JPS6299647A - Air-fuel ratio controller for engine - Google Patents

Air-fuel ratio controller for engine

Info

Publication number
JPS6299647A
JPS6299647A JP23982585A JP23982585A JPS6299647A JP S6299647 A JPS6299647 A JP S6299647A JP 23982585 A JP23982585 A JP 23982585A JP 23982585 A JP23982585 A JP 23982585A JP S6299647 A JPS6299647 A JP S6299647A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel
shift position
shift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23982585A
Other languages
Japanese (ja)
Inventor
Tadashi Kaneko
金子 忠志
Nobuo Takeuchi
暢男 竹内
Katsuhiko Yokooku
横奥 克日子
Akira Takai
高井 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP23982585A priority Critical patent/JPS6299647A/en
Publication of JPS6299647A publication Critical patent/JPS6299647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To aim at improvement in drivability at low speed as securing highly efficient fuel consumption, by installing a fuel injection quantity operational device calculating a fuel injection quantity on the basis of output of a desired air-fuel ratio setting device, and altering a lean limitation according to a shift position. CONSTITUTION:An injector 7, spraying fuel, is installed in a suction passage 2. A shift position detecting sensor 16 detects the shift step of a transmission. An electronic control unit 17 is provided with a device into which detection signals out of various sensors are inputted, and it sets a desired air-fuel ratio according to a shift position of the shift step, and an operational device calculating a fuel injection quantity out of the injection 7 on the basis of this set output. Thus, a lean limitation comes to be alterable according to the shift position so that improvement in drivability at low speed is well promotable.

Description

【発明の詳細な説明】 (17業十の利用分野) 本発明は所定の運転領域でリーンバーン運転を?jなわ
せしめるエンジンの空燃比ail制御装置の改良に関す
る。
[Detailed Description of the Invention] (17 Fields of Application) The present invention enables lean-burn operation in a predetermined operating range. The present invention relates to an improvement of an air-fuel ratio control device for an engine.

(従来技術) 従来から、エンジンの燃費性を向上づる1=めに、空燃
比を理論空燃比J−リムリーン側として、いわゆるリー
ン燃焼を行なうようにしたしのが知られ−Cいる(例え
ば特開11fl 59−208141号公報参照)。
(Prior Art) Conventionally, in order to improve the fuel efficiency of an engine, it is known that the air-fuel ratio is set to the stoichiometric air-fuel ratio J-rim lean side to perform so-called lean combustion (for example, (See Japanese Patent Publication No. 11fl 59-208141).

ところで、上記のごとき従来装置ではリーン燃焼運転の
可能な領域(リーンゾーン)すなわら、エンジン回転数
と負荷に基づき定まる特定の例えば低、中色?JI運転
ダj戚にてリーン燃焼が行なわれるよう目標空燃比が設
定されている。ここに、燃比性能をできるだけ高めよう
とすると、し」標2燃比としてはリーン燃焼を行なう限
II[I!賄近くに設定されることになる。
By the way, in the above-mentioned conventional device, the region (lean zone) in which lean combustion operation is possible is limited to a specific range, such as low or medium color, determined based on the engine speed and load. A target air-fuel ratio is set so that lean combustion is performed during JI operation. Here, if we try to improve the fuel ratio performance as much as possible, the standard fuel ratio is the lean combustion limit II [I! It will be set near the bribe.

ところが、一般的にトランスミッションの変速段が低速
シフト(1]−ギヤ)になる(、Lどエンジンのトルク
変動(ラフネス)の影響が中休に伝わり易いことから、
これを解消して低速での化11性を改;今Jるには、空
燃比の設定をts <τう場合、低速シフ1一時はど空
燃比をリッヂ−側に移行くきける必要がある。ザなわら
、リーン燃焼を行なわけしめるにしても、そのリーン限
界の変更が要求される。
However, in general, the gear position of the transmission is a low speed shift (1) - gear.
To solve this problem and improve the low-speed conversion; in order to run now, if the air-fuel ratio is set to ts < τ, it is necessary to shift the air-fuel ratio to the ridge side at low speed shift 1. . However, even if lean combustion is to be carried out, the lean limit must be changed.

