JPS6297B2 - - Google Patents

Info

Publication number
JPS6297B2
JPS6297B2 JP57107739A JP10773982A JPS6297B2 JP S6297 B2 JPS6297 B2 JP S6297B2 JP 57107739 A JP57107739 A JP 57107739A JP 10773982 A JP10773982 A JP 10773982A JP S6297 B2 JPS6297 B2 JP S6297B2
Authority
JP
Japan
Prior art keywords
cross
section
outer diameter
fiber
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57107739A
Other languages
Japanese (ja)
Other versions
JPS593026A (en
Inventor
Hiroo Matsuda
Kunio Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP57107739A priority Critical patent/JPS593026A/en
Publication of JPS593026A publication Critical patent/JPS593026A/en
Publication of JPS6297B2 publication Critical patent/JPS6297B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/075Manufacture of non-optical fibres or filaments consisting of different sorts of glass or characterised by shape, e.g. undulated fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/028Drawing fibre bundles, e.g. for making fibre bundles of multifibres, image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は非円形断面の光フアイバの製造の際に
プリフオームを回転させながら線引き、外径の測
定を行い制御することにより、非円形断面の光フ
アイバを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber with a non-circular cross section by drawing the preform while rotating it and measuring and controlling the outer diameter thereof. .

従来の光フアイバの製造方法のうち断面円形の
ものについては通常線引きの直後のところでレー
ザ外径測定器等により外径を測定してモニター
し、線引速度等にフイードバツクして該フアイバ
径の制御を行つて製造していた。そしてこの断面
が円形であれば一方向からレーザを照射すること
によつてフアイバの外径を測定することができ、
それによつて制御が可能であつた。ところが最近
では情報の多重伝送等の要請によりマルチコアフ
アイバ等断面が非円形のものが利用され重要視さ
れるようになりつゝある。而して此の場合には該
フアイバの外径は唯一の値ではないからレーザを
一方向から照射するのみでは正確には外径を測定
することができず、これに加えて線引中のフアイ
バは不規則に回転するため、またフアイバの強度
を低下させないためにモニターはフアイバに接触
せずに行う必要がある等の諸理由により、正確な
外径制御ができないという欠点が存在していた。
In conventional manufacturing methods for optical fibers, for those with a circular cross section, the outer diameter is usually measured and monitored using a laser outer diameter measuring device immediately after drawing, and the fiber diameter is controlled by providing feedback to the drawing speed, etc. It was manufactured by doing so. If this cross section is circular, the outer diameter of the fiber can be measured by irradiating the laser from one direction.
This enabled control. However, recently, due to the demand for multiplex transmission of information, fibers with non-circular cross sections, such as multi-core fibers, are being used and gaining importance. In this case, the outer diameter of the fiber is not the only value, so it is not possible to accurately measure the outer diameter by just irradiating the laser from one direction. The disadvantage was that accurate outer diameter control was not possible due to the irregular rotation of the fiber and the need for monitoring without contacting the fiber in order to not reduce the strength of the fiber. .

本発明は前記従来技術の諸欠点を除去し、非円
形断面を有するフアイバの外径についても正確に
制御し得る方法を創出したものでこゝに開示す
る。
The present invention eliminates the drawbacks of the prior art and creates a method that allows precise control of the outer diameter of fibers having non-circular cross sections.

即ちその方法は非円形断面のフアイバ製造にお
いては、その線引前の非円形断面のプリフオーム
を適度な範囲の速さで回転しながら線引し、線引
直後のフアイバの外径を測定することにより制御
製造するものである。
That is, in the production of fibers with non-circular cross-sections, the method is to draw a preform with a non-circular cross-section before drawing while rotating at a moderate speed, and measure the outer diameter of the fiber immediately after drawing. It is controlled manufacturing.

先づ非円形断面の光フアイバの断面は花形状の
もの矩形状のものなどがあり夫々内部に複数のコ
アを含み、その外側をクラツドで包囲して全体と
して前記花形状等のような円以外の断面を有する
ものである。従つて例えば花形状或は小円が寄り
集つて出来たような形の断面を有するものは、断
面が最外側の線が同程度の大きさの円の外周に対
し凹凸を有している。そこで前述の如く従来技術
ではこれらのフアイバの外径を測定するのに一方
向からレーザを照射すると、該フアイバは本来不
規則に緩慢に揺れ動き又は回転しているから、該
照射線が凸部から入つて反対側の凸部に抜けた場
合と凹部から入つて凹部に抜けた場合では測定結
果が全く異る。そして他にもいろいろな場合の組
み合わせが不規則にあり得るので測定結果も明確
な値が得られない。断面が矩形となるマルチコア
フアイバについても同様である。そこで本発明で
は最初からフアイバの断面と同様な断面を有する
プリフオームに一定の回転を与えながら線引を行
う。そうすると線引直後のフアイバもゆるく規則
正しく回転することになり、どの瞬間には該断面
のどこのところにレーザが照射されているかがは
つきりと把握できることになる。それによつて該
断面の凸部から凸部にレーザが抜ける場合、或は
凸部から凹部に、又は凹部から凹部に抜けるよう
な場合、夫々測定外径値と、品質管理上決められ
た夫々の場合の該定値との比較によつて該定値に
なるように所謂サーボ機構による自動制御が可能
となる。
First, the cross section of optical fibers with non-circular cross sections may be flower-shaped or rectangular, and each contains a plurality of cores inside, and the outside is surrounded by a cladding to form a non-circular shape as a whole, such as the aforementioned flower shape. It has a cross section of Therefore, for example, if the cross section is shaped like a flower or a collection of small circles, the outermost line of the cross section is uneven with respect to the outer periphery of a circle of similar size. Therefore, as mentioned above, in the prior art, when a laser is irradiated from one direction to measure the outer diameter of these fibers, since the fiber is originally swinging or rotating irregularly and slowly, the irradiation beam does not come from the convex part. The measurement results are completely different when the object enters and exits through the convex portion on the opposite side, and when it enters through the recess and exits into the recess. In addition, various combinations of cases may occur irregularly, so that no clear measurement result can be obtained. The same applies to multi-core fibers having a rectangular cross section. Therefore, in the present invention, drawing is performed from the beginning while applying a constant rotation to a preform having a cross section similar to that of the fiber. In this case, the fiber immediately after being drawn will also rotate slowly and regularly, and it will be possible to clearly determine where on the cross section the laser beam is irradiated at any given moment. As a result, if the laser beam passes from a convex part to a convex part of the cross section, or if the laser passes from a convex part to a concave part, or from a concave part to a concave part, the measured outer diameter value and the respective values determined for quality control. Automatic control by a so-called servo mechanism becomes possible so that the fixed value is achieved by comparison with the fixed value of the case.

依つて、該プリフオームの回転数は、自然回転
の回転数10rpm程度よりも或程度多く100rpm程
度でなければならず、またあまり此の回転数が大
きすぎるとフアイバのねじれが多くなり過ぎその
結果こんどはピツチが小さくなり過ぎ、そのため
に光がクラツド層に抜け易くなり散乱するものが
多くなり、伝送特性も低下するから、線引速度に
もよるが一般には該プリフオームの回転数は数千
rpm以下であることが望ましい。
Therefore, the rotational speed of the preform must be approximately 100rpm, which is higher than the natural rotational speed of approximately 10rpm, and if this rotational speed is too large, the fiber will be twisted too much, resulting in The pitch of the preform becomes too small, which causes light to easily pass through the cladding layer, causing a large amount of light to be scattered and reducing the transmission characteristics.In general, the number of revolutions of the preform is several thousand, depending on the drawing speed.
It is desirable to be below rpm.

更にまた増幅機構と測定値の図式記録機構をも
前記の制御機構に組み合わせることにより、前記
夫々の位置における定値に対する被制御測定値を
連続的に記録制御し品質管理を厳密に行うことが
可能となる。
Furthermore, by combining an amplification mechanism and a diagrammatic recording mechanism for measured values with the aforementioned control mechanism, it is possible to continuously record and control controlled measured values for fixed values at each of the aforementioned positions, and to perform strict quality control. Become.

以上述べた如く本発明製造方法によれば非円形
断面光フアイバの外径制御を容易にかつ高精度で
行うことができまたその制御機器の一部として通
常の一方向外径測定器を使用することもできる。
またプリフオームを回転する機構もプリフオーム
蒸着の場合の回転機に類するものでよいから、装
置も比較的簡単で、従つて低コスト而も高品質の
マルチコア光フアイバの製造が本発明により始め
て可能となる。要するに本発明は設備費が安くて
済み而も効果の大なるマルチコア光フアイバの製
造方法である。
As described above, according to the manufacturing method of the present invention, the outer diameter of a non-circular cross-section optical fiber can be controlled easily and with high precision, and an ordinary unidirectional outer diameter measuring device can be used as part of the control equipment. You can also do that.
Furthermore, since the mechanism for rotating the preform can be similar to the rotating machine used in preform vapor deposition, the equipment is relatively simple, and the present invention makes it possible for the first time to manufacture low-cost, high-quality multi-core optical fibers. . In short, the present invention is a method for manufacturing a multi-core optical fiber that requires low equipment costs and is highly effective.

実施例 1 マルチコア光フアイバの断面の例は第1図a,
b、及び第2図a,bに示す如きものがあるが、
各図中1はコア部分で2はクラツド部分である。
本実施例ではこれらのうち第2図bに示すような
断面が正方形状に予じめ作られたプリフオーム3
を第3図に示すような機構によつてマルチコア光
フアイバを製造した。即ち一辺が11mmの正方形状
のプリフオーム3を500r.p.m.で、一例として第
3図4の方向に回転しつゝ、加熱炉5で先端を加
熱し一定速度4.0mm/minで送りながらマルチコ
ア光フアイバ6を巻取機7により線引き製造し
た。そして線引直後の位置でレーザ外径測定器8
を用いて、8.3Hzで振動する外径出力の最大値が
140μmとなる様に、線引速度を変化させ制御し
たところ、一辺が100±2μmの正方形断面のマ
ルチコア光フアイバが得られた。
Example 1 Examples of cross sections of multi-core optical fibers are shown in Figure 1a,
b, and those shown in Figure 2 a and b,
In each figure, 1 is a core portion and 2 is a cladding portion.
In this embodiment, among these, a preform 3 whose cross section is made in advance with a square shape as shown in FIG. 2b is used.
A multi-core optical fiber was manufactured using the mechanism shown in FIG. That is, a square preform 3 with a side of 11 mm is rotated at 500 rpm in the direction shown in FIG. 6 was produced by drawing with a winder 7. Then, at the position immediately after drawing the line, the laser outer diameter measuring device 8
Using , the maximum value of the outer diameter output vibrating at 8.3Hz is
By controlling the drawing speed by varying the drawing speed so that the fiber thickness was 140 μm, a multi-core optical fiber with a square cross section of 100±2 μm on one side was obtained.

実施例 2 実施例1と同様の装置及び方法により、第2図
aに示す如き、具体的には断面形状が30mm×1mm
の長方形のプリフオームを300r.p.m.で回転させ
つゝ、一定速度2mm/minで巻取機により送りな
がら線引した。而して線引直後のマルチコア光フ
アイバをレーザ外径測定器を使用し、5Hzで振動
する外径出力が最大値300μmとなるように、線
速を変化制御したところ、〔300±10μm〕×〔10±
1μm〕なる形状の長方形断面のマルチコア光フ
アイバを得ることができた。
Example 2 Using the same equipment and method as in Example 1, a sample with a cross-sectional shape of 30 mm x 1 mm was prepared, as shown in Figure 2 a.
A rectangular preform was drawn while being rotated at 300 rpm and fed by a winder at a constant speed of 2 mm/min. Using a laser outer diameter measuring device, we controlled the drawing speed of the multi-core optical fiber immediately after drawing so that the outer diameter output when vibrating at 5 Hz had a maximum value of 300 μm, and found that [300±10 μm] [10±
A multi-core optical fiber with a rectangular cross section of 1 μm could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は花形もしくは小円集合形状断面のマル
チコア光フアイバの断面図、第2図は長方形もし
くは正方形断面のマルチコア光フアイバの断面
図、第3図は本発明製造方法に実施に用いる装置
の説明図である。 各図において、1はコア、2はクラツド、3は
プリフオーム、5は加熱器、6はマルチコア光フ
アイバ、7は巻取機、8は外径測定器。
FIG. 1 is a cross-sectional view of a multi-core optical fiber with a flower-shaped or small circle-shaped cross-section, FIG. 2 is a cross-sectional view of a multi-core optical fiber with a rectangular or square cross-section, and FIG. 3 is an explanation of the apparatus used to carry out the manufacturing method of the present invention. It is a diagram. In each figure, 1 is a core, 2 is a cladding, 3 is a preform, 5 is a heater, 6 is a multi-core optical fiber, 7 is a winder, and 8 is an outside diameter measuring device.

Claims (1)

【特許請求の範囲】 1 非円形断面形状のプリフオームロツドより線
引きし、その直後外径を測定し制御する光フアイ
バの製造方法において、 プリフオームを回転させながら線引きして外径
を測定しつゝ制御することを特徴とする非円形断
面光フアイバの製造方法。
[Scope of Claims] 1. A method for manufacturing an optical fiber in which a preform rod having a non-circular cross-sectional shape is drawn, and the outer diameter is immediately measured and controlled. A method for manufacturing an optical fiber with a non-circular cross section, characterized by controlling.
JP57107739A 1982-06-23 1982-06-23 Manufacture of optical fiber having noncircular cross section Granted JPS593026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57107739A JPS593026A (en) 1982-06-23 1982-06-23 Manufacture of optical fiber having noncircular cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57107739A JPS593026A (en) 1982-06-23 1982-06-23 Manufacture of optical fiber having noncircular cross section

Publications (2)

Publication Number Publication Date
JPS593026A JPS593026A (en) 1984-01-09
JPS6297B2 true JPS6297B2 (en) 1987-01-06

Family

ID=14466724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57107739A Granted JPS593026A (en) 1982-06-23 1982-06-23 Manufacture of optical fiber having noncircular cross section

Country Status (1)

Country Link
JP (1) JPS593026A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046749A1 (en) * 2004-10-28 2006-05-04 Fujifilm Corporation Plastic optical member and producing method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461712A (en) * 1987-09-02 1989-03-08 Nippon Telegraph & Telephone Optical coupler and its production
JPH06235830A (en) * 1993-02-12 1994-08-23 Furukawa Electric Co Ltd:The Production of optical fiber having nonconcentric circular sectional structure
JPH08188439A (en) * 1995-01-13 1996-07-23 Sumitomo Electric Ind Ltd Apparatus for drawing optical fiber and drawing
US6157763A (en) 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
JP2001044537A (en) * 1999-07-29 2001-02-16 Hoya Corp Optical medium, manufacture thereof, laser light generator, and optical amplifier
US7424193B2 (en) * 2004-07-14 2008-09-09 The Regents Of The University Of Michigan Composite waveguide
JP4503681B2 (en) * 2009-02-20 2010-07-14 浜松ホトニクス株式会社 Manufacturing method of optical medium
WO2011116137A1 (en) 2010-03-16 2011-09-22 Ofs Fitel Llc. A Delaware Limited Liability Company Multifiber connectors for multicore optical fiber cables
JP5842556B2 (en) 2011-11-11 2016-01-13 住友電気工業株式会社 Bi-directional optical communication method and multi-core optical fiber
JP2013205557A (en) * 2012-03-28 2013-10-07 Mitsubishi Cable Ind Ltd Optical fiber and method of manufacturing optical fiber
FR3036110A1 (en) * 2015-05-15 2016-11-18 Centre Nat De La Rech Scient - Cnrs OPTICAL FIBER PHOTOSENSITIVE GLASS TAPE
JP6018688B2 (en) * 2015-11-13 2016-11-02 三菱電線工業株式会社 Optical fiber and method of manufacturing optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046749A1 (en) * 2004-10-28 2006-05-04 Fujifilm Corporation Plastic optical member and producing method thereof

Also Published As

Publication number Publication date
JPS593026A (en) 1984-01-09

Similar Documents

Publication Publication Date Title
JPS6297B2 (en)
DE60017579T2 (en) METHOD OF MEASURING THE TWIS DEPOSITED ON AN OPTICAL FIBER AND PROCEDURES IN THE PROCESS FOR PROCESSING AN OPTICAL FIBER
US4648054A (en) Continuous measurement of yarn diameter and twist
CA1071858A (en) Method for monitoring the concentricity of plastic coatings on optical fibers
US4390897A (en) Technique for automatically centering a lightguide fiber in a coating
DE2720951A1 (en) METHOD OF MONITORING THE PROPERTIES OF COATINGS ON OPTICAL FIBERS
CN110407023A (en) The method for coiling of optical fiber, the manufacturing method of reel wound optical fiber, the manufacturing method of the devices for taking-up of optical fiber and optical fiber wire rod
JPS5888131A (en) Method of obtaining substance having chiral structure by drawing from soft material source and device therefor
KR20110074859A (en) Process for manufacturing a microstructured optical fibre and method and system for on-line control of a microstructured optical fibre
US4321072A (en) Method for automatic centering of an optical fiber within a primary protective cladding and a device employed for carrying out said method
EP0275994A2 (en) Method and device for producing fixed lengths of optical wave guides within optical conductors
CN106644032A (en) Optical fiber winding method for improving fiber optic hydrophone, and die
WO1980002139A1 (en) Apparatus for the multiple drawing of fibers allowing the simultaneous drawing of a plurality of optical fibers,then the multifiber cabling on line
JPS638233A (en) Optical fiber drawing device
JP4076702B2 (en) Optical fiber twist measurement method
DE69106787T2 (en) Method for producing an optical fiber, in particular intended for time-domain reflectometry.
JP3777627B2 (en) Glass fiber manufacturing method and manufacturing apparatus
DE2540728A1 (en) Controlling the brake of a haul off drum or reel - used in mfr. of electric cables, wires, filaments
US11820705B2 (en) Apparatus and method for controlling a quantity of binder resin that follows a thread
DE69105576T2 (en) Optical fiber testing by introducing simulated multiple peelings through bends.
US4204852A (en) Method of and apparatus for producing a glass fibre bundle for use in optical communications systems
JPS6140836A (en) Process for controlling dimension of optical fiber
DE1955911B2 (en) LASER ANGLE SPEED METER
CN203785692U (en) Apparatus continuously manufacturing optical fiber sensor
JPH02156101A (en) Method and apparatus for measuring angle of inversion for spacer for supporting optical fiber