JPS6297261A - Battery - Google Patents

Battery

Info

Publication number
JPS6297261A
JPS6297261A JP60236027A JP23602785A JPS6297261A JP S6297261 A JPS6297261 A JP S6297261A JP 60236027 A JP60236027 A JP 60236027A JP 23602785 A JP23602785 A JP 23602785A JP S6297261 A JPS6297261 A JP S6297261A
Authority
JP
Japan
Prior art keywords
polyaniline
battery
electrode active
active material
organic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60236027A
Other languages
Japanese (ja)
Other versions
JPH0521308B2 (en
Inventor
Eiji Ofuku
大福 英治
Tadashi Fuse
布施 正
Masao Ogawa
雅男 小川
Yoshitomo Masuda
善友 増田
Shinichi Toyosawa
真一 豊澤
Ryota Fujio
藤尾 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60236027A priority Critical patent/JPS6297261A/en
Priority to DE19863635257 priority patent/DE3635257A1/en
Priority to US06/920,140 priority patent/US4717634A/en
Publication of JPS6297261A publication Critical patent/JPS6297261A/en
Publication of JPH0521308B2 publication Critical patent/JPH0521308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make inner resistance in a battery lower and cycle life longer instead, by using an organic conductive polymeric material, whose moisture content is specified, for an electrode active material. CONSTITUTION:An organic conductive polymeric material, whose moisture content is less than 500ppm, is used as an electrode active material. As for this polymeric material, polyaniline, especially, such polyaniline as secured by an electrolytic oxidative polymerizing process is separated and formed so excellent in coherence to an anode substrate in time of polymerization and that the substrate is utilizable for a collector body and a vessel for an electrode, so that it is desirable as electrode material. In addition, in order to make it into the moisture content of less than 500ppm, a method of electrochemical or an Soxhlet's extracting processes, etc., using a hygroscopic compound under vacuum heating is used. If this polymeric material is used, internal resistance becomes lowered, cycle life is prolonged and a lightweight battery is manufacturable.

Description

【発明の詳細な説明】 一業、ヒの 1 本発明はポリアニリン等の有機導電性高分子材料を電極
活物質として用いた非水系電池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous battery using an organic conductive polymer material such as polyaniline as an electrode active material.

来の   び  が ゛ しようとする】近年、電池の
軽量化等のために、電池にポリアニリン等の有機導電性
高分子材料を応用する試みが盛んであるが、有機導電性
高分子材料を電極活物質として用いた電池は、従来の金
属材料等の導電性材料を電極活物質として用いた電池に
比べて内部抵抗が^い、サイクル寿命が短いなどの傾向
を有するため、実用化するまでには至っていない。
In recent years, there have been many attempts to apply organic conductive polymer materials such as polyaniline to batteries in order to make them lighter. Batteries used as materials tend to have lower internal resistance and shorter cycle life than conventional batteries that use conductive materials such as metal materials as electrode active materials, so it will take some time before they can be put into practical use. Not yet reached.

とりわけ、今後の広範な応用展間が期待されるリチウム
二次電池等の高エネルギー密度で放′1fITi圧が高
い電池に有機S電性高分子材料を電極活?!質として用
いた場合には上記傾向がより一層顕著になるという欠点
を有する。
In particular, is it possible to use organic S-conducting polymer materials as electrodes for batteries with high energy density and high discharge pressure, such as lithium secondary batteries, which are expected to have a wide range of applications in the future? ! When used as a quality, the above tendency becomes even more pronounced.

本発明は上記事情に鑑みなされたものであり、リチウム
二次電池等の高エネルギー密(支)で放電電圧が高い電
池に用いた場合でも、内部抵抗が低く、サイクル寿命の
長い、ポリアニリン等の有機S電性高分子材料をW1極
活物質として用いた非水系電池を提供することを゛目的
とする。
The present invention was made in view of the above circumstances, and even when used in batteries with high energy density and high discharge voltage such as lithium secondary batteries, polyaniline and other materials have low internal resistance and long cycle life. The object of the present invention is to provide a non-aqueous battery using an organic S-conductive polymer material as a W1 electrode active material.

