JPS629761A - Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship - Google Patents

Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship

Info

Publication number
JPS629761A
JPS629761A JP60151003A JP15100385A JPS629761A JP S629761 A JPS629761 A JP S629761A JP 60151003 A JP60151003 A JP 60151003A JP 15100385 A JP15100385 A JP 15100385A JP S629761 A JPS629761 A JP S629761A
Authority
JP
Japan
Prior art keywords
propeller
solidification
molten metal
bronze
lower mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60151003A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
章 鈴木
Kiyoshi Moriya
森谷 清
Yusuke Yamauchi
山内 勇介
Shinsuke Haneda
羽田 晋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60151003A priority Critical patent/JPS629761A/en
Priority to KR1019860005137A priority patent/KR870000985A/en
Publication of JPS629761A publication Critical patent/JPS629761A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D15/00Casting using a mould or core of which a part significant to the process is of high thermal conductivity, e.g. chill casting; Moulds or accessories specially adapted therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent pipy defects and to suppress the generation of the fatique crack of a propeller by disposing chillers to a drag on the side to directly contact with a molten metal over approximately the entire surface thereof and specifying the solidification time of the molten metal thereby reducing the time until the end of the solification. CONSTITUTION:The molten metal consisting of the Ni-Al bronze is poured from a gate part 15 into a cavity 12 to cast the propeller A. The chillers 18 spaced from each other in the diametral direction are disposed on the side of the drag 11 on the side to directly contact with the molten metal over approximately the entire surface thereof. The solidification time ratio alpha(=T0/T1) of the molten metal is made >=1.8 by the chillers 18. T0 is the solidification end time of the largest wall thickness part in the respective r/R sections if both the drag 11 and cope 10 are sand molds, T1 is the solidification end time of the largest wall thickness part in the respective r/R sections when the cooling capacity of the drag 11 is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Ni−Al青銅製大型船用プロペラの鋳造に
さいして、翼前進面近傍に発生するパイプ状鋳造欠陥の
防止方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for preventing pipe-shaped casting defects that occur near the advancing surface of a blade when casting a propeller for a large ship made of Ni-Al bronze.

(従来の技術) 船用プロペラの鋳造は、第11図で示す如く砂型よりな
る上型1と、砂型よりなる下型2と、を互い合致させて
プロペラ鋳造キャビティ3を構成し、このキャビティ3
に、造型されたボス内面成形部を有する中子4が挿設さ
れ、溶湯を押上げ方式で注湯することによりなされる。
(Prior Art) In casting a propeller for a ship, as shown in FIG. 11, an upper mold 1 made of a sand mold and a lower mold 2 made of a sand mold are made to fit together to form a propeller casting cavity 3.
A core 4 having a molded boss inner surface is inserted into the core 4, and the molten metal is poured in an upward motion.

このようにして製作されたプロペラにあっては、第12
図で示す如<r/R方向0.25〜0.5S Rと翼幅
方向Tll1ax〜水離れ5から約A翼幅とで囲まれる
領域6にパイプ状欠陥が発生し易い。
In the propeller manufactured in this way, the 12th
As shown in the figure, pipe-shaped defects are likely to occur in a region 6 surrounded by <0.25 to 0.5 S R in the r/R direction and Tll1ax in the wing span direction to approximately A wing span from the water separation 5.

この鋳造欠陥は第10図に示すプロペラの肉厚と凝固終
了までの時間の関係から明らかとされる。
This casting defect is made clear from the relationship between the wall thickness of the propeller and the time until solidification is completed, as shown in FIG.

すなわち、第10図において、プロペラの翼において最
大肉厚が約120n以上になると凝固終了までの時間が
急激に長くなる。これは、砂型のように鋳型の熱伝導度
が小さな場合、鋳込み直後は鋳型温度が溶湯温度に比べ
て十分小さいため鋳型の抜熱量は大きいけれども、鋳込
み後の時間経過に伴い、鋳型の温度は上昇し、抜熱量が
次第に小さくなるためである。
That is, in FIG. 10, when the maximum wall thickness of the propeller blade becomes approximately 120 nm or more, the time required to complete solidification increases rapidly. This is because when the thermal conductivity of the mold is low, such as a sand mold, the mold temperature is sufficiently low compared to the molten metal temperature immediately after casting, so the amount of heat removed from the mold is large, but as time passes after casting, the mold temperature decreases. This is because the amount of heat removed gradually decreases.

