JPS6297601A - Process for recovering solvent by steam stripping - Google Patents

Process for recovering solvent by steam stripping

Info

Publication number
JPS6297601A
JPS6297601A JP60234873A JP23487385A JPS6297601A JP S6297601 A JPS6297601 A JP S6297601A JP 60234873 A JP60234873 A JP 60234873A JP 23487385 A JP23487385 A JP 23487385A JP S6297601 A JPS6297601 A JP S6297601A
Authority
JP
Japan
Prior art keywords
tank
solvent
boiling point
stage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60234873A
Other languages
Japanese (ja)
Other versions
JPH0575441B2 (en
Inventor
Masami Tachibana
橘 正躬
Akira Mori
章 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP60234873A priority Critical patent/JPS6297601A/en
Publication of JPS6297601A publication Critical patent/JPS6297601A/en
Publication of JPH0575441B2 publication Critical patent/JPH0575441B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To contrive energy saving, by blowing effluent gas from the subsequent stage into the preceding stage to recover the effluent gas of the initial gas by cooling when solvent is recovered from slurry containing polymers by a multistage countercurrent stripping using a tank. CONSTITUTION:Slurry is fed through a pipe 8 into a tank 1 where steam is blown into. Solvent is purged through a pipe 9 to a plate column 3 and further condensed in a condenser 4 to be recovered, while the recovered solvent is received by a receiver 5. Part of the recovered solvent is returned through a pipe 15 to the plate column 3, contacted with effluent gas from the tank 1, where impurities and water in the effluent gas are removed, and returned to the tank 1 through a pipe 13. Slurry in the tank 1 is withdrawn by a pump 6 and sent to a tank 2 through a pipe 10, where steam is blown into to keep said tank 2 at a temperature higher than that of the tank 1, while the solvent is returned to the tank 1 through a pipe 11.

Description

【発明の詳細な説明】 本発明は重合体、溶媒及び高沸点不純物を含むスラリー
又は溶液から溶媒を回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering solvent from a slurry or solution containing polymer, solvent, and high boiling impurities.

重合体を含むスラリー又は溶液から溶媒を回収する方法
は数多くあり、該溶液にスチームを吹込んでスチームス
トリッピングによシ溶媒を回収する方法は広く行なわれ
ている。溶媒の収率を良くするため複数のタンクを用い
て多段で行なう事や、エネルギー効率を良くする為後段
の留出ガスを順次前段に吹込む手法も良く知られている
There are many methods for recovering a solvent from a slurry or solution containing a polymer, and a method of recovering the solvent by steam stripping by blowing steam into the solution is widely used. In order to improve the yield of the solvent, it is well known to carry out the process in multiple stages using a plurality of tanks, and to improve energy efficiency, the method of sequentially blowing the distillate gas from the latter stage into the former stage is well known.

しかしながら、これら従来法では留出溶媒は多くの水と
共にしばしば水と共沸混合物を作る高沸点の不純物(多
くの場合す、p、ン100℃)を含んでいる。このため
純度の良い溶媒を得る為には、水切シ後、高沸点不純物
カットの精留、低沸点不純物カットの精留と2段の精留
を行なう必要がある。これKU非常に大きなエネルギー
を要し、設備費用も高く、溶媒精製のコスト高をもたら
している。
However, in these conventional methods, the distillation solvent contains a large amount of water as well as high-boiling impurities (often at 100 DEG C.) that often form an azeotrope with water. Therefore, in order to obtain a solvent with good purity, it is necessary to perform two stages of rectification, one for removing high-boiling point impurities and the other for removing low-boiling point impurities, after draining. This KU requires a very large amount of energy and equipment costs are high, leading to high costs for solvent purification.

スチームストリッピングには種々の方法があシ、溶媒回
収効率向上、熱効率向上や運転管理上の工夫がなされて
いるが基本的には次の様に分類される。
There are various methods for steam stripping, and efforts have been made to improve solvent recovery efficiency, thermal efficiency, and operational management, but basically they can be classified into the following types.

(1)パッチ1段ストリッピング この方法は実験室等小規模処理に向いているが工業的大
規模の処理には向かない。
(1) One-stage patch stripping This method is suitable for small-scale processing such as in a laboratory, but is not suitable for large-scale industrial processing.