しかるに、従来においては、エンジン回転数と負伺で定
まる一つのマツプにJ3ける固定的なり一ンゾーンにて
運転しているに過ぎず、変速段のシフト<C1iFlを
考慮してリーン限界を変更していないので、リーン限W
値近くに目標空燃比が設定されていると、低速シフト位
置では空燃比がリーンになり過ぎて不都合が生じていた
However, in the past, the lean limit was only operated in a fixed lean zone based on a map determined by the engine speed and load range, and the lean limit was changed taking into account the gear shift <C1iFl. Since it is not, the lean limit W
If the target air-fuel ratio was set close to this value, the air-fuel ratio would become too lean at low speed shift positions, causing problems.

(発明の目的) 本発明は、−[記従来の問題点に鑑みてなされたしので
、変速シフト(ff 置に応じてリーン限界目標空燃比
を設定してリーン限界を変えることにより、燃費性能を
確保しつつ、低速シフトでの走行時の1〜ルク変動の影
腎を低減し、低速走行性の改善を図ることができるエン
ジンの空燃比制御装置を提供するものである。
(Objective of the Invention) The present invention has been made in view of the problems of the conventional art. An object of the present invention is to provide an air-fuel ratio control device for an engine that can improve low-speed running performance by reducing the effects of 1- to 1-lux fluctuations during running at low-speed shifts while ensuring the same.

(発明の構成) 本発明は、所定運転領域C空燃比を理論空燃比よりリー
ン側にで燃焼させるようにしたエンジンの空燃比υ制御
装置に13いて、トランスミツシコンの変速段を検出す
るシフト位置検出手段と、シフト位置転位置てリーン限
界目標空燃比を設定する目標空燃比設定手段と、この設
定手段の出力に基づき燃料噴1>1 !dを演目する燃
料噴射l1i61運算手段を備え、シフl−位置に応じ
てリーン限界を変更するようにしたちのC・ある。
(Structure of the Invention) The present invention provides an air-fuel ratio υ control device for an engine in which combustion is performed in a predetermined operating region C air-fuel ratio leaner than the stoichiometric air-fuel ratio. A position detection means, a target air-fuel ratio setting means for setting a lean limit target air-fuel ratio based on the shift position, and based on the output of this setting means, fuel injection 1>1! The engine is equipped with a fuel injection l1i61 operating means for operating the shift lever l1i61, and is configured to change the lean limit in accordance with the shift l-position.

この構成により、変速シフト位首に応じて空燃比補正が
なされ、高速シフ1一時にtよリーン@界を7J”Jリ
リーン側に、低速シフト時にはこれよりもややリッチ側
に空燃比設定を行なうことができ、低速シフトでの運転
時のトルク変動の影彎を低減できる。
With this configuration, the air-fuel ratio is corrected according to the gear shift position, and the air-fuel ratio is set to the 7J"J lean side during a high-speed shift, and to a slightly richer side than this during a low-speed shift. This makes it possible to reduce the effects of torque fluctuations when driving at low speed shifts.

(実施例) 第1図は本発明のエンジンの空燃比制御装置の一実施例
構成を示し、1はエンジン本体、2は燃焼室3に連通し
た吸気通路で、この吸気通路2には、上流側よりエアク
リーナ4、吸入空気量を検出するエアフローメータ5、
スロットル弁6、および燃料を噴射するインジェクタ7
が設けられている。8は吸気温を検出する吸気温センサ
、9はスロットル弁6の開度を検出するスロワ1−ルポ
ジシ」ンレンサ、10はスロットル弁6よりも下流の吸
気マニホールド内の吸気負圧を検出する圧力センサ、1
1はエンジン水温を検出する水温セン着すである。
(Embodiment) Fig. 1 shows the configuration of an embodiment of the air-fuel ratio control device for an engine according to the present invention, in which 1 is an engine body, 2 is an intake passage communicating with a combustion chamber 3, and this intake passage 2 has an upstream From the side, there is an air cleaner 4, an air flow meter 5 that detects the amount of intake air,
Throttle valve 6 and injector 7 that injects fuel
is provided. 8 is an intake air temperature sensor that detects the intake air temperature, 9 is a thrower position sensor that detects the opening degree of the throttle valve 6, and 10 is a pressure sensor that detects the intake negative pressure in the intake manifold downstream of the throttle valve 6. ,1
1 is a water temperature sensor that detects the engine water temperature.