鋳物の薄肉部は抜熱速度の大きい領域で凝固が終了する
が厚肉部になると凝固の初期を除き抜熱速度が小さくな
るので凝固の終了が遅れる。
Solidification of thin-walled parts of the casting is completed in areas where the heat removal rate is high, but in thick-walled parts, the heat removal rate is low except in the early stages of solidification, so the completion of solidification is delayed.

これらの理由によって、第12図で示す領域6に鋳造欠
陥が発生し易いのである。
For these reasons, casting defects are likely to occur in region 6 shown in FIG. 12.

また、肉厚方向におけるパイプ状の欠陥7は第13図で
示す如く前進面8及び後進面9のそれぞれに発生し易い
Moreover, the pipe-shaped defect 7 in the wall thickness direction is likely to occur on each of the forward moving surface 8 and the backward moving surface 9, as shown in FIG.

これは、肉厚方向におけるこの領域は他の領域に比べ凝
固が遅れるからであり、これはNi−Aj!青銅がゆっ
くり凝固する際に特有な凝固特性によるものである。
This is because solidification in this region in the thickness direction is delayed compared to other regions, and this is because Ni-Aj! This is due to the unique solidification characteristics of bronze, which solidifies slowly.

(発明が解決しようとする問題点) プロペラAの翼Bにおいて前進面側(下型面側)に鋳造
欠陥が発生していると、プロペラ稼動中、前進面側8に
は第14図で示す如く引張力F1が生じ、後進面側9に
は圧縮力F2が生じる。殊に、引張力が生じる前進面側
は、この種の欠陥を起点とした疲労亀裂の発生、亀裂の
進展さらには翼折損に至ることがある。プロペラ翼根部
の最大肉厚が約120鶴を超えるNi−A 1青銅製プ
ロペラにおいて、疲労による翼折損の起点部あるいは疲
労亀裂の起点部にはパイプ状の欠陥が認められ、これら
は、重大な事故を誘発することになる。
(Problem to be Solved by the Invention) If a casting defect occurs on the forward facing side (lower die side) of the blade B of the propeller A, the forward facing side 8 will appear as shown in FIG. 14 during the propeller operation. Thus, a tensile force F1 is generated, and a compressive force F2 is generated on the backward traveling surface side 9. In particular, on the forward facing side where tensile force is generated, fatigue cracks may occur starting from this type of defect, the cracks may propagate, and even blade breakage may occur. In Ni-A 1 bronze propellers, where the maximum wall thickness of the propeller blade root exceeds approximately 120 mm, pipe-shaped defects are observed at the starting points of blade breakage or fatigue cracks due to fatigue, and these are serious defects. This will cause an accident.

特に、船舶の大型化、高速化に伴いプロペラは苛酷な条
件で使用される傾向となり、これに伴いプロペラ材料が
より優れた特性(腐食疲労強度、耐潰食性、静的強度な
ど)が要求され、これらの性質をNi−Al青銅が高力
黄銅に比べ大きいことから、プロペラ材料の主流となり
つつある現状にあっては、前述の鋳造欠陥がNi−Al
青綱特有のものとして生じることはなくさなければなら
ない。
In particular, as ships become larger and faster, propellers tend to be used under harsher conditions, and propeller materials are required to have better properties (corrosion fatigue strength, crushing corrosion resistance, static strength, etc.). Since Ni-Al bronze has these properties larger than high-strength brass, it is becoming the mainstream propeller material.
It is necessary to eliminate this occurrence as something unique to Aozuna.

本発明は、下型(前進面側)の冷却能(抜熱量)を増大
させ、凝固終了までの時間を短縮することにより、パイ
プ状の欠陥を防止できるようにした方法の提供を目的と
するのである。
The present invention aims to provide a method that can prevent pipe-shaped defects by increasing the cooling capacity (heat removal amount) of the lower die (advancing surface side) and shortening the time until the completion of solidification. It is.

