JPS6299634A - Turbo-compound internal-combustion engine - Google Patents
Turbo-compound internal-combustion engineInfo
- Publication number
- JPS6299634A JPS6299634A JP60238381A JP23838185A JPS6299634A JP S6299634 A JPS6299634 A JP S6299634A JP 60238381 A JP60238381 A JP 60238381A JP 23838185 A JP23838185 A JP 23838185A JP S6299634 A JPS6299634 A JP S6299634A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- recovery turbine
- valve
- scroll
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/005—Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
- F02B37/22—Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はターボコンパウンド内燃機関に関するしのであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a turbo compound internal combustion engine.
(従来の技術]
車両用内燃機関に喝えられたターボ過給機では、(幾関
の低回転数で排気流量が不足し、十分な性能が得られな
いのが一般的である。すなわち、第3図に示すように、
ターボ過給(幾への排気流量に対する入口圧P1と出口
圧P2は第3図の上側に示に大いに影響する。したがっ
て、排気流量の変化する範囲が広い車両用内燃機関では
、同一のタービンで排気エネルギを吸気過給に利用しま
たは動力としてクランク軸へ回収することは非常に困難
である。(Prior Art) In a turbo supercharger used in a vehicle internal combustion engine, the exhaust flow rate is generally insufficient at a certain low rotation speed, and sufficient performance cannot be obtained. That is, As shown in Figure 3,
The inlet pressure P1 and outlet pressure P2 with respect to the exhaust flow rate to the turbocharger have a large influence as shown in the upper part of Fig. 3. Therefore, in a vehicle internal combustion engine in which the exhaust flow rate changes over a wide range, It is very difficult to use exhaust energy for intake supercharging or to recover it as power to the crankshaft.
従来、排気流量の変化に対して十分な吸気過給を得るた
めに、特開昭58−79622号公報に開示されるもの
がある。この従来技術では、回収タービン入口通路を2
分割し、一方の通路に制御弁を設け、喋関の排気流iが
少ない場合に、ターボ過給IMの吸気圧により一11陣
弁を閉じて片側の通路から回収タービンへ排気を供給す
るものであり、単にターボ過給機のタービン入口を絞っ
て排気流速を高くし、タービンの回転数を高めるだけに
止まり、ターボコンパウンド内燃機関に適用し難い。Conventionally, in order to obtain sufficient intake supercharging against changes in exhaust flow rate, there is a method disclosed in Japanese Patent Laid-Open No. 58-79622. In this prior art, the recovery turbine inlet passage is
A control valve is installed in one of the passages, and when the exhaust flow i of the exhaust gas is small, the intake pressure of the turbocharger IM closes the 111 valve and supplies the exhaust from the passage to the recovery turbine. However, this method is difficult to apply to turbo compound internal combustion engines because it simply narrows down the turbine inlet of the turbocharger to increase the exhaust flow velocity and increase the turbine rotation speed.
ターボ過給機からの排気を回収タービンへ導入し、回収
タービンの回転を1関のクランク軸へ伝達するターボコ
ンパウンド内燃■関においては、ターボ過給IIIと回
収タービンの圧力比の選定が特に重要な要因となる。In a turbo compound internal combustion engine where the exhaust gas from the turbocharger is introduced into the recovery turbine and the rotation of the recovery turbine is transmitted to the crankshaft of the first engine, the selection of the pressure ratio between the turbocharger III and the recovery turbine is particularly important. This is a major factor.
この点について詳述すると、第3図に示すようにターボ
過給機において十分な圧力比を有する高角荷載A点では
、回収タービンの圧力比もB点で示すように十分高く維
持することができる。しかし、排気流量が少ない場合は
、0点で示すようにターボ過給機の圧力比も低くなり、
回収タービンでLJ D点で示すように圧力比が一層低
くなる。したがって、回収タービンの圧力比を上げるた
めには、回収タービン特性を第3図のE点まで移すこと
が重要である。To elaborate on this point, at high angle loading point A where the turbocharger has a sufficient pressure ratio as shown in Figure 3, the pressure ratio of the recovery turbine can also be maintained sufficiently high as shown at point B. . However, if the exhaust flow rate is low, the pressure ratio of the turbocharger will also be low, as shown by the 0 point.
At the recovery turbine the pressure ratio becomes lower as shown at point LJD. Therefore, in order to increase the pressure ratio of the recovery turbine, it is important to shift the recovery turbine characteristics to point E in FIG. 3.
[発明が解決しようとする問題点]
本発明の目的は上述の要求を満足させるために、回収タ
ービンのノズル通路面積を変化させることにより、回収
タービンの圧力比を上昇させ、機関の低回転数でも回収
タービンの効率を高め、機関のクランク軸へ動力を伝達
しくqるターボコンパウンド内燃機関を提供することに
ある。[Problems to be Solved by the Invention] An object of the present invention is to increase the pressure ratio of the recovery turbine by changing the nozzle passage area of the recovery turbine in order to satisfy the above-mentioned requirements. However, the object of the present invention is to provide a turbo compound internal combustion engine that increases the efficiency of the recovery turbine and transmits power to the engine's crankshaft.
[問題を解決するための手段]
上記目的を達成するために、本発明の構成はターボ過給
機を通過した排気を導入する回収タービンのタービンス
クロール通路を分割し、一方の通路に開閉弁を設け、排
気流量の少ない機関回転数で前記開閉弁を閉鎖する手段
を備えたものである。[Means for Solving the Problem] In order to achieve the above object, the configuration of the present invention is to divide the turbine scroll passage of the recovery turbine into which the exhaust gas that has passed through the turbocharger is introduced, and to provide an on-off valve in one passage. and means for closing the on-off valve at an engine speed with a low exhaust flow rate.
[作用]
機関の低回転数では排気流量が少ないので、仕切板6に
より分割されるスクロール通路の一方を開閉弁7により
閉じる。これにより入口圧が高くなり、圧力比が大きく
なり、回収タービン2の回転数が大幅に増加するので、
効率も高くなり、回収タービン2により(9られた軸1
8の回転が機関のクランク軸へ伝達される。[Operation] Since the exhaust flow rate is small at low rotational speeds of the engine, one of the scroll passages divided by the partition plate 6 is closed by the on-off valve 7. This increases the inlet pressure, increases the pressure ratio, and significantly increases the rotational speed of the recovery turbine 2.
Efficiency is also high, and the recovery turbine 2 (9-shaped shaft 1
8 rotation is transmitted to the engine crankshaft.
[発明の実施例]
本発明を実施例に基づいて説明する。第1図に示すよう
に、内燃i関17の排気管3にはターボ過給n1が接続
され、このターボ過給機1へ供給された排気によりター
ビンが回転され、これによりブロアが駆動されて、吸気
過給が行われる。そして、ターボ過給機1から排出され
た排気はタービンスクロール4を経て回収タービン2の
スクロール室13a、13bへ入り、タービンブレード
12に当り、この軸18を回転して排気管19へ放出さ
れる。[Examples of the Invention] The present invention will be described based on Examples. As shown in FIG. 1, a turbocharger n1 is connected to the exhaust pipe 3 of the internal combustion engine 17, and the exhaust gas supplied to the turbocharger 1 rotates a turbine, which drives a blower. , intake supercharging is performed. Then, the exhaust gas discharged from the turbocharger 1 passes through the turbine scroll 4, enters the scroll chambers 13a and 13b of the recovery turbine 2, hits the turbine blades 12, rotates this shaft 18, and is discharged into the exhaust pipe 19. .
本発明によれば、タービンスクロール4は仕切板6によ
りスクロール通路aとスクロール通路すに2分割され、
一方のスクロール通路aに開閉弁7が配設される。この
間開弁7の軸21にレバー10が結合され、電磁アクチ
ュエータ9により駆動される。そして、タービンスクロ
ール4の入口に設けた圧力センサ8の電気信号が電子制
御装置11へ入力され、この圧ノコが所定値以下になっ
た時、電子制御装置11の出力により電磁アクチュエー
タ9が励磁されると、このロッド9aが延出され、開閉
弁7によりスクロール通路aが閉じられる。According to the present invention, the turbine scroll 4 is divided into two by the partition plate 6 into the scroll passage a and the scroll passage
An on-off valve 7 is disposed in one scroll passage a. During this time, the lever 10 is connected to the shaft 21 of the valve opening 7 and is driven by the electromagnetic actuator 9. Then, an electric signal from a pressure sensor 8 provided at the inlet of the turbine scroll 4 is input to an electronic control unit 11, and when this pressure saw becomes less than a predetermined value, an electromagnetic actuator 9 is excited by the output of the electronic control unit 11. Then, the rod 9a is extended and the on-off valve 7 closes the scroll passage a.
回収タービン2の軸18には発電機14が取り付けられ
る。すなわち、軸1Bに回転子15が結合される一方、
この周囲に固定子16が配設される。そして、この発電
機の発生電力が機関のクランク軸に連結した伝導機へ供
給されるように構成される。しかし、発電機を設ける代
りに、歯巾伝導機構を介して、回収タービン2の軸18
の回転を機関のクランク軸へ伝達するように構成しても
よい。また、排気管3に回収タービン3を接続し、この
回収タービン2の出口側にターボ過給機1を接続するよ
うにしてもよい。A generator 14 is attached to the shaft 18 of the recovery turbine 2 . That is, while the rotor 15 is coupled to the shaft 1B,
A stator 16 is arranged around this. The electric power generated by the generator is then supplied to a transmission machine connected to the crankshaft of the engine. However, instead of providing a generator, the shaft 18 of the recovery turbine 2 is
The rotation of the engine may be transmitted to the crankshaft of the engine. Alternatively, a recovery turbine 3 may be connected to the exhaust pipe 3, and a turbo supercharger 1 may be connected to the outlet side of the recovery turbine 2.
機関回転数が高くなると、排気流量も増加し、圧力セン
サ8により検出された圧力が所定値を越えると、電磁ア
クチュエータ9のロッド9aが図示してないばねの復元
力により戻され、レバー10が第2図において反時計方
向に回動されて開閉弁7が開く。したがって、スクロー
ル通路a、 bの両方からスクロール室13a、13b
へ排気が流入し、タービンブレード12の回転数および
トルクが増大する。この時、回収タービン2の入口圧が
高くなり、圧力比P4 /P3が増大し、回収タービン
2は第3図に示すB点に近くなる。As the engine speed increases, the exhaust flow rate also increases, and when the pressure detected by the pressure sensor 8 exceeds a predetermined value, the rod 9a of the electromagnetic actuator 9 is returned by the restoring force of a spring (not shown), and the lever 10 is In FIG. 2, the on-off valve 7 is opened by being rotated counterclockwise. Therefore, the scroll chambers 13a and 13b are connected to each other from both the scroll passages a and b.
Exhaust gas flows into the turbine blade 12, and the rotational speed and torque of the turbine blade 12 increase. At this time, the inlet pressure of the recovery turbine 2 increases, the pressure ratio P4/P3 increases, and the recovery turbine 2 approaches point B shown in FIG. 3.
回収タービン2の圧力比が上昇すると、ターボ過給機の
タービンの排圧が上昇する。すなわち、圧力比がP4
/P3からP 4′/P 3′に上昇し、回収タービン
2の入口圧はPI = (Pi /P2 )xp 4”
となり、排圧上昇分だけ機関の排気行程仕事が増加プる
。この仕事量の増加と回収タービン2の効率向上は相反
関係にある。したがって、ターボ過給機のタービンにつ
いても回収タービン2と同様の構造とすることができる
。When the pressure ratio of the recovery turbine 2 increases, the exhaust pressure of the turbocharger turbine increases. That is, the pressure ratio is P4
/P3 to P4'/P3', and the inlet pressure of the recovery turbine 2 is PI = (Pi /P2)xp 4''
Therefore, the exhaust stroke work of the engine increases by the amount of increase in exhaust pressure. This increase in workload and the improvement in efficiency of the recovery turbine 2 are in a contradictory relationship. Therefore, the turbine of the turbocharger can also have the same structure as the recovery turbine 2.
[発明の効果]
本発明は上述のように、回収タービンの入口側すなわち
タービンスクロールに仕切板によりスクロール通路を2
分割し、一方のスクロール通路に人口圧の高低変化に対
応して開閉する開閉弁を備えたものであるから、機関回
転数が低く排気流量が少ない場合には、開閉弁を閉じて
片側のスクロール通路から回収タービンへ排気を導入す
ることにより入口圧を高め、回収タービンの回転数を高
めて効率の低下を抑えることがでさるとともに、機関回
転数が^く排気FR量が多い場合には、開閉弁を開いて
両方のスクロール通路から回収タービンへ排気を導入す
ることにより、排気エネルギを完全に吸収することがで
きる。そして、回収タービン2に連結した発電機の電力
が機関のクランク軸に結合した伝導機へ供給される。[Effects of the Invention] As described above, the present invention provides two scroll passages on the inlet side of the recovery turbine, that is, on the turbine scroll, by using a partition plate.
The scroll passage is divided into two sections, and one scroll passage is equipped with an on-off valve that opens and closes in response to changes in population pressure.When the engine speed is low and the exhaust flow rate is low, the on-off valve is closed and the scroll on one side is closed. By introducing exhaust gas from the passage into the recovery turbine, the inlet pressure can be increased, increasing the rotation speed of the recovery turbine and suppressing a decrease in efficiency. By opening the on-off valve and introducing exhaust gas from both scroll passages to the recovery turbine, exhaust energy can be completely absorbed. Electric power from a generator connected to the recovery turbine 2 is then supplied to a conductor connected to the crankshaft of the engine.
第1図は本発明に係るターボコンパウンド内燃様関の概
略構成図、第2図は同ターボコンパウンド内燃機関にお
ける回収タービンを破断して示す側面図、第3図は同タ
ーボコンパウンド内燃機関の作用を説明する線図である
。Fig. 1 is a schematic configuration diagram of a turbo compound internal combustion engine according to the present invention, Fig. 2 is a cutaway side view of a recovery turbine in the turbo compound internal combustion engine, and Fig. 3 shows the operation of the turbo compound internal combustion engine. It is a diagram for explaining.
Claims (1)
タービンスクロール通路を分割し、一方の通路に開閉弁
を設け、排気流量の少ない機関回転数で前記開閉弁を閉
鎖する手段を備えたことを特徴とするターボコンパウン
ド内燃機関。The turbine scroll passage of the recovery turbine that introduces the exhaust gas that has passed through the turbocharger is divided, one passage is provided with an on-off valve, and means is provided for closing the on-off valve at an engine speed with a small exhaust flow rate. Features a turbo compound internal combustion engine.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238381A JPS6299634A (en) | 1985-10-24 | 1985-10-24 | Turbo-compound internal-combustion engine |
DE8686113990T DE3668944D1 (en) | 1985-10-24 | 1986-10-09 | CHARGED INTERNAL COMBUSTION ENGINE. |
EP86113990A EP0219772B1 (en) | 1985-10-24 | 1986-10-09 | Turbo compound internal combustion engine |
US06/920,457 US4718235A (en) | 1985-10-24 | 1986-10-20 | Turbo compound internal combustion engine |
CA000521170A CA1255508A (en) | 1985-10-24 | 1986-10-22 | Turbo compound internal combustion engine |
KR1019860008886A KR870004229A (en) | 1985-10-24 | 1986-10-23 | Turbo compound internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238381A JPS6299634A (en) | 1985-10-24 | 1985-10-24 | Turbo-compound internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6299634A true JPS6299634A (en) | 1987-05-09 |
Family
ID=17029341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60238381A Pending JPS6299634A (en) | 1985-10-24 | 1985-10-24 | Turbo-compound internal-combustion engine |
Country Status (6)
Country | Link |
---|---|
US (1) | US4718235A (en) |
EP (1) | EP0219772B1 (en) |
JP (1) | JPS6299634A (en) |
KR (1) | KR870004229A (en) |
CA (1) | CA1255508A (en) |
DE (1) | DE3668944D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203157A (en) * | 1989-12-28 | 1991-09-04 | Sanyo Electric Co Ltd | Manufacture of sealed battery |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0292010B1 (en) * | 1987-05-22 | 1991-11-06 | Isuzu Motors Limited | Engine braking system |
US4872311A (en) * | 1988-05-19 | 1989-10-10 | Michael Sturm | Exhaust gas turbine connected to engine output |
SE468777B (en) * | 1990-05-15 | 1993-03-15 | Volvo Ab | TURBO DEVICE WITH A COMBUSTION ENGINE |
US20060112689A1 (en) * | 2004-11-30 | 2006-06-01 | Savage Patrick W Jr | Divided housing turbocharger with a variable nozzle area |
US20070163236A1 (en) * | 2006-01-17 | 2007-07-19 | Ermey Clair R | Turbo Watt |
US20090065156A1 (en) * | 2007-09-07 | 2009-03-12 | Roberts William G | Roller shutter |
US8653677B2 (en) | 2009-01-15 | 2014-02-18 | Volvo Technology Corporation | Electromagnetic, continuously variable transmission power split turbo compound and engine and vehicle comprising such a turbo compound |
US9534534B2 (en) | 2013-08-28 | 2017-01-03 | Deere & Company | Power system including a variable geometry turbocompound turbine |
JP6670760B2 (en) | 2014-05-19 | 2020-03-25 | ボーグワーナー インコーポレーテッド | Dual spiral turbocharger optimizes pulse energy separation for fuel saving and EGR utilization through asymmetric dual spiral |
US20200200107A1 (en) * | 2018-12-20 | 2020-06-25 | GM Global Technology Operations LLC | Twin-scroll turbine with flow control valve |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622390A (en) * | 1946-02-28 | 1952-12-23 | Honeywell Regulator Co | Control apparatus, including an auxiliary power recovery turbine for turbo-supercharged engines |
CH363523A (en) * | 1957-12-22 | 1962-07-31 | Ustav Pro Vyzkum Motorovych Vo | Charging and cooling turbo unit for combustion engines |
SE348521B (en) * | 1970-12-17 | 1972-09-04 | Goetaverken Ab | |
US4008572A (en) * | 1975-02-25 | 1977-02-22 | Cummins Engine Company, Inc. | Turbine housing |
US4100742A (en) * | 1976-12-09 | 1978-07-18 | The United States Of America As Represented By The Secretary Of The Army | Turbocompound engine with turbocharger control |
JPS53120014A (en) * | 1977-03-28 | 1978-10-20 | Isuzu Motors Ltd | Turbo-supercharging engine |
JPS5754622U (en) * | 1980-09-17 | 1982-03-30 | ||
US4474007A (en) * | 1980-09-29 | 1984-10-02 | Ab Volvo | Turbocharging device for an internal combustion engine |
JPS6019918A (en) * | 1983-07-12 | 1985-02-01 | Honda Motor Co Ltd | Exhaust turbine in turbo-supercharger |
JPS6067721A (en) * | 1983-09-22 | 1985-04-18 | Mitsui Eng & Shipbuild Co Ltd | Exhaust turbine combination engine |
-
1985
- 1985-10-24 JP JP60238381A patent/JPS6299634A/en active Pending
-
1986
- 1986-10-09 DE DE8686113990T patent/DE3668944D1/en not_active Expired - Fee Related
- 1986-10-09 EP EP86113990A patent/EP0219772B1/en not_active Expired - Lifetime
- 1986-10-20 US US06/920,457 patent/US4718235A/en not_active Expired - Fee Related
- 1986-10-22 CA CA000521170A patent/CA1255508A/en not_active Expired
- 1986-10-23 KR KR1019860008886A patent/KR870004229A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03203157A (en) * | 1989-12-28 | 1991-09-04 | Sanyo Electric Co Ltd | Manufacture of sealed battery |
Also Published As
Publication number | Publication date |
---|---|
EP0219772B1 (en) | 1990-02-07 |
US4718235A (en) | 1988-01-12 |
KR870004229A (en) | 1987-05-08 |
EP0219772A2 (en) | 1987-04-29 |
EP0219772A3 (en) | 1988-01-13 |
CA1255508A (en) | 1989-06-13 |
DE3668944D1 (en) | 1990-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6299634A (en) | Turbo-compound internal-combustion engine | |
JP2010024878A (en) | Control device for internal combustion engine | |
EP0220564B1 (en) | Turbo-supercharger for internal combustion engine | |
JP2004076659A (en) | Supercharging device | |
JP2005069178A (en) | Supercharger with motor | |
JPH08240156A (en) | Exhaust gas recirculation device for engine with supercharger | |
JPH0751897B2 (en) | Control device for turbocharger | |
JPS59141709A (en) | Exhaust gas purifying device for engine equipped with turbosupercharger | |
JPS61132722A (en) | Turbo-compound engine | |
JPS61250344A (en) | Turbosupercharged engine | |
JPS6116229A (en) | Supercharged internal-combustion engine | |
JP7414359B2 (en) | Internal combustion engine control method and internal combustion engine control device | |
JP2004211649A (en) | Exhaust gas recirculation cooler system | |
JP2768747B2 (en) | Exhaust system for turbocharged engine | |
JP2012219691A (en) | Turbocharger | |
JPH0748984Y2 (en) | Engine with turbocharger | |
JPS60240831A (en) | Power turbine power transmission mechanism and turbo-compound system | |
JPS601227Y2 (en) | Internal combustion engine exhaust turbo charger | |
JPS6030445Y2 (en) | Acceleration improvement device for supercharged engines | |
JPS6034753Y2 (en) | Boost pressure control device for turbocharged engines | |
JPS6332342Y2 (en) | ||
JPS6119938A (en) | Engine provided with exhaust turbo-supercharger | |
JPS6361496B2 (en) | ||
JPH0415954Y2 (en) | ||
JPS59692B2 (en) | Exhaust turbocharged engine |