12は燃焼室3に連通した排気通路で、この排気通路1
2を構成する排気マニホールドには排ガス中の酸素温度
を検出する酸素濃度センサ(02センリ)4【どの空燃
比センサ13、排ガス浄化を(”i ’、;う三元触媒
14が1Qけられている。この空燃比センサ13からの
空燃比(A/F)信号が後記電子制υpコニツ1〜17
に入力され、フィードバック(F/B)制御が行なわれ
るようになっている。
12 is an exhaust passage communicating with the combustion chamber 3;
The exhaust manifold that constitutes 2 has an oxygen concentration sensor (02 sensor) that detects the oxygen temperature in exhaust gas. The air-fuel ratio (A/F) signal from this air-fuel ratio sensor 13 is transmitted to the electronic controls 1 to 17 described later.
is input to perform feedback (F/B) control.

また、−V記三元触媒14は周知のごとく理論空燃比近
傍にて浄化能力が最大となる6のである。15はエンジ
ンの回転数を検出する回転数センサ、161よ!−ラン
スミッションの変速段を検出するシフト位置検出セン!
すで・ある。
Further, as is well known, the -V three-way catalyst 14 has a maximum purification ability near the stoichiometric air-fuel ratio. 15 is the rotation speed sensor that detects the engine rotation speed, 161! - Shift position detection sensor that detects the gear position of the transmission!
There is already.

17は上記各種センサの検出値))が人力され、後述す
るごとく変速段のシフト位置に応じて目標空燃比を設定
づる手段ど、この設定された出力に基づきインジIクタ
7からの燃料噴射量を演韓1ノる演O手段とを備えた電
子制御ユニット(以下、I:CUと称す−)、18は点
火用の高圧パルスを発」−スるイブ太イタ、1つはイグ
ナイタ1ε3からの高圧パルスをエンジン本体1の各気
筒に配゛市す−るためのエンジンのクランク軸の回転と
連動して回転1Jるディストリビュータ、20はバッテ
リである1゜ に記構成でなるエンジンの空燃比91制御装而のにCU
17による動作を第2図、第3図のフローブーレートと
ともに説明する。
Reference numeral 17 is a means for manually inputting the detected values of the various sensors described above, and as described later, means for setting a target air-fuel ratio according to the shift position of the gear stage, and based on this set output, the fuel injection amount from the indicator I controller 7. An electronic control unit (hereinafter referred to as I:CU) equipped with an igniter 1 and an ignition means, 18 emits a high-voltage pulse for ignition, and one from the igniter 1ε3. A distributor which rotates 1 J in conjunction with the rotation of the engine crankshaft for distributing high-pressure pulses to each cylinder of the engine body 1, and 20 is a battery. 91 control equipment CU
17 will be explained together with the flow rate shown in FIGS. 2 and 3.

第2図は燃料噴射パルスの演悼ルーチンを示し、ステッ
プS1にa3いて、システムの初期化を行ない、ステッ
プS2において、ECU”+7に回転数センサ1F5か
らのエンジン回転数Ne、エアフ【]−メータ5からの
吸入空気1a I−D 、空燃比センサ1こ3からの空
燃比(A/F)、吸気温センサ8からの吸気温、大気圧
センサ(図示Vず)からの人気1[、スロットルポジシ
」ンレンリ9からのスl」ッl−ル開度簀の各信号が入
力され、続いでステッブS3において上記エンジン回転
数Ncおよび吸入空気量1.の入力flftに基づいて
予め設定されている演9処理により燃料の基本噴射” 
” BASEを口出する。
FIG. 2 shows a fuel injection pulse routine, in which the system is initialized in step S1 a3, and in step S2, the engine rotation speed Ne from the rotation speed sensor 1F5 is sent to the ECU"+7, and the airf[]- Intake air 1a I-D from meter 5, air-fuel ratio (A/F) from air-fuel ratio sensor 1 to 3, intake temperature from intake temperature sensor 8, popularity 1 from atmospheric pressure sensor (not shown) The throttle opening control signals from the throttle position sensor 9 are input, and then in step S3 the engine speed Nc and intake air amount 1. The basic injection of fuel is performed by the preset processing based on the input flft.
” Says BASE.