(問題を解決するための手段) 本発明が前述目的を達成するために講じる技術的手段の
特徴とするところは互いに合致される上型10と下型1
1とでプロペラ鋳造キャビティ12が構成され、該キャ
ビティ12にボス内面成形軸部14を有する中子13が
挿設され、キャビティ12に溶湯を注湯してNi−A 
1青銅製大型船用プロペラを鋳造するものにおいて、溶
湯に直接接触する側の下型11に、冷し金18が径方向
に間隔を有して略全面にわたって配置されており、該冷
し金18による溶湯の凝固時間比αを1.8以上にする
ことにある。
(Means for solving the problem) The technical means taken by the present invention to achieve the above object are characterized by the upper mold 10 and the lower mold 1 being matched with each other.
1 constitutes a propeller casting cavity 12, a core 13 having a boss inner molded shaft portion 14 is inserted into the cavity 12, and molten metal is poured into the cavity 12 to form Ni-A.
1. In an apparatus for casting a bronze propeller for a large ship, chillers 18 are arranged over substantially the entire surface of the lower mold 11 on the side that comes into direct contact with the molten metal, with intervals in the radial direction. The goal is to make the solidification time ratio α of the molten metal 1.8 or more.

但し、α=To/Ts To :下型11、上型10とも砂型の場合における各
r / R断面における最大肉厚部の凝固終了時間。
However, α=To/Ts To: Solidification completion time of the maximum thickness part in each r/R cross section when both the lower mold 11 and the upper mold 10 are sand molds.

T1:下型11の冷却能を増大させた場合の各r / 
R断面における最大肉厚部の凝固終了時間。
T1: Each r/when the cooling capacity of the lower mold 11 is increased
Solidification completion time of the maximum thickness part in the R section.

(実施例) 以下、図面を参照して本発明の実施例を詳述する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、鋳造型を示しており、10は砂型よりなる上
型であり、プロペラAの翼部Bにおける後進面10Aを
造型する。
FIG. 1 shows a casting mold, and 10 is an upper mold made of a sand mold, and is used to mold the backward moving surface 10A of the blade part B of the propeller A.

11は砂型よりなる下型であり、プロペラAの翼部Bに
おける前進面11Aを造型する。
Reference numeral 11 denotes a lower mold made of a sand mold, which molds the advancing surface 11A of the blade portion B of the propeller A.

そして、上型10と下型11は互いに合致されてプロペ
ラ鋳造キャビティ12を構成している。
The upper mold 10 and the lower mold 11 are fitted together to form a propeller casting cavity 12.

13は中子であり、プロペラボスCにおける内周面を形
成する軸部14と湯せき部15を有しており、前記キャ
ビティ12に挿設されている。
A core 13 has a shaft portion 14 forming the inner peripheral surface of the propeller boss C and a spout portion 15, and is inserted into the cavity 12.

16は湯道であり、Ni−Ajl青銅よりなる溶湯が湯
せき部15よりキャビティ12に本例では押上げ方式で
注湯されてプロペラAIJ<鋳造され、符号17は押湯
部である。
16 is a runner, in which molten metal made of Ni-Ajl bronze is poured into the cavity 12 from the molten metal weir part 15 by a push-up method in this example, and the propeller AIJ is cast; numeral 17 is a feeder part.

18は冷し金であり、下型11において溶湯に直接接触
する側に径方向に間隔を有して略全面にわたって配置さ
れている。
Reference numeral 18 denotes a chiller, which is disposed over substantially the entire surface of the lower mold 11 on the side that directly contacts the molten metal with a radial interval therebetween.

すなわち、下型11の冷却能(抜熱量)を増大させ、凝
固終了までの時間を短縮するものであり、この場合、鋳
型の冷却能増大の条件としては次式に示す凝固時間比α
を1.8以上にするのである。
That is, it increases the cooling capacity (heat removal amount) of the lower mold 11 and shortens the time until the end of solidification.In this case, the condition for increasing the cooling capacity of the mold is the solidification time ratio α shown in the following equation.
is set to 1.8 or higher.

α= To / T I To =下型11、上型10とも砂型の場合、各r/R
断面における最大肉厚部の凝固終 了時間であり、第10図によってその値はほぼ求まる。
α= To / T I To = If both the lower mold 11 and the upper mold 10 are sand molds, each r/R
This is the solidification completion time of the maximum thickness part in the cross section, and its value can be approximately determined from FIG.

T1:下型11の冷却能を増大させた場合の各r / 
R断面における最大肉厚部の凝固終了時間。
T1: Each r/when the cooling capacity of the lower mold 11 is increased
Solidification completion time of the maximum thickness part in the R section.