(2)連続1段ストリッピング この方法は装置は単純で運転管理等容易であるが、熱効
率や溶媒回収率は他よシ劣る。
(2) Continuous one-stage stripping This method uses a simple device and is easy to operate and manage, but its thermal efficiency and solvent recovery rate are inferior to other methods.

(3)塔式向流ストリッピング この方法は高い塔状のストリッピング装置で熱効率や、
溶媒回収率は良いが、重合体を含むスラリーや溶液を処
理する場合には該スラリー中の重合体や該溶液からしば
しば析出して来る固形重合体によりトレーの目詰まシ等
のトラブルが生じるため処理対象物に制約がある。
(3) Column-type countercurrent stripping This method uses a tall column-shaped stripping device to improve thermal efficiency and
Although the solvent recovery rate is good, when processing slurries or solutions containing polymers, problems such as tray clogging may occur due to the polymers in the slurry or solid polymers that often precipitate from the solutions. There are restrictions on what can be processed.

(4)多段並流ストリッピング この方法は溶媒回収率は良いが、後段温度が高く回収溶
媒中への不純物の留出量も多い。
(4) Multi-stage co-current stripping Although this method has a good solvent recovery rate, the temperature in the latter stage is high and a large amount of impurities are distilled into the recovered solvent.

(5)タンクによる多段向流ストリッピングこの方法は
溶媒回収率も良く、熱効率も良い。
(5) Multistage countercurrent stripping using tanks This method has good solvent recovery rate and thermal efficiency.

水と共沸混合物を作る不純物の留出について見れば、(
3) 、 (5>は最終的にコンデンサーへ送るガス温
度を低くする墨が出来るため、回収溶媒に持ち込まれる
高沸点の不純物量は最も少ない。
If we look at the distillation of impurities that form an azeotrope with water, (
3), (5>) produces a black gas that lowers the gas temperature ultimately sent to the condenser, so the amount of high-boiling point impurities carried into the recovered solvent is the smallest.

しかし、(5)の手法において1段目のストリッピング
温度を低くしても、水と共沸混合物を作る高沸点不純物
の留出を抑えるには限度がちシ、回収溶媒において重合
等に用いる溶媒中の不純物量としては多すぎる欠点があ
る。
However, even if the first-stage stripping temperature is lowered in method (5), there is a limit to suppressing the distillation of high-boiling impurities that form an azeotrope with water, and the recovered solvent is a solvent used for polymerization, etc. The drawback is that the amount of impurities inside is too large.

本発明は、以上の問題点を改善しスチームスって留出し
て来る高沸点不純物の留出を抑える事によシ、後工程の
前記回収溶媒からの高沸点不純物除去のための精留を不
要とし、大巾な省エネルギーと溶媒コストダウンを達成
し、かつ装置の安定性、汎用性の浸れた方法を提供する
ことを目的とする。
The present invention improves the above problems and suppresses the distillation of high-boiling point impurities that are distilled out by steam, thereby increasing the rectification for removing high-boiling point impurities from the recovered solvent in the subsequent process. The objective is to provide a method that eliminates the need for solvents, achieves significant energy savings and solvent cost reductions, and provides stability and versatility of the device.

本発明は、スチームストリッピングによシ、重合体、溶
媒及び高沸点不純物を含むスラリー又は溶液から前記溶
媒を連続的に取出し回収する際に)スチームストリッピ
ングをタンクを用いる多段向流で行ない、後段の留出ガ
スを順次前段に吹込み、初段の留出ガスを棚段塔又は充
填塔を通した後コンデンサーで冷却して回収し、前記重
合体、水及び高沸点不純物を含むスラリー又は溶液を前
記タンクの最後段から抜き出す前記溶媒の回収方法であ
る。
In the present invention, when the solvent is continuously taken out and recovered from a slurry or solution containing a polymer, a solvent, and a high-boiling point impurity by steam stripping, the steam stripping is performed in a multi-stage countercurrent flow using a tank, Distillate gas from the latter stage is blown into the former stage one by one, and the distillate gas from the first stage is passed through a plate tower or a packed tower and then cooled and collected in a condenser to form a slurry or solution containing the polymer, water, and high-boiling point impurities. In this method, the solvent is extracted from the last stage of the tank.

前記棚段塔(又は充填塔)の段数は15段(15段相当
)でよく、高沸点不純物と水との組合わせによっては5
段(5段相当)以下でも高沸点不純物と水との共沸混合
物を除去することができる。
The number of plates in the plate column (or packed column) may be 15 plates (equivalent to 15 plates), and may be 5 depending on the combination of high boiling point impurities and water.
An azeotrope of high boiling point impurities and water can be removed even if the stage is less than 5 stages (equivalent to 5 stages).