次に、ステップS4において、エンジンの運転状態がリ
ーン制御領Vt(リーンゾーン)にあるか否かを判断し
、リーンゾーンにある時、ステップS5に移り、後記第
3図に示すサブルーチンによりシフト位置検出センサ1
6からのシフト位置信号に応じてシフトパターン空燃比
(A/F)の補正係数C八Fを求める。続いて、ステッ
プS6において、各種補正係数を算出する。すなわち、
吸気温センナ8からの吸気温信号による吸気温補正係数
C、大気圧センサ信号による大気圧補正係へIR 数CP、水温セン4ノ11からの水温信号による水温補
正係数CI4、空燃比センサ13からの空燃比信号によ
るフィードバック(F/B)補正係数C18、圧力セン
サ10からの吸気負圧の大きさに応じて高負伺時にA/
Fをリッチ側に補正するエンリッヂ補正係数CE、スロ
ットルポジションセンサ5)の変化場に応じて加速時お
よび減速時の補」Lを行なう加速補正係数0AccJ3
よび減速?1lii″l]係数C、学習により記憶補正
を行なう際の学習賄IEC 補1[係数O3l’DYおよび無効噴射時間TVを算出
する。
Next, in step S4, it is determined whether or not the operating state of the engine is in the lean control region Vt (lean zone), and when it is in the lean zone, the process moves to step S5, and the shift position is Detection sensor 1
A correction coefficient C8F of the shift pattern air-fuel ratio (A/F) is determined according to the shift position signal from 6. Subsequently, in step S6, various correction coefficients are calculated. That is,
Intake temperature correction coefficient C based on the intake temperature signal from the intake temperature sensor 8, IR number CP to the atmospheric pressure correction section based on the atmospheric pressure sensor signal, water temperature correction coefficient CI4 based on the water temperature signal from the water temperature sensor 4/11, from the air-fuel ratio sensor 13. Feedback (F/B) correction coefficient C18 based on the air-fuel ratio signal of
An edge correction coefficient CE that corrects F to the rich side; an acceleration correction coefficient 0AccJ3 that performs correction L during acceleration and deceleration according to the changing field of the throttle position sensor 5);
and slow down? 1lii''l] Coefficient C, learning compensation IEC when memory correction is performed by learning Supplementary 1 [Coefficient O3l'DY and invalid injection time TV are calculated.

これらの9出値に基づいて、ステップS7において、最
終噴射パルスT、を、T、=T   XC+    +
   BASE xc  XCX(1+C+C十C AIRP   ^「     讐  ^CCD[C+C
+C+C)+TVとして?寅算する。
Based on these 9 output values, in step S7, the final injection pulse T, is determined as T,=T XC+ +
BASE xc
+C+C)+As a TV? Calculate.

[FBS丁DY この結果に基づいてインジェクタ7から所定の燃料噴射
がなされ、空燃比がフィードバック制御される。
[FBS DY] Based on this result, a predetermined fuel injection is performed from the injector 7, and the air-fuel ratio is feedback-controlled.

また、上記ステップS4において、エンジンの運転状態
がリーンゾーンにない時には、上記ステップS5のシフ
トパターン空燃比(A/F)補正を行なうことなく、ス
テップS8にて同補1F係数CA、−1として、ステッ
プS6に移tjI!シめ、以下同様の動作を行なう。
Further, in step S4, when the engine operating state is not in the lean zone, the shift pattern air-fuel ratio (A/F) correction in step S5 is not performed, and the supplementary 1F coefficient CA, -1 is set in step S8. , move to step S6 tjI! Then, perform the same operation.