つまり、上型10の鋳型冷却能は従来のままで下型11
の冷却能を増大して凝固時間を短縮させた場合、肉厚方
向において局部的に凝固が遅れる領域はなく、前進面側
近傍及び後進面側近傍のパイプ状欠陥は発生しないこと
が判明したのである。
In other words, the mold cooling capacity of the upper mold 10 remains the same as before, and the mold cooling capacity of the lower mold 11 remains the same.
It was found that when the cooling capacity of the steel sheet was increased to shorten the solidification time, there were no local areas where solidification was delayed in the wall thickness direction, and pipe-shaped defects near the forward and backward surfaces did not occur. be.

また、下型11は従来のままで上型10の冷却能を増大
させた場合も、同様にパイプ状の欠陥は防止できるが、
下型側(前進面側)近傍に他の欠陥、例えば引は巣状の
欠陥が発生する可能性があるので好ましくない。
Furthermore, even if the cooling capacity of the upper mold 10 is increased while the lower mold 11 remains the same, pipe-shaped defects can be similarly prevented;
This is not preferable because other defects, such as a hole-like defect, may occur near the lower die side (advancing surface side).

下型11の鋳型冷却能を増大させる範囲は原則として第
2図、第7図で示す如<0.2SR−翼先の全領域とさ
れる。
The range in which the mold cooling capacity of the lower mold 11 is increased is, in principle, the entire region of the blade tip of <0.2 SR, as shown in FIGS. 2 and 7.

例えば、第8図で示す如く欠陥が発生し易い0゜25R
〜0.55R部のみに冷し金18を第9図で示す如く配
置すると、冷し金18の翼先側に引は巣19が発生する
可能性があることから好ましくない。
For example, as shown in Figure 8, 0°25R where defects are likely to occur.
If the chiller 18 is arranged only in the ~0.55R section as shown in FIG. 9, it is not preferable because there is a possibility that a drag cavity 19 will occur on the wing tip side of the chiller 18.

なお、フイシンl−20−0,25Rの領域はボスCか
らの溶湯補給(押湯)が効き易いことから冷し金18を
配置する必要は特にないけれども、必要に応じて配置し
てもよく、冷し金18の巾、厚みは適宜に選択され、し
かも、第3図で示す如く砂21を介在させて冷し金18
を配置(所謂間接チル法)するのではなく、第4図に示
す如く冷し金18の面が直接溶湯に接触するように配置
(所謂直接チル法)されるのである。
It should be noted that in the area of fins L-20-0 and 25R, it is not particularly necessary to arrange the chiller 18 because molten metal replenishment (boiler) from the boss C is effective, but it may be arranged as necessary. The width and thickness of the chilled metal 18 are selected appropriately, and the chilled metal 18 is formed with sand 21 interposed as shown in FIG.
(so-called indirect chill method), but instead, as shown in FIG. 4, the chiller 18 is disposed so that its surface is in direct contact with the molten metal (so-called direct chill method).

また、チル通用面積率は60〜70%とされる。Further, the chill area ratio is set to 60 to 70%.

ここで、チル適用面積率とは翼表面に占める全冷し全面
積、例えば第2図におけるSC1+Sc2 +Sc3 
+ 5c−8を、翼の表面積SOで割った値をいう。
Here, the chill application area ratio refers to the total cooling area on the blade surface, for example, SC1 + Sc2 + Sc3 in Figure 2.
+5c-8 divided by the surface area SO of the wing.

次に、本発明の実施例と比較例(間接チル法)及び従来
例を比較して説明する。
Next, an example of the present invention, a comparative example (indirect chill method), and a conventional example will be compared and explained.

ここで、プロペラ翼根部(0,3R,T+max 20
0fi)の凝固時間比を示すと次の通りである。
Here, propeller blade root (0,3R,T+max 20
The coagulation time ratio of 0fi) is as follows.