1 、を 決するための手段及び作用 本発明前らは、負極活物質としてリチウムイオン、ナト
リウムイオン、カリウムイオン等のアルカリ全屈イオン
を充電時に吸蔵し、放゛盾時に電解液中へ放出する、例
えばアルカリ金属あるいはそれらの合金を用いた二次電
池は電池電圧が高く、電解液を水溶液状態として用いる
ことができないこと、また、このため電解液として上記
アルカリ金属イオンの塩を非水溶媒に溶解した非水電解
液が使用されていることに着目し、これら非水系二次電
池システム中の水分が電池性能に及ぼす影冑につき鋭意
研究を行なった。その結果、これら非水系二次電池は、
とりわけ電池電圧が高いために電池システム中の水分が
充放電時のいずれにおいても電流効率、サイクル存命、
内部抵抗あるいは自己放電やフロート状態にした場合の
フロート春分などに悪影響を及ぼすこと、従って、ポリ
アニリンの有機導電性高分子材料を電極活物質として用
いた場合、有機4電性高分子材利中の水分含有量を可及
的に少なくする必要があること、また、有機導電性高分
子材料の種類や合成法により有機24電性高分子材料の
水分含有率が異なるが、中でも、水溶液系で合成する必
要のあるポリアニリンは、過硫酸塩等の化学的酸化剤を
用いて重合する方法、電解酸化重合法のいずれの合成法
により得られたものも、他の合成法により得られる有機
導電性高分子材料に比して水分含有量が無視し1g−な
いことを知見した。更に検討を進めた結果、こうした性
質を有するポリアニリンを含めて有機導電性高分子材料
は水分含有量を500 ppm以下とすると、この有機
S電性高分子材料を電極活物質としてmmいた電池は、
′IR池が高エネルギー密麿で高放電電圧であっても、
内部抵抗及びサイクル寿命が共に十分電池性能を満足し
得ることを知見し、本発明をなすに至ったものである。
1. Means and action for determining For example, secondary batteries using alkali metals or their alloys have a high battery voltage and cannot be used as an aqueous electrolyte. Focusing on the fact that non-aqueous electrolytes are used, we conducted intensive research on the effect that water in these non-aqueous secondary battery systems has on battery performance. As a result, these non-aqueous secondary batteries
In particular, because the battery voltage is high, moisture in the battery system can affect current efficiency, cycle life, and
Therefore, when an organic conductive polymer material such as polyaniline is used as an electrode active material, it may have an adverse effect on internal resistance, self-discharge, or the float equinox in a floating state. It is necessary to reduce the water content as much as possible, and the water content of organic 24-conducting polymer materials varies depending on the type of organic conductive polymer material and the synthesis method. The polyaniline that needs to be oxidized can be obtained either by polymerization using a chemical oxidizing agent such as persulfate or by electrolytic oxidation polymerization, or by organic conductive high-conductivity obtained by other synthesis methods. It was found that the moisture content was negligible 1 g compared to molecular materials. As a result of further investigation, we found that if the moisture content of organic conductive polymer materials, including polyaniline, which has these properties is 500 ppm or less, a battery using this organic S conductive polymer material as an electrode active material will have the following properties:
'Even if the IR pond has high energy density and high discharge voltage,
It was discovered that both the internal resistance and the cycle life can sufficiently satisfy the battery performance, and this led to the present invention.

この点につき更に詳述すると、本発明者らは、後述する
実験に示したように、電解酸化重合法によって合成した
ポリアニリンを減圧下で加熱乾燥してこれを正極とし、
AJ−Li合金を負極とすると共に、電解質及び溶媒を
十分に精製し、電解液の水分量を8 ppn+以下に抑
えて二次電池を構成し、その特性を調べたが、このよう
にして作成した電池でも電流効率はそれ程高くなく、充
放電を繰返すに従って電池性能は低下し、サイクル寿命
は長いものではなかった。本発明者らの検討の結果では
、ポリアニリンは酸化重合法等によって調製した場合、
従来はこれを減圧下で加熱乾燥して使用していたが、こ
のような乾燥を行なってもポリアニリン中にはなお50
000〜60000ppm 、又はそれ以下の水分が残
存含有されており、電解液の水分量を規制しても、この
ポリアニリンの残存水分が電池性能に悪影響を及ぼして
いるものであった。このため、ポリアニリン等の導電性
高分子材料を電池の電極、特に非水系二次電池の電極と
する場合、その水分量を500 ppm以下にして用い
ることが電池性能の向上にとって必要であることを見い
出したものである。
To explain this point in more detail, as shown in the experiment described below, the present inventors heated and dried polyaniline synthesized by electrolytic oxidation polymerization method under reduced pressure, used it as a positive electrode,
A secondary battery was constructed using AJ-Li alloy as the negative electrode, the electrolyte and solvent were sufficiently purified, and the water content of the electrolyte was kept below 8 ppn+, and its characteristics were investigated. Even with these batteries, the current efficiency was not very high, the battery performance deteriorated with repeated charging and discharging, and the cycle life was not long. According to the results of the studies conducted by the present inventors, when polyaniline is prepared by oxidative polymerization method,
Conventionally, this was used by heating and drying it under reduced pressure, but even after such drying, there was still 50% of polyaniline in the polyaniline.
000 to 60,000 ppm, or less, of water remains in the polyaniline, and even if the amount of water in the electrolyte is regulated, this residual water in polyaniline has an adverse effect on battery performance. For this reason, when using conductive polymer materials such as polyaniline as electrodes for batteries, especially electrodes for non-aqueous secondary batteries, it is necessary to use them with a moisture content of 500 ppm or less in order to improve battery performance. This is what I discovered.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の非水系電池の電極活物質として使用し得る有機
導電性高分子材料としては、例えばポリアセチレン、ポ
リベンゼン、ポリパラフェニレン、ポリアニリン等のベ
ンゼン及びその誘導体のポリマー、ポリピリジン、ポリ
チオフェン、ポリフラン、ポリピロール、アントラセン
やナフタリン等のヘテロ又は多核芳香族化合物のポリマ
ーなどが挙げられ、?!電極活物質して使用し得るもの
であればその種類に制限G≠ない。中でも、ポリアニリ
ン、とりわけ電解酸化重合法により得られたポリアニリ
ンは、電解酸化重合時に陽極基体に密着性よく析出形成
し、しかも陽極基体を電池電極の集電体や容器として利
用することができ、電池製造工程の簡略化が行なえるの
みならず、このポリアニリンを電極活物質として使用し
た二次電池は内部抵抗を小さくすることができ、またク
ーロン効率を向上し1qるなどの特徴を有しており、本
発明の電池のN極物質として好適である。
Examples of organic conductive polymer materials that can be used as the electrode active material of the nonaqueous battery of the present invention include polymers of benzene and its derivatives such as polyacetylene, polybenzene, polyparaphenylene, and polyaniline, polypyridine, polythiophene, polyfuran, and polypyrrole. , polymers of hetero or polynuclear aromatic compounds such as anthracene and naphthalene, etc. ! There are no restrictions on the type of the material as long as it can be used as an electrode active material. Among them, polyaniline, especially polyaniline obtained by electrolytic oxidative polymerization, deposits and forms on the anode substrate with good adhesion during electrolytic oxidative polymerization, and the anode substrate can be used as a current collector or container for battery electrodes, and is useful for batteries. In addition to simplifying the manufacturing process, secondary batteries using polyaniline as an electrode active material have features such as lower internal resistance and improved Coulombic efficiency. , is suitable as the N electrode material of the battery of the present invention.