第3図はシフトパターン空燃比(△/1−)補正号ブル
ーチンを示し、上記ステップS5での補正係数CAl−
を設定するものである。すなわち、ステップS11にお
いて、シフト位置検出センサ16からの信号に基づき、
ギV位置GPを読み込み、次に、ステップSηにおいて
、いま仮に低速シフト1から高速シフト4までに段階的
に補正係数を設定したとして、上記検出ギヤ位置に表4
づき設定されたテーブルより、該当の係数OA、を読み
取り、これをシフト位1N空燃比(A/F)補正係数O
A。
FIG. 3 shows the shift pattern air-fuel ratio (△/1-) correction signal routine, and shows the correction coefficient CAl- in step S5 above.
This is to set. That is, in step S11, based on the signal from the shift position detection sensor 16,
The gear V position GP is read, and then in step Sη, assuming that the correction coefficient is set stepwise from low speed shift 1 to high speed shift 4, the above detected gear position is set as shown in Table 4.
Read the corresponding coefficient OA from the table set according to the table, and use it as the shift position 1N air-fuel ratio (A/F) correction coefficient O.
A.

とする。ここで、例えばギA7位置GPが1,2゜3.
4であるとぎの各補止係数CAFをそれぞれ077 、
 0.72 、 0.7. 0.64と順次、高シフト
になる稈、係数が小さく、すなわち、空燃比(Δ/F)
が19.20,21.23とリーン側に移行するように
設定されている。
shall be. Here, for example, gear A7 position GP is 1.2°3.
Each correction coefficient CAF of Togi which is 4 is 077,
0.72, 0.7. Culms with a higher shift of 0.64, the coefficient is smaller, that is, the air-fuel ratio (Δ/F)
is set to shift to the lean side at 19.20 and 21.23.

このようにして、第3図に示すシフトパターン空燃比(
△/F)補正サブルーチンにより読み出された補正係数
CA、が、第2図の燃料噴射パルス演算ルーチンでのス
テップS5、ステップS7にて加味されて、シフト位置
に応じた目標空燃比が設定され、したがって、シフI−
位置に応じてり一ン限界/)〜適切に変えられることに
なり、fl、を速ギヤ時には空燃比(△/F)をや史リ
ッヂ側に設定することができる。したがって、低速1ニ
ヤて゛の運転で空燃比(Δ/F)がリーン側のままで・
は失火し易く、エンジンのトルク変動(ラフネス)の7
y vy7が人きくなるのに対して、本発明ではこのよ
うな現象が生じることを低減することができる。
In this way, the shift pattern air-fuel ratio (
Δ/F) The correction coefficient CA read out by the correction subroutine is taken into account in steps S5 and S7 of the fuel injection pulse calculation routine in FIG. 2, and the target air-fuel ratio is set according to the shift position. , therefore Schiff I-
Depending on the position, the air-fuel ratio (Δ/F) can be set to the higher side when fl is in high gear. Therefore, when operating at low speed, the air-fuel ratio (Δ/F) remains on the lean side.
is prone to misfire, and the engine torque fluctuation (roughness)
While y vy7 becomes unpopular, the present invention can reduce the occurrence of such a phenomenon.

(発明の効果) 以トのように本発明によれば、リーン燃焼可能な運転領
域で空燃比をリーン側に移行させるようにした空燃比制
御装置において、変速段のシフ1−位INに応じたリー
ン限界目標空燃比を設定し、口の設定に7.tづいて燃
わl IIrj用を行なうにうにした乙のであって、シ
フト位置に1,6じてリーン限9Jが変えられることに
なり、低速Vヤ運転でリーン限界を越えlζ場合に顕菩
に生じるエンジンの1−ルク変動くラフネス)の影響を
低減り−ることができ、したがって低速での走行性の向
[を図ることができる。
(Effects of the Invention) As described above, according to the present invention, in the air-fuel ratio control device that shifts the air-fuel ratio to the lean side in an operating region where lean combustion is possible, Set the lean limit target air-fuel ratio, and set 7. The lean limit 9J will be changed at 1st and 6th shift position, and if the lean limit is exceeded during low-speed VY operation, it will be noticed. It is possible to reduce the influence of the engine's 1-rook fluctuation (roughness) that occurs in the engine, and therefore it is possible to improve the running performance at low speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエンジンの空燃比制御菰首の一実流例
を示す構成図、第2図は同装置の動作を説明するための
燃料噴射パルス演Qルーブンのフローチt!−ト、第3
図はシフ[へパターン空燃比補正サブルーヂンのフロー
ブ11−1−〇ある。 1・・・エンジン本体、7・・・インジェクタ、13・
・・空燃比レンリ、16・・・シフト位置検出ゼンザ、
17・・・電子制御ユニット(ECU)。
Fig. 1 is a block diagram showing an example of an actual flow of the air-fuel ratio control head of the engine of the present invention, and Fig. 2 is a flowchart of the fuel injection pulse operation Q-rube for explaining the operation of the device. -G, 3rd
The figure shows a flow 11-1-0 of the Schiff pattern air-fuel ratio correction subroutine. 1... Engine body, 7... Injector, 13.
... Air fuel ratio adjustment, 16 ... Shift position detection sensor,
17...Electronic control unit (ECU).