本発明によって回収可能な溶媒は、沸点又は水との共沸
点が100℃以下、好ましくは90℃以下であれば特に
限定されるものではないが、例をあげれば、ペンタン、
ヘキサン等の脂肪族炭化水素、メチルシクロペンタン、
シクロヘキサン等の脂環式炭化水素、ベンゼン等の芳香
族炭化水素等がある。
The solvent that can be recovered by the present invention is not particularly limited as long as its boiling point or azeotropic point with water is 100°C or lower, preferably 90°C or lower, but examples include pentane,
Aliphatic hydrocarbons such as hexane, methylcyclopentane,
Examples include alicyclic hydrocarbons such as cyclohexane and aromatic hydrocarbons such as benzene.

本発明は、高沸点不純物のうち特に水と共沸混合物を作
るものに有効である。水と共沸混合物を作るが、除去可
能な高沸点不純物は、大多数が100℃以上であシ、そ
の共沸点は溶媒の沸点よりも高い必要があり、その温度
差は5℃以上ある事が好ましい。
The present invention is particularly effective for high-boiling point impurities that form an azeotrope with water. An azeotropic mixture is formed with water, but the majority of high-boiling point impurities that can be removed must be at temperatures above 100°C, and the azeotropic point must be higher than the boiling point of the solvent, with a temperature difference of at least 5°C. is preferred.

この様な高沸点不純物は極めて多く、特に限定されるも
のではないが、例としてブチルアルコール、アミルアル
コール、ヘキシルアルコール等のアルコール類、ブチル
エーテル、アミルエーテル、ジイソアミルエーテル、オ
クチルエーテル等のエーテル類、ブチルプロピオネート
、エチルカプリレート、エチルベンゾエート、メチル−
パラ−)ルエート、フチルペンゾエート、エチルカプリ
レ−ト等のエステル類、ジプチルアミン、エチルヘキシ
ルアミン、ヘキシルアミン、エチルシクロヘキシルアミ
ン、エチルアニリン、コリジン等のアミン類、クロロデ
カン、クロロトルエン1、l−7’ロモー2−エチルヘ
キサン等のハロゲン化物等をあげることができる。
Such high boiling point impurities are extremely common, and are not particularly limited, but examples include alcohols such as butyl alcohol, amyl alcohol, and hexyl alcohol; ethers such as butyl ether, amyl ether, diisoamyl ether, and octyl ether; Butyl propionate, ethyl caprylate, ethyl benzoate, methyl-
Esters such as para)ruate, phthyl penzoate, and ethyl caprylate, amines such as diptylamine, ethylhexylamine, hexylamine, ethylcyclohexylamine, ethylaniline, and collidine, chlorodecane, chlorotoluene 1, l-7' romole Examples include halides such as 2-ethylhexane.

本発明における重合体としては、オレフィン重合体、オ
レフィン共重合体及び合成ゴム等があり、例えばポリエ
チレン、ポリプロピレン、ポリブテン等のポリオレフィ
ンやこれらのコポリマー及びEPR,EPDM、イソプ
レンゴム、ブチルゴム、SBR等の合成ゴムで熱溶媒に
俗解可能な比較的低分子量のものがある。本発明におけ
る重合体は原料混合物中に全部が溶解してもよいが、ポ
リマー粒子を含んでいても良い。
Polymers used in the present invention include olefin polymers, olefin copolymers, synthetic rubbers, etc., such as polyolefins such as polyethylene, polypropylene, and polybutene, copolymers thereof, and synthesis of EPR, EPDM, isoprene rubber, butyl rubber, SBR, etc. There are rubbers with relatively low molecular weights that can be commonly understood as thermal solvents. The polymer in the present invention may be completely dissolved in the raw material mixture, but may also contain polymer particles.

又、分散剤を用いてあっても良く、使用される分散剤と
しては、カチオン性界面活性剤、ノニオン性界面活性剤
、両性界面活性剤、アニオン性界面活性剤等一般に用い
られているもので特に制限はなく、単独で使用しても組
合せても使用したものであってもよい。
Further, a dispersant may be used, and examples of the dispersant used include those commonly used such as cationic surfactants, nonionic surfactants, amphoteric surfactants, and anionic surfactants. There are no particular limitations, and they may be used alone or in combination.

次に図面によって本発明プロセスの1例を説明する。Next, an example of the process of the present invention will be explained with reference to the drawings.

第1図において本装置によって処理される溶媒、重合体
及び高沸点不純物を含んだ溶液又はスラリーは導管8よ
シタンク1へ連続的に投入される。タンク1にはスチー
ムが吹込まれ、溶媒が追い出されて、導管9により、棚
段塔(又は充填塔)3に専びかれる。棚段塔では、コン
デンサー4で凝縮した圓収溶薯セシーバ−5に受は入れ
られるが、その1部は途中で導管5によシもとして塔3
を流下させ、タンク1の留出ガスと接触させて該留出ガ
ス中の不純物及び水を除去する。この不純物、水及び溶
媒の1部は導管13を経てタンク1にもどされる。回収
された溶媒は、導管16を経て回収タンクや低沸点不純
物除去等のための次工程へ送られる。
In FIG. 1, the solution or slurry containing solvent, polymer and high-boiling impurities to be treated by the apparatus is continuously introduced into tank 1 through conduit 8. Steam is blown into the tank 1, the solvent is driven off, and the tank 1 is dedicated to a tray column (or packed column) 3 via a conduit 9. In the tray tower, the condensed melt condensed in the condenser 4 is received in the receiver 5, but a part of it is transferred to the conduit 5 on the way and is transferred to the tower 3.
is allowed to flow down and brought into contact with the distillate gas in tank 1 to remove impurities and water in the distillate gas. A portion of this impurity, water and solvent is returned to tank 1 via conduit 13. The recovered solvent is sent through a conduit 16 to a recovery tank or to the next process for removing low-boiling point impurities.

タンク1から重合体及び高沸点不純物を含んだ溶液又は
スラリーはポンプ6で抜き出され、導管10を経てタン
ク2へ送られる。タンク2では、スチームが吹込まれ、
タンク1よシ高い温度に保たれ、溶媒は#tは完全に除
去される。
A solution or slurry containing polymer and high-boiling impurities is removed from tank 1 by pump 6 and sent to tank 2 via conduit 10. In tank 2, steam is blown into
Tank 1 is kept at a higher temperature and the solvent #t is completely removed.

スチームと溶媒蒸気の混合ガスは導管11によシ、タン
ク1にもどされ、液層に吹込まれる。
The mixed gas of steam and solvent vapor is returned to tank 1 through conduit 11 and blown into the liquid layer.

溶媒を除去した水、ポリマー、高沸点不純物、分散剤等
からなるスラリーは導管12によシタンク2よシ抜出し
、ポリマー分離等の次工程e(送られる。
The slurry consisting of water, polymer, high-boiling impurities, dispersant, etc. from which the solvent has been removed is extracted from the tank 2 through a conduit 12 and sent to the next step (e), such as polymer separation.

本発明の第1の利点は、水と共沸混合物を作る高沸点不
純物を除去する事ができることである。通常のスチーム
ストリッピング装置では、これは不可能な事であシ、高
沸点不純−除去のための精留塔が更に用いられている。
A first advantage of the present invention is that high boiling impurities that form azeotropes with water can be removed. This is not possible with conventional steam stripping equipment, and rectification columns are additionally used to remove high-boiling impurities.

本装置では、この高沸除去精留塔が不要となるため、大
巾な設備費削減、う/ニングコスト削減をもたらす。
This apparatus eliminates the need for this high boiling point removal rectification column, resulting in a significant reduction in equipment costs and cleaning costs.

本発明の第2の利点は、スチームストリッピングをタン
クを用いる多段で行なっているため溶媒の回収効率が良
い事である。
A second advantage of the present invention is that the steam stripping is performed in multiple stages using tanks, so that the solvent recovery efficiency is high.

本発明の第3の利点は、スチームストリッピングをタン
クを用いる多段で行なっており、後段のより高温のガス
は、順次前段のタンクに吹込まれるため熱が有効に利用
されておシ、この装置そのものも、エネルギー消費が少
ない。
The third advantage of the present invention is that steam stripping is performed in multiple stages using tanks, and the higher temperature gas in the later stages is blown into the tanks in the earlier stages, so the heat is effectively used. The device itself also consumes less energy.

本発明の第4の利点は、棚段塔(又は充填塔)3にて高
沸点不純物と共に、水もほとんど除去されるので、レシ
ーバ−5での水の貯りが極めて少ない事であシ、通常用
いられるシーケンスによるレシーバ−50レベルコント
ロールが不要な事である。
The fourth advantage of the present invention is that most of the water is removed along with high-boiling point impurities in the tray column (or packed column) 3, so that the amount of water accumulated in the receiver 5 is extremely small. This eliminates the need for receiver 50 level control using commonly used sequences.

実施例1 第1図に示した装置を用いてn−ヘキサン99重量%、
アタクチックポリプロピレン1%、アミルエーテル0.
10 %の混合液を調整し、これを第1ストリツパーに
12J/hrの速度で連続フィードした。タンク1にス
チームを吹込み70〜75℃に保って溶媒を追い出し、
7段の棚段塔へ導いた。タンクb箱液はポンプで抜出し
タンク2へ連続的に送った。タンク2ヘスチームを吹込
んで85〜90℃を保ち、留出ガスをタンク1へもどし
て液相へ供給した。棚段塔の留出ガスは、コンデンサー
5で冷却し、1部を棚段塔にもどし、1部をレシーバ−
に回収した。還流比は0.5を保った。タンク2からの
抜き出しはレベルを見ながら断続的に実施した。
Example 1 Using the apparatus shown in FIG. 1, 99% by weight of n-hexane,
1% atactic polypropylene, 0.0% amyl ether.
A 10% mixed solution was prepared and continuously fed to the first stripper at a rate of 12 J/hr. Blow steam into tank 1 and keep it at 70 to 75°C to drive out the solvent.
He led me to a seven-tier terraced tower. The liquid in tank B was drawn out using a pump and continuously sent to tank 2. Steam was blown into tank 2 to maintain the temperature at 85 to 90°C, and the distilled gas was returned to tank 1 to be supplied to the liquid phase. The distillate gas from the plate column is cooled in a condenser 5, one part is returned to the plate column, and one part is sent to the receiver.
It was collected in The reflux ratio was maintained at 0.5. Removal from Tank 2 was carried out intermittently while monitoring the level.

タンク1及びタンク2は、保温の為ヒーターによる補助
nO熱を実施した。タンク1、タンク2は、ノゾキ窓付
縦長の3018US容器を用い、撹拌翼は傾斜ファンタ
ービン翼とタービン翼を組み合わせて用いた。
For tank 1 and tank 2, auxiliary nO heating was performed using a heater to keep them warm. Tanks 1 and 2 were vertically elongated 3018 US containers with slotted windows, and the stirring blades were a combination of inclined fan turbine blades and turbine blades.

実施例2 実施例1において溶媒をn−へキサンに代えシクロヘキ
サン、水と共沸混合物を作る高沸点不純物をアミルエー
ルの代シにエチルベンゾエートとし、タンク1及びタン
ク2の温度をそれぞれ80〜85℃、90〜95℃に保
ち、棚段塔を5段相当のラシヒリング充填塔とする以外
は実施例1と同様の実験をした。
Example 2 In Example 1, the solvent was replaced with n-hexane, cyclohexane was used, the high-boiling point impurity that forms an azeotrope with water was replaced with ethyl benzoate, and the temperatures of tanks 1 and 2 were set at 80 to 85°C, respectively. The same experiment as in Example 1 was conducted except that the temperature was maintained at 90 to 95° C. and the plate column was replaced by a Raschig ring packed column equivalent to 5 plates.

比較例1 実施例1において、棚段塔を用いず、タンク1からの留
出ガスを直接コンデンサーにかけ、全量回収する以外は
、実施例1と同様の実験をした。
Comparative Example 1 An experiment similar to Example 1 was conducted, except that the plate column was not used and the distillate gas from Tank 1 was directly applied to the condenser and the entire amount was recovered.

比較例2 比較例1において、タンク2からの留出蒸気をタンク1
に返値ずに、タンク1からの留出蒸気と共にコンデンサ
ーにかけて回収すること以外は、比較例1と同様の実験
をした。
Comparative Example 2 In Comparative Example 1, distilled vapor from tank 2 was transferred to tank 1.
An experiment similar to Comparative Example 1 was carried out, except that the vapor was collected in a condenser together with the distilled vapor from Tank 1 without being returned.

以上のテスト結果を第1表に示す。The above test results are shown in Table 1.

第  1 表 実施例3 実施例1に於て、フィード液中のアタクチックポリプロ
ピレンを3.0%、アミルエーテルの代りにn−ブチル
エーテルを0.2%とする以外は、実施例1と同様の実
験をした。
Table 1 Example 3 Same as Example 1 except that the feed liquid contained 3.0% atactic polypropylene and 0.2% n-butyl ether instead of amyl ether. I did an experiment.

実施例4 実施例3に於て、フィード液中の高沸点不純物としてジ
イソアミルエーテルを0.03%とし、これにp−)ル
イル酸メチルを加え、p−トルイル酸メチルの濃度を0
.3%としたこと以外は実施例3と同様の実験をした。
Example 4 In Example 3, diisoamyl ether was set to 0.03% as a high-boiling point impurity in the feed liquid, and methyl p-)toluate was added to this to reduce the concentration of methyl p-toluate to 0.
.. An experiment similar to Example 3 was conducted except that the concentration was 3%.

実施例5 実施例3において、フィード液中の高沸点不純物として
n−ブチルエーテルをO,ob2%とし、さらにp−ア
ニス酸メチルを加えp−アニス酸メチルの濃度を0.0
5 %とする以外は実施例4と同様の実験をした。
Example 5 In Example 3, n-butyl ether was used as a high-boiling impurity in the feed liquid at O, ob 2%, and methyl p-anisate was added to make the concentration of methyl p-anisate 0.0.
An experiment similar to Example 4 was conducted except that the concentration was 5%.

実施例6 実施例1に於て、フィード液中のアタクチックポリプロ
ピレンを5.0%、アミルエーテルの代シにオクチルエ
ーテル0.01%、エチルヘキシルアミン0.003%
及びクロロデカン0.01%とする以外は実施例1と同
様の実験をした。
Example 6 In Example 1, the feed liquid contained 5.0% atactic polypropylene, 0.01% octyl ether in place of amyl ether, and 0.003% ethylhexylamine.
The same experiment as in Example 1 was conducted except that the amount of chlorodecane was 0.01%.

実施例3〜6によって得られた溶媒中の高沸点不純物の
濃度を第2表に示す。
Table 2 shows the concentrations of high boiling point impurities in the solvents obtained in Examples 3 to 6.

第   2  表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を実施するための装置の1例のフロー
シートを示したものである。 図中1.2はタンク、3は棚段塔(又は充填塔)、+r
d−xンデンサー、5はレシーバーヲ表わす。  ゛ 以  上
FIG. 1 shows a flow sheet of an example of an apparatus for carrying out the present invention. In the figure, 1.2 is a tank, 3 is a plate tower (or packed tower), +r
dxn capacitor, 5 represents the receiver. More than ゛

Claims (2)

【特許請求の範囲】[Claims] (1)スチームストリツピングにより、重合体、溶媒及
び高沸点不純物を含むスラリー又は溶液から前記溶媒を
連続的に取出し回収する際に、スチームストリツピング
をタンクを用いる多段向流で行ない、後段の留出ガスを
順次前段に吹込み、初段の留出ガスを棚段塔又は充填塔
を通した後コンデンサーで冷却して回収し、重合体、水
及び高沸点不純物を含むスラリーを前記タンクの最後段
から抜き出すことを特徴とする前記溶媒の回収方法。
(1) When using steam stripping to continuously extract and recover the solvent from a slurry or solution containing a polymer, solvent, and high-boiling point impurities, steam stripping is performed in multistage countercurrent flow using tanks, and the subsequent stage The distillate gas of the first stage is sequentially blown into the previous stage, and the distillate gas of the first stage is passed through a plate tower or a packed tower and then cooled and recovered in a condenser, and the slurry containing polymer, water and high boiling point impurities is transferred to the tank. The method for recovering the solvent, characterized in that the solvent is extracted from the last stage.
(2)前記高沸点不純物が水と共沸混合物を作るもので
あることを特徴とする第1項記載の方法。
(2) The method according to item 1, wherein the high-boiling point impurity forms an azeotrope with water.
JP60234873A 1985-10-21 1985-10-21 Process for recovering solvent by steam stripping Granted JPS6297601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234873A JPS6297601A (en) 1985-10-21 1985-10-21 Process for recovering solvent by steam stripping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234873A JPS6297601A (en) 1985-10-21 1985-10-21 Process for recovering solvent by steam stripping