本発明においては、これらの有機導電性高分子材料のう
ち水分含有量5001)I)11以下、好ましくは10
0 ppm以下のものを電極活物質として使用するもの
である。この場合、例えば電解酸化重合法により合成し
、次いで蒸留水で十分洗浄してから室温で1日乾燥を行
なうなどの方法により得られたポリアニリンなどの有機
導電性高分子材料は通常50000〜60000 pp
m IJ、上の水分含有率を有し、このような乾燥法で
はその水分含有量を500 ppn+以下となるまで低
減することは難しい。例えば、50℃に加熱しながらお
よそ1論Haの減圧下で2日間乾燥処理を行なっても所
望の水分含有量を達成することができない。有機導電性
高分子材料の水分含有量を500 ppm以下とするた
めには、以下の(1)〜(4)の脱水処理方法及びこれ
ら脱水処理方法の21a類以上の組合せ方法が好適であ
る。なお、下記方法により、水分以外の不純物も除去さ
れ得る場合゛があり、電池の充放電効率を向上させ、電
池寿命を延ばす点でも有効である。
In the present invention, water content of these organic conductive polymer materials is 5001)I) 11 or less, preferably 10
0 ppm or less is used as an electrode active material. In this case, an organic conductive polymer material such as polyaniline, which is synthesized by electrolytic oxidative polymerization, washed thoroughly with distilled water, and dried for one day at room temperature, usually has a ppm of 50,000 to 60,000 pp.
m IJ, and it is difficult to reduce the moisture content to below 500 ppn+ using such drying methods. For example, even if the drying treatment is carried out for two days under a reduced pressure of approximately 1 mol Ha while being heated to 50° C., the desired water content cannot be achieved. In order to make the water content of the organic conductive polymer material 500 ppm or less, the following dehydration treatment methods (1) to (4) and combination methods of Class 21a or higher of these dehydration treatment methods are suitable. Note that the method described below can sometimes remove impurities other than water, and is also effective in improving the charging and discharging efficiency of the battery and extending the battery life.

(1)吸湿性化合物による脱水処理法。(1) Dehydration treatment method using a hygroscopic compound.

この方法は吸湿性化合物を添加した非水溶媒中に有機導
電性高分子材料を浸漬し、吸湿性化合物の吸湿能を利用
して有機導電性高分子材料の脱水を行なう方法である。
In this method, an organic conductive polymer material is immersed in a non-aqueous solvent containing a hygroscopic compound, and the organic conductive polymer material is dehydrated using the hygroscopic ability of the hygroscopic compound.

ここで、吸湿性化合物としては、例えば、アルミナ、モ
レキュラーシーブ、シリカ等の微粉末状あるいは多孔質
状の吸湿性化合物、塩化カルシウム、酸化カルシウム、
炭酸カリウム等の化学的乾燥剤などが挙げられ、また脱
水処理時に用いられる非水溶媒としては、後述する二次
電池の電解液の溶媒として使用する非水溶媒と同様の非
水溶媒やメタノール、エタノール、アセトン等の脱溶媒
を簡単に行なうことができる非水溶媒などが挙げられ、
これらの1種又は2種以上の非水溶媒を用いることがで
きる。なお、吸湿性化合物の吸湿能を利用した脱水処理
法としては特にυ1限はなく、有機導電性高分子材料の
種類等に応じて、適宜、加熱、攪拌等を行なうことがで
きる。
Here, as the hygroscopic compound, for example, a fine powder or porous hygroscopic compound such as alumina, molecular sieve, silica, calcium chloride, calcium oxide,
Examples include chemical drying agents such as potassium carbonate, and non-aqueous solvents used during dehydration include the same non-aqueous solvents used as the solvent for the electrolyte of secondary batteries, methanol, Examples include non-aqueous solvents that can easily remove solvents such as ethanol and acetone.
One or more of these nonaqueous solvents can be used. Note that the dehydration treatment method using the hygroscopic ability of the hygroscopic compound is not particularly limited to υ1, and heating, stirring, etc. can be performed as appropriate depending on the type of organic conductive polymer material.

(2)真空加熱脱水処理法。(2) Vacuum heating dehydration treatment method.

この方法は0.1nmt−10以下の高真空下で有機導
電性高分子材料を加熱して脱水する方法であり、加熱温
痩、輿空加熱時間等は有機導電性高分子材料の種類によ
り選定して行なうことができる。
This method is a method of heating and dehydrating an organic conductive polymer material under a high vacuum of 0.1 nmt-10 or less, and the heating temperature, heating time, etc. are selected depending on the type of organic conductive polymer material. You can do it by doing this.

(3)電気化学的な脱水処理方法。(3) Electrochemical dehydration treatment method.

この方法は有機導電性高分子材料を作用極として用い、
カチオンの吸蔵、放出能を有する1@極材料、例えば、
アルカリ金属やアルカリ金属を含む合金を対*として用
い、脱水した非水′Fi解液中で充放電を行なったり、
脱ドープを行なったり、有機′S電性高分子材料を用い
た作用極を放電状態の電位に保持するなどの方法により
電気化学的に有機導電性高分子材料中の含有水分を脱水
するものである。
This method uses an organic conductive polymer material as a working electrode,
1@polar material with cation storage and release ability, e.g.
Using an alkali metal or an alloy containing an alkali metal as a pair*, charging and discharging is performed in a dehydrated non-aqueous Fi solution,
Water contained in an organic conductive polymer material is electrochemically dehydrated by dedoping or by holding a working electrode made of an organic S conductive polymer material at a potential in a discharge state. be.

(4)ソックスレー抽出法を利用した脱水処理法。(4) Dehydration treatment method using Soxhlet extraction method.

この方法は有機導電性高分子材料をソックスレー抽出器
を用いて、例えばメタノール、エタノール、アセトン等
の水溶性非水溶媒で、これを加熱還流させて有Ill導
電性高分子材料中の含有水分を抽出して脱水する方法で
ある。
This method uses a Soxhlet extractor to heat an organic conductive polymer material to reflux in a water-soluble non-aqueous solvent such as methanol, ethanol, acetone, etc. to remove water contained in the conductive polymer material. This method involves extraction and dehydration.

本発明は、以上の脱水処理方法等により得られた水分含
有@ 500 ppn+以下の有機導電性高分子材料を
Wi極部活物質して用いて正・負いずれかの電極を構成
し、この電極と、この電極の対極と、非水電解液とを必
須成分として電池を構成するものである。
In the present invention, an organic conductive polymer material with a moisture content of 500 ppn+ or less obtained by the above-described dehydration treatment method is used as a Wi electrode active material to constitute either a positive or negative electrode, and this electrode and , the counter electrode of this electrode and a non-aqueous electrolyte constitute a battery as essential components.

本発明の電池の正極活物質として本発明に係る有機導電
性高分子材料を用いた場合、本発明の電池の負極に含ま
れる負極活物質としては種々のものが用いられるが、特
に電解質との間にカチオンを可逆的に出し入れすること
が可能な物質を活物質として使用することが好ましい。
When the organic conductive polymer material of the present invention is used as the positive electrode active material of the battery of the present invention, various negative electrode active materials can be used as the negative electrode active material of the battery of the present invention. It is preferable to use, as the active material, a material that can reversibly transfer cations in and out.

即ち、負極活物質は充電状態(還元状態)ではカチオン
を活物質中に取り込み、放電状態(?I!l化状態)で
はカチオンを放出するものが好ましい。この場合、負極
活物質としては、分子内中に高度の共役系結合を持った
物質が好ましく、具体的にはアントラセンやナフタリン
やテトラセン等の多核芳香族化合物に加えて、本発明に
係る電池の正極活物質として用いたものと同様の有機導
電性高分子物質及びグラファイト質などが挙げられる。
That is, it is preferable that the negative electrode active material incorporates cations into the active material in a charged state (reduced state) and releases cations in a discharged state (?I!l state). In this case, the negative electrode active material is preferably a substance with a high degree of conjugated bond in the molecule, and specifically, in addition to polynuclear aromatic compounds such as anthracene, naphthalene, and tetracene, Examples include organic conductive polymer materials and graphite materials similar to those used as the positive electrode active material.

更に、1〜2価のカチオンとなり得る金属であって、具
体的にはリチウム、ナトリウム、カリウム、マグネシウ
ム、カルシウム、バリウム、亜錯等及びそれらを含む合
金(リチウム−アルミニウム合金等)なども好適に使用
し得る。
Furthermore, metals that can be monovalent or divalent cations, specifically lithium, sodium, potassium, magnesium, calcium, barium, subcomplexes, etc., and alloys containing them (lithium-aluminum alloys, etc.) are also suitable. Can be used.

また、本発明の電池の負極活物質として本発明に係る有
機導電性高分子材料を用いた場合には、上記有識導電性
物質、グラファイト質を正極活物質としテ使用すること
ができ、更に正極活物質とシテ、MエバT i 02 
、 Cr 203 、 V20S 。
In addition, when the organic conductive polymer material according to the present invention is used as the negative electrode active material of the battery of the present invention, the above-mentioned known conductive substances and graphite can be used as the positive electrode active material, and Active material and shite, Meva Ti 02
, Cr203, V20S.

V6013 、Mn O2,Cu o、MO03。V6013, MnO2, Cuo, MO03.

CLISV2010等の金属酸化物、T f S 21
Fe S、Cu Co Sa 、Mo Ss等の金属硫
化物、Nb 3e 3.vse 2等の金属セレン化物
などを使用することもできる。
Metal oxide such as CLISV2010, T f S 21
Metal sulfides such as FeS, CuCoSa, MoSs, Nb3e3. Metal selenides such as vse 2 and the like can also be used.

本発明電池を構成する電解質はアニオンとカチオンの組
合せよりなる化合物であって、アニオンの例としてはP
F6−、Sb Fa −、AS Fs −。
The electrolyte constituting the battery of the present invention is a compound consisting of a combination of anions and cations, and examples of anions include P
F6-, Sb Fa-, AS Fs-.

5bfJ6−の如さVA族元素のハロゲン化物アニオン
、B Fa −、#CJ4−の如きll1A族元素のハ
ロゲン化物アニオン、r”’  (■+ −)、 Br
−。
Halide anions of group VA elements such as 5bfJ6-, halide anions of group 11A elements such as B Fa -, #CJ4-, r"' (■+ -), Br
−.

C2−の如きハロゲンアニオン、Cj Oa−の如き過
塩素酸アニオン、HF2− 、 CF(SO3−。
Halogen anions such as C2-, perchlorate anions such as Cj Oa-, HF2-, CF(SO3-.

5CN−、SOa −−、)(SO4−8ヲ挙VルZト
h”T:きるが、必ずしもこれらのアニオンに限定され
るものではない。また、カチオンとしてはL i +。
5CN-, SOa --, ) (SO4-8), but is not necessarily limited to these anions. In addition, the cation is Li +.

Na”、に+の如きアルカリ金属イオン、Mg2”、 
C32”、3a2+の如きアルカリ土類金属イオンのは
かA13+等も挙げられ、更にRa N”  (Rは水
素又は炭化水素残基を示す)の如き第4級アンモニウム
イオン等を挙げることができるが、必ずしもこれらのカ
チオンに限定されるものではない。
Alkali metal ions such as Na'', ni+, Mg2'',
Examples include alkaline earth metal ions such as C32'' and 3a2+, A13+, and quaternary ammonium ions such as RaN'' (R represents hydrogen or a hydrocarbon residue). , but not necessarily limited to these cations.

このようなアニオン、カチオンをもつ電解質の具体例と
しては、 Li  PF6  、  Li  Sb  F6  、
  Li  As  F  ら 。
Specific examples of electrolytes having such anions and cations include Li PF6, Li Sb F6,
Li As F et al.

Li ClO4,I−i  r 、 Li Br 、 
I−i C1゜N a P F s + N a S 
b F 6+ N ” A S F 6 。
LiClO4, I-ir, LiBr,
I-i C1゜N a P F s + N a S
b F 6+ N ” A S F 6 .

NaCjO< 、Na  r、KPFs 、KSb F
6 。
NaCjO< , Na r, KPFs , KSb F
6.

KAs F6 、K(JO4,L’l BFa 。KAs F6, K (JO4, L'l BFa.

+−+MCオa 、Li HF2 、Li SCN。+-+MC ora, Li HF2, Li SCN.

KSCN、Li SOg CF3 。KSCN, Li SOg CF3.

(n  −C4Hy   )a  NAS  F  6
  。
(n-C4Hy)a NAS F 6
.

(ローCs  Ht  )4 NPFa  。(Low Cs Ht) 4 NPFa.

(n −C4Hy )4 NCH)a 。(n-C4Hy)4NCH)a.

(n  −04H7)4  NBF4 。(n-04H7)4 NBF4.

(C2Hs  )  a  NCf0a  。(C2Hs) a NCf0a.

(n  −Ca  l−17>4  N  r等が挙げ
られる。これらのうちでは、特にLi ClOs 、L
i BF4が好適であるが、本発明はこれらの化合物に
制限されない。
(n -Cal-17>4Nr, etc.) Among these, LiClOs, L
iBF4 are preferred, but the invention is not limited to these compounds.

なお、これらの電解質は通常溶媒により溶解された状態
で使用され、この場合溶媒は非水溶媒であること以外に
特に限定はされないが、比較的極性の大きい溶媒が好適
に用いられる。具体的には、ブOピレンカーボネート、
エチレンカーボネート、ベンゾニトリル、アセトニトリ
ル、テトラヒドロフラン、2−メチルテトラヒドロフラ
ン、γ−ブヂロラクトン、トリエチルフォスフェート、
トリエチルフォスファイト、硫酸ジメチル、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルフオ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフオラン、ジクロロエタン、クロlし
ベンゼン、ニトロベンゼンなどの1種又は2秒以上の混
合物を挙げることができる。
Note that these electrolytes are usually used in a state dissolved in a solvent, and in this case, the solvent is not particularly limited other than being a non-aqueous solvent, but a relatively highly polar solvent is preferably used. Specifically, buOpyrene carbonate,
Ethylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, triethyl phosphate,
Examples include triethyl phosphite, dimethyl sulfate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulfolane, dichloroethane, chlorinated benzene, nitrobenzene, etc., or a mixture thereof for 2 or more seconds. can.

更に本発明の電池を構成する電解質としては、上記電解
質を例えばポリエチレンオキサイド、ポリプロピレンオ
キサイド、ポリエチレンオキサイドのイソシアネート架
橋体、エチレンオキサイドオリゴマーを側鎖に持つホス
ファゼンポリマー等の重合体に含浸させた有機固体電解
質、Li 3 N、Li BIJ4等の無機イオン導電
体。
Furthermore, as the electrolyte constituting the battery of the present invention, an organic solid electrolyte in which the above electrolyte is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, isocyanate crosslinked product of polyethylene oxide, or phosphazene polymer having an ethylene oxide oligomer in the side chain. , Li 3 N, Li BIJ4, and other inorganic ionic conductors.

Li 4 Si Oa−、Li 3 BO2等(7) 
IJチウムガラスなどの無機固体電解質を用いることも
できる。
Li 4 Si Oa-, Li 3 BO2, etc. (7)
Inorganic solid electrolytes such as IJ tium glass can also be used.

なお、本発明電池において、非水電解液中の水分含有量
も低い程好ましく、非水電解液中の水分含有量を50 
ppm以下、特に10ppm以下とすることが好ましい
In the battery of the present invention, the lower the water content in the non-aqueous electrolyte, the more preferable it is.
It is preferably at most ppm, particularly at most 10 ppm.

本発明の電池は、通常正負極間に電解液を介在させるこ
とにより構成されるが、この場合必要によれば正Ali
間にポリエチレンやポリプロピレンなどの合成樹脂性の
多孔質膜や天然繊維紙等を隔膜(セパレーター)として
使用することができる。
The battery of the present invention is usually constructed by interposing an electrolyte between the positive and negative electrodes, but in this case, if necessary, the positive Al
In between, a porous membrane made of synthetic resin such as polyethylene or polypropylene, natural fiber paper, or the like can be used as a separator.

11匹1i 以上説明したように、本発明の電池は、水分含有115
00 ppm以下の有機導電性高分子材料を電極活物質
として用いたことにより、内部抵抗が低く、サイクル寿
命が長い上、軽量であり、このため自動車、飛行機、ポ
ータプル機械、電気自動車など多方面の用途に好適に使
用されるものである。
11 animals 1i As explained above, the battery of the present invention has a water content of 115
By using an organic conductive polymer material of 0.00 ppm or less as an electrode active material, it has low internal resistance, long cycle life, and is lightweight, so it can be used in many fields such as automobiles, airplanes, portable machines, and electric vehicles. It is suitably used for this purpose.

以下、実施例と比較例を示し、本発明を具体的に示すが
、本発明は下記の実施例に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically illustrated by examples and comparative examples, but the present invention is not limited to the following examples.

[実施例1,2.比較例] 1Mのアニリンモノマー、2MのHF3F4を含む水溶
液を電解重合液として、定電流電解酸化重合法によりス
テンレスメツシュ基体上にポリアニリンを合成した。得
られたポリアニリンを基体ごと蒸留水で十分洗浄した後
、室温で1日乾燥し、次いで約50℃に加熱しながらお
よそ1 +wm l−1(Jの減圧下で2日間乾燥した
。乾燥後のポリアニリン中の水分含有量をカール・フィ
ッシャー法で定理したところ560001111111
であった。・上記ポリアニリンをモレキュラーシープス
4A〈和光1I4i薬工業(株)社製)を添加したジメ
トキシエタン中に浸漬して2週間の脱水処理を行なった
。このポリアニリンを脱溶媒した後、約50’Cに加熱
しながら、およそ1mmH(lの減圧下で10時間乾燥
した。乾燥後のポリアニリン中の水分含有量をカール・
フィッシャー法で定量したところ4901)l)ISで
あった。
[Example 1, 2. Comparative Example] Polyaniline was synthesized on a stainless mesh substrate by constant current electrolytic oxidation polymerization using an aqueous solution containing 1M aniline monomer and 2M HF3F4 as an electrolytic polymerization solution. After thoroughly washing the obtained polyaniline together with the substrate with distilled water, it was dried for one day at room temperature, and then dried for two days under a reduced pressure of approximately 1 + wm l-1 (J) while heating to about 50°C. The moisture content in polyaniline was calculated using the Karl Fischer method and was found to be 560001111111.
Met. - The above polyaniline was immersed in dimethoxyethane to which Molecular Sheeps 4A (manufactured by Wako 1I4i Yakuhin Kogyo Co., Ltd.) was added and dehydrated for two weeks. After removing the solvent from this polyaniline, it was dried for 10 hours under a reduced pressure of approximately 1 mmH (l) while heating to approximately 50'C.
When quantified by Fisher method, it was 4901)l)IS.

更に、水分含有!−490111111のポリアニリン
を正極に用い、金属リチウムを負極に用い、非水電解液
として、十分に脱水処理して水分含有量を8ppm以下
としたプロピレンカーボネートとジメトキシエタンの1
:1混合溶媒中にLiBFa  3Mを溶解したものを
用いて、上限電圧4.0V〜下限電圧2.0V171範
囲テ0.28m A/d17)if電流密度おいて10
サイクルの充放電を行ない、電気化学的に脱水した。得
られたポリアニリンの水分含有量をカール・フィッシャ
ー法で測定したところ85 pplmであった。
Furthermore, it contains water! -490111111 polyaniline was used as the positive electrode, metallic lithium was used as the negative electrode, and the non-aqueous electrolyte was a mixture of propylene carbonate and dimethoxyethane whose water content was 8 ppm or less by thorough dehydration treatment.
:1 Using LiBFa 3M dissolved in a mixed solvent, the upper limit voltage is 4.0 V to the lower limit voltage is 2.0 V171 range is 0.28 m A/d17) if current density is 10
Charge and discharge cycles were performed to electrochemically dehydrate. The water content of the obtained polyaniline was measured by Karl Fischer method and was found to be 85 pplm.

以上の水分含有量の異なる3種類のポリアニリン40■
の電気容量を測定したところ、水分含有量が56000
 ppmのものは3.7+nAHであり、水分含有量が
490 ppmのものは411 AHであり、水分含有
量が85 ppmのものは4.1111AI−1であっ
た。
Three types of polyaniline 40 with different moisture contents
When we measured the electric capacity of
ppm was 3.7+nAH, 490 ppm water content was 411 AH, and 85 ppm water content was 4.1111AI-1.

また、この水分含有量の異なる311類のポリアニリン
40■を各々正極活物質として用い、負極に1−i−A
4合金を用い、上記ポリアニリンの電気化学的脱水処理
に用いたものと同様の組成の非水′F8解質を用いて二
次電池を構成した。なお、[+−A1合金は、二次電池
の非水電解質と同様の組成の電解液中で、厚さ200μ
m、直径15−の円板上のアルミニウム板を作用極とし
、Li金属を対極として120クーロンの電荷償に相当
する通電をすることによって作用極に得られた+−t−
AJ合金を使用した。
In addition, 40 cm of polyaniline of type 311 with different water content was used as the positive electrode active material, and 1-i-A was used as the negative electrode.
A secondary battery was constructed using a nonaqueous F8 electrolyte having the same composition as that used in the electrochemical dehydration treatment of polyaniline. Note that [+-A1 alloy has a thickness of 200 μm in an electrolytic solution having the same composition as the non-aqueous electrolyte of a secondary battery.
m, an aluminum plate on a disk with a diameter of 15- was used as a working electrode, and Li metal was used as a counter electrode, and a current corresponding to charge compensation of 120 coulombs was applied to the working electrode. +-t- was obtained at the working electrode.
AJ alloy was used.

上記構成の3種の二次電池の各々の二次電池の内部抵抗
を測定したところ、水分含有量が560001)I)T
Iである本発明の範囲を外れたポリアニリンを電極活物
質として用いた比較例の二次電池は200Ωであり、水
分含有量が49Qppm185 ppmの本発明の範囲
を満足するポリアニリンを電極活物質として用いた実施
例1.2の二次電池はそれぞれ50Ω、30Ωであった
When the internal resistance of each of the three types of secondary batteries with the above configuration was measured, the water content was 560001)I)T
The secondary battery of the comparative example using polyaniline I, which is outside the scope of the present invention, as an electrode active material has a resistance of 200 Ω and a water content of 49Qppm185 ppm, which uses polyaniline as an electrode active material that satisfies the scope of the present invention. The secondary batteries of Example 1.2 were 50Ω and 30Ω, respectively.

次いで、これら実施例1.2及び比較例の二次電池を0
.28mA/cwfの電流密度で2時間充電し、次いで
0.28i A/cwfの電流密度で放電する充放電の
繰返しを行なってクーロン効率(充電電荷mと放電電荷
量の割合)を測定することによりサイクル寿命f命を調
べたところ、図面に示すI’J!が1ツられた。
Next, the secondary batteries of Example 1.2 and Comparative Example were
.. By repeatedly charging and discharging by charging at a current density of 28 mA/cwf for 2 hours and then discharging at a current density of 0.28i A/cwf, and measuring the coulombic efficiency (ratio of charge charge m to discharge charge amount). When I investigated the cycle life f life, I'J! shown in the drawing! One was scored.

図面の結果から、実施例1の二次電池のナイクル寿命は
361回であり、実施例2の二次電池のサイクル寿命は
420回であり、比較例の二次電池のサイクル寿命は4
0回であった。
From the results in the drawings, the cycle life of the secondary battery of Example 1 is 361 cycles, the cycle life of the secondary battery of Example 2 is 420 cycles, and the cycle life of the secondary battery of Comparative Example is 4 cycles.
It was 0 times.

以上の結果より、本発明の水分含有量の範囲を満足する
有機4電性高分子材料を74極活物質として用いた実施
例1.2の二次電池は、同じ有機導電性高分子材料を電
極活物質として用いたとしても水分含有量が本発明の範
囲を外れた比較例の二次電池に比し、明らかに内部抵抗
が低く、サイクル寿命が長くなっていることが知見され
、本発明の効果が確認された。
From the above results, the secondary battery of Example 1.2 using an organic tetraelectric polymer material that satisfies the water content range of the present invention as the 74-electrode active material can be made using the same organic conductive polymer material. Even when used as an electrode active material, it was found that the internal resistance was clearly lower and the cycle life was longer than that of the secondary battery of the comparative example whose water content was outside the range of the present invention. The effect was confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

図面は実施例1,2及び比較例の充IIl電のサイクル
数とクーロン効率(充電電荷量と欣電電荷醗の割合)と
の関係を示すグラフである。
The drawing is a graph showing the relationship between the number of cycles of charging and the coulombic efficiency (ratio of the amount of charge to the amount of electric charge) in Examples 1 and 2 and the comparative example.

Claims (1)

【特許請求の範囲】 1、水分含有量500ppm以下の有機導電性高分子材
料を電極活物質として用いることを特徴とする非水系電
池。 2、有機導電性高分子材料がポリアニリンである特許請
求の範囲第1項記載の電池。 3、電池を構成する電解質が水分含有量50ppm以下
の非水電解質である特許請求の範囲第1項又は第2項に
記載の電池。
[Scope of Claims] 1. A non-aqueous battery characterized in that an organic conductive polymer material with a water content of 500 ppm or less is used as an electrode active material. 2. The battery according to claim 1, wherein the organic conductive polymer material is polyaniline. 3. The battery according to claim 1 or 2, wherein the electrolyte constituting the battery is a non-aqueous electrolyte with a water content of 50 ppm or less.
JP60236027A 1985-10-17 1985-10-21 Battery Granted JPS6297261A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60236027A JPS6297261A (en) 1985-10-21 1985-10-21 Battery
DE19863635257 DE3635257A1 (en) 1985-10-17 1986-10-16 GALVANIC ELEMENT
US06/920,140 US4717634A (en) 1985-10-17 1986-10-17 Electric cells utilizing polyaniline as a positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236027A JPS6297261A (en) 1985-10-21 1985-10-21 Battery

Publications (2)

Publication Number Publication Date
JPS6297261A true JPS6297261A (en) 1987-05-06
JPH0521308B2 JPH0521308B2 (en) 1993-03-24

Family

ID=16994678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236027A Granted JPS6297261A (en) 1985-10-17 1985-10-21 Battery

Country Status (1)

Country Link
JP (1) JPS6297261A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006628A1 (en) * 1991-09-13 1993-04-01 Asahi Kasei Kogyo Kabushiki Kaisha Secondary cell
US6919142B2 (en) 2001-12-13 2005-07-19 Rovcal, Inc. Conducting polymer additives for alkaline electrochemical cell having zinc anode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993006628A1 (en) * 1991-09-13 1993-04-01 Asahi Kasei Kogyo Kabushiki Kaisha Secondary cell
US6919142B2 (en) 2001-12-13 2005-07-19 Rovcal, Inc. Conducting polymer additives for alkaline electrochemical cell having zinc anode

Also Published As

Publication number Publication date
JPH0521308B2 (en) 1993-03-24

Similar Documents

Publication Publication Date Title
US6174621B1 (en) Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same
Dias et al. Trends in polymer electrolytes for secondary lithium batteries
Sotomura et al. New organodisulfide—polyaniline composite cathode for secondary lithium battery
US5601947A (en) Electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same
US20040058232A1 (en) Negative electrode for lithium battery and lithium battery comprising same
JPH08195199A (en) Electrode for battery and secondary battery using it
JP4512949B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPH11135129A (en) Polymer binder for organic electrolyte battery electrode
JPS6297261A (en) Battery
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
JPS60221964A (en) Secondary battery
JPS63314766A (en) Organic electrolyte cell having activated carbon metal oxide composite as positive electrode
JPH076787A (en) Battery
JPH08185851A (en) Electrode for battery and secondary battery using this electrode
JP6808264B2 (en) Separation membrane for lithium-sulfur battery, its manufacturing method, and lithium-sulfur battery containing it
JPS63231873A (en) Battery
KR100551007B1 (en) Rechargeable lithium battery
JP3139072B2 (en) Battery
JP3529802B2 (en) Negative electrode for secondary battery
JP3038945B2 (en) Lithium secondary battery
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JPH01112658A (en) Nonaqueous battery
JPH0782839B2 (en) Secondary battery negative electrode
US20080044729A1 (en) Electrochemical Cell Having &#34;In Situ Generated&#34; Component
JPS63152867A (en) Polyaniline