Claims (1)

【特許請求の範囲】[Claims] 1、所定運転領域で空燃比を理論空燃比よりリーン側に
て燃焼させるようにしたエンジンの空燃比制御装置にお
いて、トランスミッションの変速段を検出するシフト位
置検出手段と、シフト位置に応じてリーン限界目標空燃
比を設定する目標空燃比設定手段と、この設定手段の出
力に基づき燃料噴射量を演算する燃料噴射量演算手段を
備え、シフト位置に応じてリーン限界を変更するように
したことを特徴とするエンジンの空燃比制御装置。
1. In an engine air-fuel ratio control device that causes combustion to be performed at a leaner air-fuel ratio than the stoichiometric air-fuel ratio in a predetermined operating range, the engine air-fuel ratio control device includes a shift position detection means for detecting the gear position of the transmission, and a lean limit detection means according to the shift position. It is characterized by comprising a target air-fuel ratio setting means for setting a target air-fuel ratio, and a fuel injection amount calculation means for calculating a fuel injection amount based on the output of this setting means, and changing the lean limit according to the shift position. Air-fuel ratio control device for engines.
JP23982585A 1985-10-25 1985-10-25 Air-fuel ratio controller for engine Pending JPS6299647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23982585A JPS6299647A (en) 1985-10-25 1985-10-25 Air-fuel ratio controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23982585A JPS6299647A (en) 1985-10-25 1985-10-25 Air-fuel ratio controller for engine

Publications (1)

Publication Number Publication Date
JPS6299647A true JPS6299647A (en) 1987-05-09

Family

ID=17050407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23982585A Pending JPS6299647A (en) 1985-10-25 1985-10-25 Air-fuel ratio controller for engine

Country Status (1)

Country Link
JP (1) JPS6299647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

Similar Documents

Publication Publication Date Title
US4391253A (en) Electronically controlling, fuel injection method
JPH11210509A (en) Valve opening/closing characteristic controller for internal combustion engine
JPS5535134A (en) Air-fuel ratio control system in internal combustion engine
JPS618443A (en) Air-fuel ratio control device
US4870586A (en) Air-fuel ratio control system for an internal combustion engine with an engine load responsive correction operation
JP3791032B2 (en) Fuel injection control device for internal combustion engine
US5282450A (en) Engine power controller
JPS6299647A (en) Air-fuel ratio controller for engine
US5193509A (en) Fuel control system for automotive power plant
JP2590823B2 (en) Air-fuel ratio control device for internal combustion engine
JP3161248B2 (en) Air-fuel ratio control device for internal combustion engine with EGR device
JP3453830B2 (en) Engine air-fuel ratio control device
JPS6160970B2 (en)
JP3011340B2 (en) Engine air-fuel ratio control device
JPH02275055A (en) Exhaust gas recirculation controller for engine
JPS61241457A (en) Intake secondary air feeder for internal-conbustion engine
JPS62637A (en) Air-fuel ratio control device of internal-combustion engine
JPH0559259B2 (en)
JPH06610Y2 (en) Air-fuel ratio controller for internal combustion engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPH01203622A (en) Air-fuel ratio control device for internal combustion engine
JPS639659A (en) Load detector for internal combustion engine
JPS6329040A (en) Fuel supply controller for internal combustion engine
JPS6312846A (en) Air-fuel ratio control device for internal combustion engine
JPH0660584B2 (en) Fuel injector for multi-cylinder engine