Publications (2)

Publication Number Publication Date
JPS6297601A true JPS6297601A (en) 1987-05-07
JPH0575441B2 JPH0575441B2 (en) 1993-10-20

Family

ID=16977664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234873A Granted JPS6297601A (en) 1985-10-21 1985-10-21 Process for recovering solvent by steam stripping

Country Status (1)

Country Link
JP (1) JPS6297601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005490A1 (en) * 2003-07-11 2005-01-20 Jsr Corporation Method for desolvation of polymer solution
JP2014169403A (en) * 2013-03-04 2014-09-18 Nippon A&L Inc Method for producing copolymer latex, and copolymer latex
JP2018533477A (en) * 2016-06-16 2018-11-15 エルジー・ケム・リミテッド Solvent recovery apparatus and solvent recovery method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658659A (en) * 1969-09-24 1972-04-25 Phillips Petroleum Co Separating p-dichlorobenzene from n-methyl pyrrolidone by steam distillation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658659A (en) * 1969-09-24 1972-04-25 Phillips Petroleum Co Separating p-dichlorobenzene from n-methyl pyrrolidone by steam distillation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005005490A1 (en) * 2003-07-11 2005-01-20 Jsr Corporation Method for desolvation of polymer solution
CN100462374C (en) * 2003-07-11 2009-02-18 Jsr株式会社 Method for desolvation of polymer solution
EP1645571A4 (en) * 2003-07-11 2009-04-15 Jsr Corp Method for desolvation of polymer solution
US7541427B2 (en) 2003-07-11 2009-06-02 Jsr Corporation Method for desolvation of polymer solution
KR101023570B1 (en) * 2003-07-11 2011-03-21 자이단호오진 고꾸사이 강꾜 기쥬쯔 이뗀 겡뀨 센타 Method for desolvation of polymer solution
JP2014169403A (en) * 2013-03-04 2014-09-18 Nippon A&L Inc Method for producing copolymer latex, and copolymer latex
JP2018533477A (en) * 2016-06-16 2018-11-15 エルジー・ケム・リミテッド Solvent recovery apparatus and solvent recovery method

Also Published As

Publication number Publication date
JPH0575441B2 (en) 1993-10-20

Similar Documents

Publication Publication Date Title
JP3937462B2 (en) Acrylic acid purification method
US4254246A (en) Column system process for polyester plants
EP1026145B1 (en) Method for purifying acrylic acid
CN101857585A (en) Continuous high vacuum rectification and purification method for lactide
CN1127481C (en) Method for recovering N-vinyl-2-pyrrolidone
CN109467497B (en) Recovery process and device for polyvinyl alcohol alcoholysis mother liquor
JP4271423B2 (en) Method and apparatus for separating dimethylamide compound and carboxylic acid by distillation
JPS6297601A (en) Process for recovering solvent by steam stripping
US5578173A (en) Removal of dimethylterephthalate from a methanolysis vapor stream
JPS6261006B2 (en)
CN101434556B (en) Regeneration method of C5 fraction extracting solvent N,N-dimethylformamide
KR100897078B1 (en) Method for Purifying an Organic Solvent for the Purpose of Absorption of Maleic Acid Anhydride
JP2003080001A (en) Method for refining water-containing organic solvent
CN105175203A (en) Method for preparing isobutene by MTBE (Methyl Tertiary Butyl Ether)
CN105175260A (en) DL-sec-butyl acetate-isobutanol azeotropic mixture continuous extraction rectification separation method
JP2002193875A (en) Method for recovering methacrylic acid
JPH09324068A (en) Method for recovering monomer from waste acrylic resin
JP2000281617A (en) Purification of acrylic acid
JP2002348270A (en) Method for separating carboxylic acid and dimethyl amide by distillation and apparatus therefor
JP3963150B2 (en) Decomposition method of by-products during the production of (meth) acrylic acids
CN102060700B (en) Method for recycling beta-3,5-di-tert-butyl-4-hydroxyphenylpropionic methyl ester from alcoholysis liquor of antioxidant 1010 production mother liquor
CN1130327C (en) Improved process for separating pure terephthalic acid
CA1121829A (en) Continuous manufacture of allyl diglycol carbonate
CN216378003U (en) Device for effectively recovering butanol, octanol and octenal in high-carbon alcohol
US2947777A (en) Purification of acrylonitrile

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees