing 15, a second
Carry out a movement in the direction of the arrow R in the figure. At this time, the vane 4 comes into contact with the outer periphery of the eccentric rotor 3 due to the pressing force of the compressor coil nose 12, and the rotational oscillation movement of the eccentric rotor 3 causes the reciprocation within the vane chamber 11. Do exercise. From this point on, the suction chamber 9a and the discharge chamber tOa are enlarged.
Repeat contraction and pump action. That is, as the main shaft 2 rotates, air in, for example, a vacuum tank (not shown) of a brake booster is sucked into the suction chamber 9a through the suction port 9 until the suction chamber 9a reaches its maximum capacity.

その後、吸入させた空気は吐出室10aの縮小により連
通路22.ベーン室11を介して吐出口10より大気に
放出される。
Thereafter, the inhaled air is transferred to the communication path 22 due to the contraction of the discharge chamber 10a. It is discharged into the atmosphere from the discharge port 10 via the vane chamber 11.

ここで、前記連通溝20とベーン室11内壁とで形成さ
れる連通路22は、ベーン室11からのベーン4の突出
量によってその連通面積が増減される。すなわち、ベー
ン4がベーン室11内に完全に収納されている時には、
ベーン4の前記所定距離Hを有する部分かベーン室11
の内壁と接しており、前記連通路22は吐出室10aか
ら遮断される。その後、ベーン4が所定路、IHだけ突
出すると前記連通路22が前記吐出室10aに開口し始
め、さらにベーン4が突出するに従って、連通溝20が
深くなる分だけ前記連通路22の連通面積が増加してゆ
く。そして、ベーン4が最も突出した時において連通面
積は最大となる。逆に、ベーン4がベーン室11内に後
退していく場合には、前記連通路22の連通面積が徐々
に減少してゆく。
Here, the communication area of the communication path 22 formed by the communication groove 20 and the inner wall of the vane chamber 11 is increased or decreased depending on the amount of protrusion of the vane 4 from the vane chamber 11. That is, when the vane 4 is completely housed in the vane chamber 11,
The part of the vane 4 having the predetermined distance H or the vane chamber 11
The communication path 22 is cut off from the discharge chamber 10a. Thereafter, when the vane 4 protrudes by a predetermined distance IH, the communication passage 22 begins to open into the discharge chamber 10a, and as the vane 4 further protrudes, the communication area of the communication passage 22 increases by the depth of the communication groove 20. It continues to increase. The communication area becomes maximum when the vane 4 protrudes the most. Conversely, when the vane 4 retreats into the vane chamber 11, the communication area of the communication path 22 gradually decreases.

言い換えれば、ロータ3が第2図中量も上方に位置して
いる時から最も下方に位置する時までは、ロータ3の公
転に伴って連通路22の連通面積は増大し、最も下方の
位置から最も上方の位置になるまではロータ3の公転に
伴って連通路22の連通面積は減少する。そして、吐出
室10aの容量が零となった時、すなわちロータ3が最
上位置に来たとき連通路22の連通面積は実質上零とな
り、吐出口10が開口するベーン室11と吐出室10a
は遮断される。尚、ベー“ン4の突出量が前記所定距離
H以内の時であれば前記連通路22の連通面積は実質上
零に保たれるわけであるから、この所定距離Hに相当す
るロータ3の公転角度をα。
In other words, from the time when the rotor 3 is located at the uppermost position in FIG. The communication area of the communication passage 22 decreases as the rotor 3 revolves from the position to the uppermost position. When the capacity of the discharge chamber 10a becomes zero, that is, when the rotor 3 reaches the uppermost position, the communication area of the communication passage 22 becomes substantially zero, and the communication area between the vane chamber 11 where the discharge port 10 opens and the discharge chamber 10a
is blocked. Incidentally, when the amount of protrusion of the vane 4 is within the predetermined distance H, the communication area of the communication passage 22 is kept substantially zero, so that the distance of the rotor 3 corresponding to this predetermined distance H is The revolution angle is α.

とすると、ロータ3の最上位置角度から±α°の範囲に
ロータ3が位置している時は連通路22は遮断されてい
る。
Then, when the rotor 3 is located within a range of ±α° from the uppermost position angle of the rotor 3, the communication path 22 is blocked.

第4図はロータ3の公転角度、すなわち偏心軸14の回
転角度θに対する連通路22の連通面積S及び吐出室1
0aの体積変化率dV/dθを示すものである。回転角
度θはロータ3が第2図に示す様に最も下方に位置して
いるときの角度をO。
FIG. 4 shows the communication area S of the communication passage 22 and the discharge chamber 1 with respect to the revolution angle of the rotor 3, that is, the rotation angle θ of the eccentric shaft 14.
It shows the volume change rate dV/dθ of 0a. The rotation angle θ is O when the rotor 3 is located at the lowest position as shown in FIG.

とし、ロータ3が最も上方に位置しているときの角度を
180°としている。この図からもわかるように、吐出
室10aの体積変化率dV/dθが減少するにともなっ
て連通路の連通面積Sも減少し、回転角度θが180°
近傍においてはS=0となっている。
The angle when the rotor 3 is located at the highest position is 180°. As can be seen from this figure, as the volume change rate dV/dθ of the discharge chamber 10a decreases, the communication area S of the communication path also decreases, and the rotation angle θ becomes 180°.
In the vicinity, S=0.

尚、前記ベーン4に形成する連通溝20は、第5図に示
す様にベーン4の一端41から形成し始め、他端42で
開口するようにしてもよい。このように連通溝20を形
成すれば、ロータ3が最上位置に位置し、ベーン4がベ
ーン室11内に完全に収納された時のみ連通路22が閉
塞されることになる。よって、吐出室10aの体積が最
大限縮小するまで連通路22を介して流体を吐出するこ
とができ、ポンプ全体の体積効率を向上させることがで
きる。
Incidentally, the communication groove 20 formed in the vane 4 may be formed starting from one end 41 of the vane 4 and opening at the other end 42, as shown in FIG. If the communication groove 20 is formed in this way, the communication path 22 will be closed only when the rotor 3 is located at the uppermost position and the vane 4 is completely housed in the vane chamber 11. Therefore, the fluid can be discharged through the communication passage 22 until the volume of the discharge chamber 10a is reduced to the maximum extent, and the volumetric efficiency of the entire pump can be improved.

また、連通溝20は第6図、第7図に示すような形状と
してもよい。第6図に示すものでは、連通溝20の溝巾
が一端41側から他端42に向うに従って徐々に拡がる
よう形状となっている。ベーン4がベーン室11より突
出するに従い、連通溝20の溝巾が拡がった分だけ連通
路22の連通面積が増大するようになる。
Furthermore, the communication groove 20 may have a shape as shown in FIGS. 6 and 7. In the one shown in FIG. 6, the width of the communication groove 20 gradually widens from one end 41 toward the other end 42. As shown in FIG. As the vane 4 protrudes from the vane chamber 11, the communication area of the communication path 22 increases by an amount corresponding to the width of the communication groove 20.

第7図に示すものでは、最も溝長さの長い最長溝20a
と、最も溝長さの短い最短溝20cと、この最長溝2Q
aと最短120cとの中間の長さを有する中間溝20b
をそれぞれ2本づつベーン4に形成した。ベーン4がベ
ーン室11より突出するに従い、まず最長溝20aが吐
出室10aに開口し、次iこ中間m20bが開口し、最
後に最短溝20cが開口するようになる。従って、この
3種類の長さを有する溝からなる連通溝20は、ベーン
4が突出するにともない連通面積が段階的に増加するこ
とになる。
In the one shown in FIG. 7, the longest groove 20a has the longest groove length.
, the shortest groove 20c with the shortest groove length, and this longest groove 2Q
intermediate groove 20b having a length intermediate between a and the shortest length 120c
Two of each were formed on the vane 4. As the vane 4 protrudes from the vane chamber 11, first the longest groove 20a opens into the discharge chamber 10a, then the middle groove m20b opens, and finally the shortest groove 20c opens. Therefore, in the communication groove 20 made up of grooves having three different lengths, the communication area increases stepwise as the vane 4 protrudes.

上述した実施例では、吐出室10aとベーン4の上部の
ベーン室を連通溝によって連通させ、ベーン4の上部に
吐出圧力を導入しているので、吐出圧力に応じたローラ
3への押付は力をベーン4に与えることができる。従っ
て、圧縮コイルバネ12の付勢力は小さくてすむように
なり、圧縮コイルハネ12の体格を小さくすることが可
能となる。
In the embodiment described above, the discharge chamber 10a and the vane chamber at the upper part of the vane 4 are communicated with each other by the communication groove, and discharge pressure is introduced into the upper part of the vane 4. Therefore, the pressing against the roller 3 according to the discharge pressure is performed by a force. can be given to the vane 4. Therefore, the biasing force of the compression coil spring 12 can be small, and the size of the compression coil spring 12 can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明のローリングピストン式回転機
械を用いれば、ベーンが全てベーン室内に収納された場
合には、吐出室と吐出口とを結ぶ連通路が遮断されるの
で、吐出流体が吐出口から吐出室を介して吸入口に逆流
するという問題はおこりえない。よって、その流体への
逆流に起因する騒音、駆動トルクの増大、回転機械の効
果悪化という問題を防止することができる。
As explained above, when the rolling piston rotating machine of the present invention is used, when all the vanes are housed in the vane chamber, the communication path connecting the discharge chamber and the discharge port is cut off, so that the discharge fluid can be discharged. The problem of backflow from the outlet via the discharge chamber to the suction port cannot occur. Therefore, it is possible to prevent problems such as noise, increase in driving torque, and deterioration of the effectiveness of the rotating machine due to backflow to the fluid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の縦断面図、第2図は横断面図、第3図
はベーンを示す斜視図、第4図は作動を示す図、第5図
、第6図、第7図はベーンの変形例を示す斜視図、第8
図は従来例の横断面図である。 1・・・ケーシング、3・・・ロータ、4・・・ベーン
、9・・・吸入口、9a・・・吸入室、10・・・吐出
口、10a・・・吐出室、11・・・ベーン室、20・
・・連通溝、22・・・連通路。
Fig. 1 is a longitudinal cross-sectional view of the embodiment, Fig. 2 is a cross-sectional view, Fig. 3 is a perspective view showing the vane, Fig. 4 is a view showing the operation, Fig. 5, Fig. 6, and Fig. 7 are Perspective view showing a modified example of the vane, No. 8
The figure is a cross-sectional view of a conventional example. DESCRIPTION OF SYMBOLS 1... Casing, 3... Rotor, 4... Vane, 9... Suction port, 9a... Suction chamber, 10... Discharge port, 10a... Discharge chamber, 11... Vane chamber, 20・
...Communication groove, 22...Communication path.

Claims (1)

【特許請求の範囲】[Claims] 筒状内周面を有するシリンダと、このシリンダ内に配さ
れ前記筒状内周面に摺接しながら公転運動を行うロータ
と、このロータ外周面に摺接し、このロータの軸直角方
向に往復動しながら前記シリンダと前記ロータとによっ
て形成される空間を吸入室と吐出室に区画形成する板状
のベーンと、このベーンを収納するために前記シリンダ
に形成されたベーン室と、前記吸入室に流体を吸入する
ために前記吸入室に向けて開口する吸入口と、前記吐出
室内の流体を吐出するために前記ベーン室に向けて開口
する吐出口とを備え、前記ベーンの前記吐出室側の面に
は連通溝が形成されておりこの連通溝と前記ベーン室の
内壁面とで形成される連通路によって前記吐出室と前記
ベーン室とは連通されており、前記ベーンが前記ベーン
室内に収納されるに従って前記連通路の連通断面積が徐
々に減少し、少なくとも前記ベーンが全て前記ベーン室
内に収納された場合には前記連通路の連通断面積が実質
零となることを特徴とするローリングピストン式回転機
械。
A cylinder having a cylindrical inner circumferential surface, a rotor disposed within the cylinder that revolves while sliding on the cylindrical inner circumferential surface, and a rotor that slides on the outer circumferential surface of the rotor and reciprocates in a direction perpendicular to the axis of the rotor. a plate-shaped vane that divides the space formed by the cylinder and the rotor into a suction chamber and a discharge chamber; a vane chamber formed in the cylinder to accommodate the vane; and a vane chamber formed in the cylinder to accommodate the vane; a suction port that opens toward the suction chamber to suck in fluid; and a discharge port that opens toward the vane chamber to discharge fluid in the discharge chamber; A communication groove is formed in the surface, and the discharge chamber and the vane chamber communicate with each other through a communication path formed by the communication groove and the inner wall surface of the vane chamber, and the vane is housed in the vane chamber. A rolling piston characterized in that the communication cross-sectional area of the communication passage gradually decreases as the vane is moved, and the communication cross-section area of the communication passage becomes substantially zero at least when all the vanes are housed in the vane chamber. rotary machine.
JP60237990A 1984-11-15 1985-10-24 Rolling piston type rotary machine Expired - Fee Related JPH0633781B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60237990A JPH0633781B2 (en) 1985-10-24 1985-10-24 Rolling piston type rotary machine
US06/798,021 US4669963A (en) 1984-11-15 1985-11-14 Rolling piston type rotary machine
US07/032,026 US4793780A (en) 1984-11-15 1987-03-30 Rolling piston type rotary machine with discharge passage in vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237990A JPH0633781B2 (en) 1985-10-24 1985-10-24 Rolling piston type rotary machine

Publications (2)

Publication Number Publication Date
JPS6299691A true JPS6299691A (en) 1987-05-09
JPH0633781B2 JPH0633781B2 (en) 1994-05-02

Family

ID=17023480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237990A Expired - Fee Related JPH0633781B2 (en) 1984-11-15 1985-10-24 Rolling piston type rotary machine

Country Status (1)

Country Link
JP (1) JPH0633781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291095B2 (en) * 2013-03-15 2016-03-22 Randy Koch Rotary internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365903U (en) * 1976-11-06 1978-06-02
JPS5396207U (en) * 1977-01-06 1978-08-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365903U (en) * 1976-11-06 1978-06-02
JPS5396207U (en) * 1977-01-06 1978-08-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015105574A (en) * 2013-11-28 2015-06-08 三菱電機株式会社 Rotary compressor

Also Published As

Publication number Publication date
JPH0633781B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
GB2092674A (en) Rotary positive-displacement compressors
US10473102B2 (en) Rotary compressor having fluid passage between sliding vane and vane slot
EP1486677A1 (en) Rotary compressor
JPH0672597B2 (en) Rotating waveform motion type air compressor
US4514157A (en) Rotary vane compressor
JP3361821B2 (en) Fluid pump
JP2003227485A (en) Multi-cylinder compressors
JPS6299691A (en) Rolling piston type rotary machine
US4669963A (en) Rolling piston type rotary machine
GB2125901A (en) Rotary positive-displacement gas-compressor
KR101055279B1 (en) Donut vane rotary compressor
KR102186604B1 (en) Twin Rotary Compressor
JPS6296793A (en) Rolling piston type rotary machine
JPH0312236B2 (en)
JPH05195973A (en) Rotary type compressor
JPH0615868B2 (en) Rolling piston type rotary machine
JPH06103037B2 (en) Rotary piston pump
KR100455487B1 (en) Double acting compressor
JPH079235B2 (en) Rotary compressor
KR100524794B1 (en) Refrigerants suction structure for enclossed compressor
JP2880771B2 (en) Fluid compressor
KR20190095022A (en) Vane compressor
KR101557997B1 (en) Variable displacement swash plate type compressor
JPS6278488A (en) Rotary pump
JPH0320556Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees