JPS629787A - Hot hydrostatic pressure treating method - Google Patents

Hot hydrostatic pressure treating method

Info

Publication number
JPS629787A
JPS629787A JP14820085A JP14820085A JPS629787A JP S629787 A JPS629787 A JP S629787A JP 14820085 A JP14820085 A JP 14820085A JP 14820085 A JP14820085 A JP 14820085A JP S629787 A JPS629787 A JP S629787A
Authority
JP
Japan
Prior art keywords
ceramics
softening point
treating
glass
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14820085A
Other languages
Japanese (ja)
Inventor
Toru Kawauchi
川内 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14820085A priority Critical patent/JPS629787A/en
Publication of JPS629787A publication Critical patent/JPS629787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To reduce the treating cost by covering the periphery of a treating material with the inert ceramics particle of high softening point and by performing a hot hydrostatic pressure as well by arranging the ceramics material having lower softening point than the treating temp. on the out-most layer. CONSTITUTION:The treating materials 2, 2 performing a solid phase joining are arranged inside the metal made container 1 of stainless steel, etc. and the periphery thereof is surrounded by the ceramics A3 which is of high softening point, inert chemically and does not contaminate the treating materials 2, 2. The ceramics B4 of high softening point and fine grain size is used as the intermediate layer. The ceramics C5 of the glass of low softening point, etc. becoming an integral ceramics C5 of the glass of low softening point, etc. becoming an integral capsule with the softening flow under the hot hydrostatic treating temp. is used as the outmost layer. The hot hydrostatic treatment is performed in this state. The ceramics C5 of the outmost layer joins with solid phase the treating materials 2, 2 by forming a gas nonpermeable film with its softening melt. The treating cost is reduced by the reclaiming use of materials.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 H工P (熱間静水圧加圧法)による同相接合方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an in-phase joining method using H-P (hot isostatic pressing method).

〔従来の技術〕[Conventional technology]

■ カプセル法は金属又はガラス製の容器に被処理物を
脱気・密封後、H工P処理するものである。
■ In the capsule method, the object to be treated is degassed and sealed in a metal or glass container, and then subjected to H-P treatment.

しかし本法では、電子ビーム溶接の利用によるコスト高
や、溶融ガラスによる被処理物の汚染の他、単純形状の
被処理物にしか適用できない難点がある。
However, this method has drawbacks such as high cost due to the use of electron beam welding, contamination of the workpiece by molten glass, and the difficulty that it can only be applied to workpieces with simple shapes.

■ 電子ビームによって接合界面の開口部を封口、脱気
後、H工P処理する方法。
■ A method in which the opening at the bonding interface is sealed and degassed using an electron beam, followed by H-P treatment.

本法はコスト高の他、金属/セラミックスの固相接合で
は、利用できない。
This method is expensive and cannot be used for solid phase joining of metals/ceramics.

■ 溶融浴法は、被処理物に対して、溶融ガラスを圧力
伝達媒体としてH工P処理する方法。
■ The molten bath method is a method in which the object to be treated is subjected to H-P treatment using molten glass as a pressure transmission medium.

本法では、開口部に溶融ガラスが浸透するため固相接合
は出来ない。
With this method, solid phase bonding is not possible because molten glass penetrates into the opening.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来H工Pによる固相接合法では、脱気・密封工程や予
備焼成作業前の煩雑で高価な作業を要したり又、単純形
状の被処理物にしか適用できない寺、形状的な制約があ
った。
The conventional solid-phase bonding method using H-P requires complicated and expensive work before degassing and sealing and pre-firing, and also has shape limitations as it can only be applied to objects with simple shapes. there were.

本発明では、特性の異なる3棟類以上のガラス等のセラ
ミックスと容器(金属製のケース)を用いる事によシ上
記欠点を解決した他、一部のガラス材に関しては再利用
も可能とし、HIP処理に要する材料費の低減も可能と
した。
In the present invention, in addition to solving the above-mentioned drawbacks by using three or more types of ceramics such as glass with different characteristics and a container (metallic case), it is also possible to reuse some of the glass materials. It also made it possible to reduce the material costs required for HIP processing.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

金属製ケースの中に被処理材を入れ、その周囲をガラス
等のセラミックスで囲み、セラミックスの最外I−に低
軟化点の材料を使用し、最内層に被処理材を汚染しない
材料を使用する。
The material to be treated is placed in a metal case, surrounded by ceramics such as glass, and a material with a low softening point is used for the outermost layer of the ceramic, and a material that does not contaminate the material to be treated is used for the innermost layer. do.

〔作用〕[Effect]

最外層のセラミックスはH工P処理温度で溶融してガス
不透過性となり、H工Pによる等方圧を(ハ)側のセラ
ミックスを介して被処理材に加える。
The outermost ceramic layer melts at the H-P treatment temperature and becomes gas-impermeable, and the isostatic pressure from the H-P is applied to the material to be treated via the ceramic on the (C) side.

〔実施例〕〔Example〕

第1図に示す様に容器(金属製のケース)lの中に、固
相接合を行う被処理材2,2を入れ、その1わシを高軟
化点で化学的に不活性で被処理材2.2を汚染しない粗
粒度のガラス号のセラミックスA3で囲む。
As shown in Fig. 1, the materials to be processed 2, 2 to be subjected to solid phase bonding are placed in a container (metallic case) L, and the materials to be processed are chemically inert and have a high softening point. Material 2.2 is surrounded by ceramic A3 of coarse grain size that does not contaminate the material.

最外層には)IIP処理温度下で軟化Kmして電体化カ
プセルとなる低軟化点のガラス等のセラミックスC5を
又、中間層として高軟化点で細粒度のガラス等のセラミ
ックスB4を用いる。
For the outermost layer, a ceramic C5 such as glass with a low softening point that softens Km at the IIP treatment temperature and becomes an electrified capsule is used, and as an intermediate layer, a ceramic B4 such as glass with a high softening point and fine grain size is used.

金属同志の固相接合を目的として、下記条件で試験を行
った ■ 被処理材2としては、第2図に示す様に10X10
X5”の大きさの5US430.7を2ケ準備し。
Tests were conducted under the following conditions for the purpose of solid-phase bonding of metals. The material to be treated 2 was 10X10 as shown in Figure 2.
Prepare two pieces of 5US430.7 with a size of X5”.

接合される部位はバク研磨した。この2グの被処理材2
を重ねた状態でガラス等のセラミックスA3の中にセッ
トした。
The parts to be joined were back polished. This 2g material to be treated 2
were stacked and set in A3 ceramics such as glass.

■ 金、l!1&製のケースlとしては厚さ0.5WR
で110φX 200 Hの太き式のステンレス製のも
のを用いた。
■ Money, l! The thickness of the case l made by 1& is 0.5WR.
A thick type stainless steel one measuring 110φ×200H was used.

(3つ  ガラス寺のセラミックスA3としては軟化点
が1580℃とh工P温度よシ高く粒径も1〜2nφと
粗い、透明石英ガラスを用いた。
(Three) As Glass Temple's ceramic A3, we used transparent quartz glass, which has a softening point of 1580°C, which is higher than the temperature of H-P and has a coarse grain size of 1 to 2nφ.

■ ガラス号のセラミックスB4としてはAと同様の透
明石英ガラスで、粒度は、200Mと細粒のもの金柑い
た。
■ Ceramic B4 of the glass issue was a transparent quartz glass similar to A, and the particle size was 200M, a fine kumquat.

(シ ガラス谷のセラミックスC5としては軟化点が8
20℃と)IiP温度より低く、粒度も200Mと細粒
の硼珪酸ガラスを用いた。
(The softening point of Shigarasu Valley ceramic C5 is 8.
A fine-grained borosilicate glass having a temperature of 20°C, which is lower than the IiP temperature, and a particle size of 200M, was used.

ステンレスケースlの中に同相接合する被処理材2の5
US43QJ試片2ヶと各種のガラス等のセラミックス
3,4.5を層状にバインダー等、添加せず装入し、第
3図に示す(1000℃X 100100O/cIrL
2X1.5Hr)  の条件でH工P処理した。
Processed material 2-5 to be in-phase joined in stainless steel case l
Two US43QJ specimens and various ceramics such as glasses 3 and 4.5 were charged in a layered manner without adding any binder, etc., as shown in Fig. 3 (1000℃ x 100100O/cIrL).
2 x 1.5 hours).

1000℃に於いて硼珪酸ガラスは軟化溶融しステンレ
ス・ケースl内の上面を覆うガス不透過性の膜となり、
石英ガラスを圧力伝達媒体として被処理材−8US43
0Jに等方正を与える。又、石英ガラスは不純物も無く
不活性なので、SO343QJを汚染しない。
At 1000°C, borosilicate glass softens and melts, forming a gas-impermeable film that covers the top surface inside the stainless steel case.
Material to be treated using quartz glass as pressure transmission medium-8US43
Give 0J an isotropic positive value. Furthermore, since quartz glass has no impurities and is inert, it does not contaminate SO343QJ.

このhIP処理によって、2ケのSUS 430 Jは
、第4図のミクロ組織で示す様に拡散接合している事を
確認した。又、この部位の剪断強度は20 kgf/M
IL2あった。
Through this hIP treatment, it was confirmed that the two pieces of SUS 430 J were diffusion bonded as shown in the microstructure of FIG. 4. Also, the shear strength of this part is 20 kgf/M
There was IL2.

ガラス・カプセルは、第5図の様な外政を示しお互いに
物性の異なる3極類のガラス等のセラミックスの層が形
成されている事が判る。
The glass capsule exhibits an external structure as shown in Figure 5, and it can be seen that layers of three polar types of ceramics such as glasses with different physical properties are formed.

ガラスJ−は場合によっては2層でも艮い。例えは、2
13物の内1部鋳造欠陥の改嵜跨に出いる場合、被処理
材の周囲に直接細粒の篩軟化点のセラミックス粒子を配
置し、その上層に低軟化点のセラミックス粒子をecl
i!してH工P処理を行っても艮い。
Glass J- may be made of two layers depending on the case. For example, 2
When repairing one of the 13 casting defects, fine ceramic particles with a sieve softening point are placed directly around the material to be treated, and ceramic particles with a low softening point are placed on top of the ecl.
i! It doesn't work even if you do H/P processing.

尚、本仕様書で、被処理材の周囲のセラミックスAを粗
粒と説明したのは、被処理材の接合界面にセラミックス
Aが入り込むのを防ぐためであり、接合以外の用途では
特に粗粒とする必要はなく、従って、3ノ一以上とする
必要もない。
In addition, in this specification, the reason why the ceramic A surrounding the processed material is described as coarse grain is to prevent the ceramic A from entering the bonding interface of the processed material, and for purposes other than bonding, it is particularly coarse grained. Therefore, there is no need to set the number to 3 or more.

〔発明の効果〕 (イ)溶融したガラス浄のセラミックスにより被処理材
相互の気密性を保つ事ができるので、金属製ケースに蓋
をして電子ビーム溶接により脱気・・市封する工程が不
要となる。
[Effects of the invention] (a) Since the molten glass-purified ceramics can maintain airtightness between the materials to be treated, the process of capping the metal case and degassing and sealing it by electron beam welding is possible. No longer needed.

(ロ)内層に使用するガラス等のセラミックスは、B工
P処理温度下でも全く変質しないので回収して書利用し
得る。
(b) Ceramics such as glass used for the inner layer do not change in quality at all even under the B-processing temperature, so they can be recovered and used for writing purposes.

(ハ)本流に用いるガラス等のセラミックスは、m?J
のガラス・カプセルの様(予備焼成や結合材等も不要で
あり、筐たスラリーを作る必女もない。
(c) Mainly used ceramics such as glass are m? J
Like glass capsules (there is no need for pre-firing or binding materials, and there is no need to make a slurry).

に)特性の異なるガラス寺のセラミックスを3線類以上
、層状に組み合わせる事により予備fj’a成や脱気・
密封工程の不要な又、一部のカラス及び全編製のケース
については、回収再利用の可能な安価で収り扱いの谷易
なカプセルを作る事ができる。
) Preliminary fj'a formation, degassing and
For some crow and full-length cases that do not require a sealing process, it is possible to make capsules that are inexpensive, easy to store, and can be recovered and reused.

(ホ)木カプセルの利用により同相接合は勿論、焼結体
の内部欠陥除去の他、鋳物の表向欠陥除去も可能となる
(e) By using a wood capsule, it becomes possible not only to perform in-phase bonding but also to remove internal defects in sintered bodies as well as surface defects in castings.

【図面の簡単な説明】[Brief explanation of drawings]

、241図は3イ(類のセラミックスを組み合わせ、そ
の中に、′・U処理物を埋め込んだカプセルを示す。 第2図は固相接合に用いた被処理材を示す。 第3図はHI i’処理の操業パターンを示すグラフで
める。 第4図は接合界面部のミクロ組aを示す写真である。 第5凶はガラス・カプセルの拡大4共でaる。 ■・・・金A−14蜆ケース   2・・・被処理材3
・・・ガラス等のセラミックスA 4・・・ガラス等のセラミックスB 5・・・ガラス尋のセラミックスC 第1図 CQ        リ     □ 手続補正書(方幻 昭和60年11月6日
, 241 shows a capsule in which ceramics of type 3A are combined and a processed material of 'U is embedded in it. Fig. 2 shows the treated material used for solid phase bonding. Fig. 3 shows HI A graph showing the operation pattern of the i' process is shown. Figure 4 is a photograph showing the microstructure a of the joint interface. The fifth problem is an enlarged view of the glass capsule. ■... Gold A-14 Case 2... Material to be treated 3
... Ceramics such as glass A 4 ... Ceramics such as glass B 5 ... Ceramics of glass thickness C Figure 1 CQ Li □ Procedural amendment (Hogen November 6, 1985)

Claims (1)

【特許請求の範囲】[Claims] 熱間静水圧加圧法により被処理材の材質改善若しくは接
合を行うにあたり、容器内に接合すべき被処理材を装入
後、該処理材の周囲を高軟化点で化学的に不活性なセラ
ミックス粒子で覆い、最外層には処理温度よりも低軟化
点のセラミックス材を配置した上で熱間静水圧加圧を行
う事を特徴とする熱間静水圧加圧処理法。
When improving or joining materials to be treated using the hot isostatic pressing method, after charging the materials to be bonded into a container, a chemically inert ceramic with a high softening point is placed around the materials to be bonded. A hot isostatic pressure treatment method that is characterized by covering with particles, placing a ceramic material with a softening point lower than the treatment temperature in the outermost layer, and then applying hot isostatic pressure.
JP14820085A 1985-07-08 1985-07-08 Hot hydrostatic pressure treating method Pending JPS629787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820085A JPS629787A (en) 1985-07-08 1985-07-08 Hot hydrostatic pressure treating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820085A JPS629787A (en) 1985-07-08 1985-07-08 Hot hydrostatic pressure treating method

Publications (1)

Publication Number Publication Date
JPS629787A true JPS629787A (en) 1987-01-17

Family

ID=15447496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820085A Pending JPS629787A (en) 1985-07-08 1985-07-08 Hot hydrostatic pressure treating method

Country Status (1)

Country Link
JP (1) JPS629787A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002329A (en) * 2005-06-27 2007-01-11 Yasushi Watanabe Method for treating metallic fixed body, and composite metal body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007002329A (en) * 2005-06-27 2007-01-11 Yasushi Watanabe Method for treating metallic fixed body, and composite metal body
JP4585928B2 (en) * 2005-06-27 2010-11-24 靖 渡辺 Method for treating metal adhering body

Similar Documents

Publication Publication Date Title
US4485961A (en) Welding by hot isostatic pressing (HIP)
US4710235A (en) Process for preparation of liquid phase bonded amorphous materials
NO156157B (en) PROCEDURE FOR THE REMOVAL OF THE CONTAINER MATERIAL FROM A HEAT PRESSURE COMPACT BODY OF METAL AND / OR NON-METAL COMPOSITION POWDER.
JPH042542B2 (en)
US3980220A (en) Method of fabricating large titanium pressure hulls
US3711936A (en) Method for forming composite articles from alloy in temporary condition of superplasticity
US3713207A (en) Method for diffusion bonding utilizing superplastic interlayer
US3235943A (en) Method of making a flux free bonded article
US3121949A (en) Method for manufacturing titanium clad steel
US3815219A (en) Process for diffusion bonding
JPS629787A (en) Hot hydrostatic pressure treating method
EP0636445B1 (en) Brazing
US3693243A (en) Method and apparatus for cladding metals
JP3687161B2 (en) Joining method of ceramic structures
JPH10251712A (en) Metallic composite porous member, its production, and weld-joined body
JPH01154886A (en) Manufacture of al clad steel plate
RU2787287C1 (en) Method for diffusion welding of parts made of hard-to-weld alloys
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
US4595557A (en) Method of increasing hermeticity of metal components of glass/metal and ceramic/metal seals
US2847756A (en) Cladding assembly with internal cover plate
JPS5944148B2 (en) Diffusion welding method
JPH06126472A (en) Pressure joining method
JPH06345545A (en) Production of capsule for hot isostatic pressing
US3222164A (en) Brazing alloy and process using the same
JPH01127659A (en) Method for making sprayed deposit dense