(次 葉) また、0.3R部、Tmax −GL間の前進面側近傍
についての凝固時間比と欠陥長さの関係は第5図に、又
、欠陥長さと欠陥出現頻度に及ぼす凝固時間比の影響を
第6図に示している。
(Next page) In addition, the relationship between the solidification time ratio and defect length for the 0.3R section and the vicinity of the advancing surface between Tmax and GL is shown in Figure 5, and the effect of the solidification time ratio on the defect length and defect appearance frequency is shown in Figure 5. Figure 6 shows the influence of

(発明の効果) 以上、要するに本発明によれば、下型の冷却能を増大さ
せて凝固終了までの時間を短縮することにより、パイプ
状の欠陥を防止することができ、従って、Ni  An
t青銅製大型プロペラの翼折損あるいは疲労亀裂の発生
頻度をおさえることができて、有利となる。
(Effects of the Invention) In summary, according to the present invention, pipe-shaped defects can be prevented by increasing the cooling capacity of the lower mold and shortening the time until the end of solidification.
This is advantageous because the frequency of blade breakage or fatigue cracks in large bronze propellers can be suppressed.

つまり、近年Ni−Al青w4!II大型プロペラの翼
折損あるいは疲労亀裂の発生頻度が次の理由で高くなっ
たと考えられる。
In other words, in recent years Ni-Al blue w4! It is believed that the frequency of blade breakage or fatigue cracking in II large propellers has increased for the following reasons.

1)船舶の高速化によりプロペラに加わる変動応力は、
増大する傾向にある。さらに荒天時においては設計応力
を越える厳しい条件で使用されていると考えられる。
1) The fluctuating stress applied to the propeller due to the increase in speed of the ship is
There is a tendency to increase. Furthermore, during stormy weather, it is thought that they are used under severe conditions that exceed the design stress.

2)プロペラの推進効率を向上させるため”70年代以
降半径方向の翼厚分布を変えたユニストレスタイプが一
般化した。これにより ■変動応力の大きい領域が拡がった。
2) In order to improve the propulsion efficiency of propellers, the uni-stress type, in which the radial blade thickness distribution was changed, became popular after the 1970s. As a result, the area of large fluctuating stress expanded.

■翼根部近傍は肉厚勾配が小さくなるので欠陥が発生し
易くな′ると推定される。
■It is estimated that defects are less likely to occur near the blade root because the wall thickness gradient is smaller.

かかる傾向にあっても、鋳造欠陥がおさえられた安全性
の高い舶用プロペラを提供できる。
Even with this tendency, it is possible to provide a highly safe marine propeller in which casting defects are suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における鋳造状態の断面図、第2図は冷
し全配置−例の平面図、第3図と第4図は冷し全配置の
断面図で、第3図は比較例、第4図は本発明例であり、
第5図は凝固時間比と欠陥長さの関係を示すグラフ、第
6図は欠陥長さと欠陥出現頻度に及ぼす凝固時間比を示
すグラフ、第7図と第8図は冷し全配置領域を示す説明
図、第9図は第8図の断面図、第10図は凝固終了時間
とプロペラ最大肉厚との関係を示すグラフ、第11図は
従来例の断面図、第12図は同欠陥発生域の説明図、第
13図はr/R断面における欠陥発生説明図、第14図
はプロペラ一部の断面図である。 10・・・上型、11・・・下型、12・・・キャビテ
ィ、13・・・中子、18・・・冷し金。 特 許 出 願 人  株式会社神戸製鋼所肩1鯖l同
ル(d) 第3図       第4図  、。
Fig. 1 is a sectional view of the casting state in the present invention, Fig. 2 is a plan view of the entire cooling arrangement - an example, Figs. 3 and 4 are sectional views of the entire cooling arrangement, and Fig. 3 is a comparative example. , FIG. 4 is an example of the present invention,
Figure 5 is a graph showing the relationship between solidification time ratio and defect length, Figure 6 is a graph showing the effect of solidification time ratio on defect length and defect appearance frequency, and Figures 7 and 8 are graphs showing the relationship between solidification time ratio and defect length. Figure 9 is a cross-sectional view of Figure 8, Figure 10 is a graph showing the relationship between solidification completion time and maximum propeller wall thickness, Figure 11 is a cross-sectional view of the conventional example, and Figure 12 shows the same defect. FIG. 13 is an explanatory diagram of the occurrence area, FIG. 13 is an explanatory diagram of defect occurrence in the r/R cross section, and FIG. 14 is a sectional view of a part of the propeller. 10... Upper mold, 11... Lower mold, 12... Cavity, 13... Core, 18... Cold metal. Patent applicant: Kobe Steel, Ltd. (d) Figure 3 Figure 4.

Claims (1)

【特許請求の範囲】 1、互いに合致される上型10と下型11とでプロペラ
鋳造キャビティ12が構成され、該キャビティ12にボ
ス内面成形軸部14を有する中子13が挿設され、キャ
ビティ12に溶湯を注湯してNi−Al青銅製大型船用
プロペラを鋳造するものにおいて、 溶湯に直接接触する側の下型11に、冷し金18が径方
向に間隔を有して略全面にわたって配置されており、該
冷し金18による溶湯の凝固時間比αを1.8以上にす
ることを特徴とするNi−Al青銅製大型船用プロペラ
の前進面近傍に発生する鋳造欠陥の防止方法。 但し、α=To/T_1 To:下型11、上型10とも砂型の場合における各r
/R断面における最大肉厚 部の凝固終了時間。 T_1:下型11の冷却能を増大させた場合の各r/R
断面における最大肉厚部の 凝固終了時間。
[Scope of Claims] 1. A propeller casting cavity 12 is constituted by an upper mold 10 and a lower mold 11 that are matched with each other, and a core 13 having a boss inner molding shaft portion 14 is inserted into the cavity 12, and 12, in which a Ni-Al bronze propeller for a large ship is cast by pouring molten metal into the lower mold 11, which is in direct contact with the molten metal, a cooling metal 18 is placed over almost the entire surface of the lower mold 11 with intervals in the radial direction. A method for preventing casting defects occurring in the vicinity of the advancing surface of a propeller for a large ship made of Ni-Al bronze, characterized in that the solidification time ratio α of the molten metal by the cooling metal 18 is set to 1.8 or more. However, α=To/T_1 To: Each r when both the lower mold 11 and the upper mold 10 are sand molds.
/ Time for completion of solidification of the thickest part in the R cross section. T_1: Each r/R when increasing the cooling capacity of the lower mold 11
Solidification completion time of the thickest part in the cross section.
JP60151003A 1985-07-08 1985-07-08 Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship Pending JPS629761A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60151003A JPS629761A (en) 1985-07-08 1985-07-08 Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship
KR1019860005137A KR870000985A (en) 1985-07-08 1986-06-26 How to prevent casting defects occurring near the forward surface of Ni-Al bronze large propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151003A JPS629761A (en) 1985-07-08 1985-07-08 Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship

Publications (1)

Publication Number Publication Date
JPS629761A true JPS629761A (en) 1987-01-17

Family

ID=15509161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151003A Pending JPS629761A (en) 1985-07-08 1985-07-08 Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship

Country Status (2)

Country Link
JP (1) JPS629761A (en)
KR (1) KR870000985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463219B1 (en) * 2012-12-31 2014-11-21 유지훈 A molding method for copper alloy propeller blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101463219B1 (en) * 2012-12-31 2014-11-21 유지훈 A molding method for copper alloy propeller blade

Also Published As

Publication number Publication date
KR870000985A (en) 1987-03-10

Similar Documents

Publication Publication Date Title
KR101317977B1 (en) Sequential casting metals having high co-efficients of contraction
KR101403764B1 (en) Sequential casting of metals having the same or similar co-efficients of contraction
US4166495A (en) Ingot casting method
JP4164163B2 (en) Metal casting mold
JPH11197800A (en) Mold for continuous casting
WO2012083671A1 (en) Method for enhancing self-feeding ability of heavy section casting blank
JPS629761A (en) Method for preventing casting defect to be generated near advancing face of propeller made of ni-al bronze for large-sized ship
US2018762A (en) Method and mold for eliminating ingot surface defects
JP4836303B2 (en) Continuous casting mold
WO2018031032A1 (en) Blade for gas turbine engine
JP3285197B2 (en) Casting method
JPH0445264B2 (en)
CN206966597U (en) A kind of leakproof aluminium pours in down a chimney water hole crystallizer
JP2616057B2 (en) Manufacturing method of cylinder block
US6176298B1 (en) Continuous casting mould
JP2000079445A (en) Mold for continuously casting steel
JPH04123846A (en) Solidified casting method below molten metal surface in continuous casting
JPS62168653A (en) Method for preventing casting defect of propeller for ship
JPS60121054A (en) Continuous casting method
JPH09314287A (en) Continuous casting method for round cross sectional cast billet
JP2006159255A (en) Casting method and casting apparatus
JP2003230943A (en) Mold structure
JPH06344101A (en) Continuous casting method
JPS6272452A (en) Heat insulating block
JPH08206786A (en) Mold for continuous casting