JPS629702A - Production of rough shape billet - Google Patents

Production of rough shape billet

Info

Publication number
JPS629702A
JPS629702A JP14806485A JP14806485A JPS629702A JP S629702 A JPS629702 A JP S629702A JP 14806485 A JP14806485 A JP 14806485A JP 14806485 A JP14806485 A JP 14806485A JP S629702 A JPS629702 A JP S629702A
Authority
JP
Japan
Prior art keywords
slab
steel
rolling
billet
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14806485A
Other languages
Japanese (ja)
Inventor
Noriyuki Kuriyama
栗山 則行
Eisuke Yamanaka
山中 栄輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14806485A priority Critical patent/JPS629702A/en
Publication of JPS629702A publication Critical patent/JPS629702A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To improve the toughness of a fillet part and to decrease the anisotropy of an impact characteristic by rolling a slab obtd. by forging with plural box calibers which are provided with bulging parts in the central part and are successively increased in the caliber width, rolling further the slab with box calibers having a flat bottom then forming the rough billet. CONSTITUTION:The slab 12 is cast from a steel ingot 10 by forging. The slab 12 having the decreased anisotropy of the structure and inclusions is thus obtd. The slab 12 is successively rolled with the plural box calibers which are provided with the bulging parts in the central parts and are successively increased in the caliber width to form an intermediate billet 14 made into a dogbone sectional shape having grooves 14B on the thick surfaces 14A. The intermediate billet 14 are rolled with the box calibers having the flat bottom to form the intermediate billet 15 having the flat thick surface 15A. The billet is rolled by forming calibers to form the rough billet 16 for a wide flange beam. Then the anisotropy of the structure and inclusions in the part to be formed as the fillet part 20A of the shape steel 20 is decreased.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、粗形鋼片の製造方法に係り、特に、ウェブと
7ランジを有する形鋼を圧延するための粗形鋼片を製造
する際に用いるのに好適な、粗形鋼片の製造方法の改良
に関する。
The present invention relates to a method for manufacturing a rough-shaped steel billet, and in particular, the production of a rough-shaped steel billet suitable for use in manufacturing a rough-shaped steel billet for rolling a shape steel having a web and seven flange. Concerning improvements in methods.

【従来の技術】[Conventional technology]

従来、H形w4若しくは■形鋼等のウェアとフランジを
有する形鋼は、鋼塊を製造する造塊工程ト・該造塊工程
で得られた鋼塊を分塊圧延して粗形鋼片(以下ビームブ
ランクと称する)を製造する分塊圧延工程と、該分塊圧
延工程で得られたビームブランクから形鋼を製造する形
鋼圧延工程とを軽て製造されている。 又、前記分塊圧延工程においては、良質の粗形鋼片を高
能率で歩走り良く製造するべく、特開昭56−4100
2に示されるように、孔型中央部に膨出部のあるボック
ス孔型で連鋳スラブの幅方向の圧下を行いスラブの幅方
向両端部に幅広がりを生ぜしめてドックボーン形断面形
状の中間鋼片を得て、次いで、該中間鋼片を造形孔型で
圧延してビームブランクを製造することが行われている
Conventionally, shaped steel having wear and flanges such as H-shaped W4 or (hereinafter referred to as a beam blank) and a shape steel rolling process to produce a shape steel from the beam blank obtained in the blooming process. In addition, in the above-mentioned blooming rolling process, in order to manufacture high-quality rough-shaped steel pieces with high efficiency and good walking speed, Japanese Patent Application Laid-Open No. 56-4100
As shown in Fig. 2, the continuous casting slab is rolled down in the width direction using a box hole mold with a bulge in the center of the hole, and the width is widened at both ends of the slab in the width direction. A beam blank is produced by obtaining a steel billet and then rolling the intermediate steel billet in a shaped hole die.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

一方、近年、エネルギ問題に対処するため、寒冷地の資
源開発が盛んであり、この資源開発に伴いH形鋼やI形
鋼等の形鋼についても寒冷地での需要が増加しつつある
・ 又、従来、溶接1−IIIで製造されていた構造物につ
いては、製造コスト低減の観点から、ロールH形鋼等の
形鋼に代替されつつある。 このような寒冷地で使用される形鋼や、溶接で製造され
る形鋼の代替用としてのロール形鋼は、ウェア部とフラ
ンジ部との接合部(以下フィレット部と称する)が優れ
た衝撃特性を持ち、更に方向性の少ない衝撃特性を持つ
ことが必要とされる。 即ち、H形鋼等の使用時にウェア部やフランジ部の一部
をガス切断することが通常行われるが、このとき、フィ
レット部の機械的性質が劣る場合には、ガス切断の馬主
じる切欠きから、フィレット部に沿う割れを生ずる虞れ
がある。この割れは、フィレット部に存在する残留応力
の影響によるもので、作業環境が寒冷で、フィレット部
の低部靭性が劣るものほど著しい。従って、寒冷地で使
用される形鋼や前記ロール形鋼は、フィレット部が他の
ウェア部やフランジ部とほぼ同等の機械的性質を有する
ことが要求される。 しかしながら、従来の形W4+!tin方法においては
、鋼塊から製品までの各製造工程は、長手方向に伸びる
一方向圧延であるため、又、前記フィレット部には圧延
力が伝播し難く、形鋼の断面内の材質においてウェブ部
及びフランジ部に比較してフィレット部は強度及び靭性
の点で劣る。従って、前記要求をm足することができな
いという問題点を有する。 又、従来の製造方法によるH形鋼等の形鋼は、フィレッ
ト部の衝撃値が他のウェブ部及びフランジ部のものに比
較して非常に値が小さいという問題点を有する。このよ
うに、フィレット部が強度及び靭性の点で劣り、又、そ
の衝撃値が非常に小さいことは、圧延中のフィレット部
の2!度が他のフランジ部及びウェア部の温度と比較し
て高(、又、フィレット部の加工度が他のウェブ部及び
フランジ部に比較し低いことに起因している。 一方、このような問題点に対し、その解決策の1つとし
て、本出願人は既に、特公昭59−21681で、ユニ
バーサル圧延機の孔型形状、バス回数及び各バスの圧延
温度を調節す、ることにより、フィレット部の歪み量を
増加して、フィレット部の強度及び靭性を向上させた形
銅の製造方法を提案している。 しかしながら、上記形鋼の製造方法においても、鋼塊か
ら製品までの各工程は、長手方法に伸びる一方向圧延と
なるため、フィレット部における衝撃特性の異方向性が
大きく、しかも、フィレット部の強度及び靭性の向上も
未だ十分でなく、従って、ウェア部及びフランジ部に比
較してフィレット部の強度及び靭性が劣るという問題点
を有していた。
On the other hand, in recent years, resource development in cold regions has been active in order to deal with energy issues, and with this resource development, demand for steel sections such as H-beams and I-beams has been increasing in cold regions. Furthermore, structures conventionally manufactured by welding 1-III are being replaced by shaped steel such as rolled H-shaped steel from the viewpoint of reducing manufacturing costs. Rolled shaped steel used as a substitute for shaped steel used in such cold regions and shaped steel manufactured by welding has an excellent impact resistance at the joint between the wear part and the flange part (hereinafter referred to as the fillet part). In addition, it is required to have impact characteristics with less directionality. In other words, when using H-shaped steel, etc., gas cutting is usually performed on a part of the wear part or flange part, but at this time, if the mechanical properties of the fillet part are poor, cutting that is similar to gas cutting is usually performed. There is a possibility that cracks may occur along the fillet portion due to the chipping. This cracking is due to the influence of residual stress existing in the fillet, and is more severe in colder working environments and poorer fillet toughness. Therefore, in the shaped steel used in cold regions and the roll shaped steel described above, the fillet portion is required to have approximately the same mechanical properties as other wear portions and flange portions. However, the conventional type W4+! In the tin method, each manufacturing process from the steel ingot to the product is unidirectional rolling extending in the longitudinal direction, and the rolling force is difficult to propagate to the fillet portion, and the material within the cross section of the section steel is web-like. The fillet portion is inferior in strength and toughness compared to the fillet portion and the flange portion. Therefore, there is a problem that it is not possible to add m to the above requirements. Furthermore, steel sections such as H-section steel manufactured by conventional manufacturing methods have a problem in that the impact value of the fillet portion is much smaller than that of other web portions and flange portions. As described above, the fillet portion is inferior in strength and toughness, and its impact value is extremely small. This is due to the fact that the temperature of the fillet part is higher than that of other flange parts and wear parts (and the degree of processing of the fillet part is lower than that of other web parts and flange parts. As one of the solutions to this problem, the present applicant has already reported in Japanese Patent Publication No. 59-21681 that the fillet can be improved by adjusting the hole shape of the universal rolling mill, the number of baths, and the rolling temperature of each bath. We have proposed a method for manufacturing shaped copper that improves the strength and toughness of the fillet section by increasing the amount of strain in the fillet section.However, even in the above method for manufacturing shaped steel, each process from the steel ingot to the product is Since rolling is done in one direction, elongating in the longitudinal direction, there is a large degree of anisotropy in the impact properties in the fillet part, and the strength and toughness of the fillet part have not yet been sufficiently improved, compared to the wear part and flange part. However, the strength and toughness of the fillet portion were poor.

【発明の目的] 本発明は、前記従来の問題点を解消するべくなされたもので、フィレット部の靭性を向上すると共に、衝撃特性の異方向性を軽減し、形鋼断面内の材質の均一化を図ることのできる粗形鋼片の製造方法を提供することを目的とする。 【問題点を解決するための手段】[Purpose of the invention] The present invention has been made to solve the above-mentioned conventional problems, and aims to improve the toughness of the fillet portion, reduce the anisotropy of impact properties, and uniformize the material quality within the cross section of the section steel. The purpose of the present invention is to provide a method for manufacturing rough-shaped steel slabs that can be produced. [Means to solve the problem]

本発明は、第1図にその要旨を示す如く、粗形銅片の製
造方法において、鋼塊から鍛造によりスラブを製造する
工程と、該スラブ143i!を工程で得られたスラブを
、膨出部が中央部に設けられ且つ孔幅が順次広くされた
複数のボックス孔型で圧延とする第1の圧延工程と、該
第1の圧延工程で得られた中間鋼片を平底のボックス孔
型で圧延する第2の圧延工程と、該第2の圧延工程で得
られた中間鋼片を造形孔型で圧延してH形鋼用粗形鋼片
とする第3の圧延工程と、を有することにより、前記目
的を達成したものである。 (作用] 本発明は、H形鋼若しくは■形鋼等のウェアとフランジ
を有する形鋼を圧延するための粗形鋼片を製造するに際
して、第2図に示す如く、先ず、鋼塊10から鍛造によ
りスラブ12を製造するようにしている。従って、鋼塊
10から鍛造によってスラブ12を製造するため、組繊
及び介在物の異方向性の少ないスラブ12を製造するこ
とができる。これにより、該スラブ12から製造される
形鋼20のフィレット部2OAにおける組織及び介在物
の異方向性を軽減することができ、。次7、で、前記ス
ラブ12を、膨出部を中央部に設は且つ孔幅を順次広く
した複数のボックス孔型で圧延して、厚み面14Aに前
記膨出部に対応する溝14Bを有したドツグボーン断面
形状の中間鋼片14とし、該中間鋼片14を平底のボッ
クス孔型で圧延して、厚み面15Aが平坦なドツグボー
ン断面形状の中間鋼片15とし、該中間鋼片1,15を
造形孔型で圧延して厚み面16Aが平坦なドツグボーン
断面形状のH形鋼用粗形鋼片16(ビームブランク)と
するようにしている。従って、前記ボックス孔型の膨出
部によって、形鋼20のフィレット部2OAとなる部分
に歪みを付加し、しかも、該歪みは圧延方向のみならず
それに直角なフランジ幅方向及びフランジ厚み方向にも
伝播されるため、フィレット部20AにおけるII権及
び介在物の異方向性をより一層軽減することができる。 この結果、形1120に圧延された場合のフィレット部
2OAの靭性を向上すると共に、衝撃特性の異方向性を
軽減し、形鋼断面内の材質の均一化を図ることができる
As summarized in FIG. 1, the present invention is a method for manufacturing a coarse copper piece, including a step of manufacturing a slab from a steel ingot by forging, and a step of manufacturing the slab 143i! A first rolling step in which the slab obtained in the first rolling step is rolled in a plurality of box hole molds in which a bulge is provided in the center and the hole width is sequentially widened; A second rolling step in which the obtained intermediate steel slab is rolled in a flat-bottomed box hole die, and the intermediate steel billet obtained in the second rolling step is rolled in a shaping hole die to produce a rough shaped steel billet for H-beam steel. By having the third rolling step, the above object is achieved. (Function) When manufacturing a rough shaped steel piece for rolling a shaped steel having a wear and a flange, such as H-shaped steel or ■-shaped steel, the present invention first starts from a steel ingot 10 as shown in FIG. The slab 12 is manufactured by forging. Therefore, since the slab 12 is manufactured from the steel ingot 10 by forging, it is possible to manufacture the slab 12 with less anisotropy of fibers and inclusions.Thereby, The anisotropy of the structure and inclusions in the fillet portion 2OA of the section steel 20 manufactured from the slab 12 can be reduced. The intermediate steel piece 14 is then rolled in a plurality of box hole molds whose hole widths are sequentially widened to form an intermediate steel piece 14 having a dogbone cross-sectional shape and having a groove 14B corresponding to the bulged portion on the thickness surface 14A. The intermediate steel pieces 1, 15 are rolled in a box hole die to form a dog-bone cross-sectional shape with a flat thickness surface 15A, and the intermediate steel pieces 1, 15 are rolled in a shaping hole die with a dog-bone cross-section shape with a flat thickness surface 16A. It is designed to be a rough shaped steel piece 16 (beam blank) for H-shaped steel.Therefore, the box hole-shaped bulging portion adds strain to the portion that will become the fillet portion 2OA of the shaped steel 20, and furthermore, Since the strain is propagated not only in the rolling direction but also in the flange width direction and flange thickness direction perpendicular to the rolling direction, it is possible to further reduce the anisotropy of II cracks and inclusions in the fillet portion 20A. It is possible to improve the toughness of the fillet portion 2OA when rolled into the shape 1120, reduce the anisotropy of impact properties, and make the material uniform in the cross section of the shape steel.

【実施例】【Example】

以下図面を参照して、本発明に係る粗形銅片の製造方法
の実施例を詳細に説明する。 本実施例の粗形鋼片の製造設備は、第2図及び第3図に
示す如く、鋼塊10から鍛造によってスラブ12を製造
するスラブ鍛造機(図示せず)と、該スラブ鍛造機によ
るスラブ12をドツグボーン断面形状の中間鋼片15に
圧延する、膨出部21を中央部に設は且つ孔@Wを順次
広くした複数のボックス孔型22.24、前段のボック
ス孔型24より孔幅Wが広く平底でなるボックス孔型2
6、及び該複数のボックス孔型22.24.26により
得られる中間鋼片14.15をビームブランク16に圧
延する造形孔型28を複数個配設した分塊ロール孔型3
0を備えた圧延機とで構成される。 次に本実施例の作用を説明する。 まず、第2図に示す如く、スラブ8m機により、鋼塊1
0を組織及び介在物の異方向性の少ないスラブ12に鍛
造する。次に、該スラブ12を用いて、第3図に示す如
く、順次分塊ロール孔型30の各孔型22.24.26
.28によりビームブランク16を製造する。即ち、ま
ず、第3図(A)に示す如く、前記スラブ12に対して
頂角がほぼ同一の膨出部21を中央部に設けた孔型22
により、幅方向圧延を行う。この幅方向圧延によりスラ
ブ12の厚み面に溝が形成されて、スラブ12はりみ面
14Aに膨出部21に対応する溝14Bを有したドック
ボーン断面形状の中間鋼片14となる。次に、同様の幅
方向圧延が、第3図(B)に示す如(、膨出部21を中
央部に設は且つ孔幅Wを前記ボックス孔型22孔幅Wよ
り順次広くしたボックス孔型24により行われる。この
ようにして、中MtlJ片14は厚み面14A1即ち、
フランジが順次幅広とされたドツグボーン断面形状に形
成される。 これらボックス孔型22.24における圧延は、ドック
ボーン断面形状の中間鋼片14のフランジ幅が孔型の孔
幅Wと略等しくなるまで同一のボックス孔型により複数
回のバスが行われる。従って、製品とされた形1120
のフィレット部2OAに対応する中間鋼片14.15の
部分に対し、前記膨出部21により歪みが付加され、該
歪みは圧延方向のみならずそれに直角なフランジ幅方向
及び7ランジ厚み方向にも伝播され、これにより形銅2
0のフィレット部2OAにおける組織及び介在物。 の異方向性を軽減することができる。なお、前記膨出部
21はスラブ12の幅方向圧下における菱形変形や捩れ
を防止する作用もなす。 このようにして得られたドックボーン断面形状の中間鋼
片14は、第3図(C)に示す如く、平底25を有する
ボックス孔型26により幅方向圧下され厚み面15Aが
平坦な中間鋼片15が得られる。なお、このボックス孔
型26においても、前記ポ・ツクス孔型22.24と同
様に、中間鋼片15のフランジ幅が孔型26の孔幅Wと
略等しくなるまで複数回のバスが行われる。 このようにして得られた中間鋼片15は、第3図(D)
に示す如く、造形孔型28により所望の寸法のドツグボ
ーン断面形状のビームブランク16に圧延される。 このようにして得られたビームブランク16は、前記ス
ラブ製造工程における鍛造と、膨出部21を備えたボッ
クス孔型22.24による圧延とによって、十分な加工
が施され、形v420のフィレット部2OAにおける@
轍及び介在物の異方向性が軽減される。 このようにして得られたビームブランク16は、図示し
ないユニバーサル圧延機によってH形鋼若しくは■形鋼
等の形鋼に圧延される。 以下、本実施例の実施結果を第4図を参照して説明する
。第4図は、鋼塊10から鍛造スラブ12、ビームブラ
ンク16を経てHFf3tlA20を得る本発明方法と
、鋼塊から圧延スラブ、ビームブランクを経てH形鋼を
得る第1の従来方法、及び、鋼塊から圧延スラブを経る
ことなく直接ビームブランクを経てH形鋼を得る第2の
従来方法とにより製造したH形鋼それぞれのフィレット
部の衝撃特性を比較して示す線図であり、横軸には試験
温度(’C)を、縦軸には吸収エネルギ(kgf−s)
をとったものである。なお、図中の実IEは、本発明方
法によって得られたH形鋼から採取した試験片より得ら
れた試験結果を示し、1点鎖aFは、前記第1の従来方
法によって得られたH形鋼から採取した試験片から得ら
れた試験結果を示し、破IGは、前記第2の従来方法か
ら得られたH形鋼から採取した試験片の試験結果を示す
。又、各線を示す符号E、F、G(7)添字り、C,Z
Gt、H形鋼の長手方向し、フランジ幅方向C1フラン
ジ板厚方向2にそれぞれ採取した試験片から得られた衝
撃特性の試験結果を示す。 なお、各方法における条件を合わせるため、鋼塊は同一
鋼塊を用い、スラブは幅1500mm、厚さ300II
lの同一寸法とし、ビームブランクはウェア高さ910
m5.°フランジ幅435mmの同一寸法とし、H形鋼
は、ウェア高さ7001am1フランジ幅300111
、ウェブ厚さ13111,7ランジ厚さ25+ea+の
同一寸法とした。又、各鋼塊は、C−0゜18%、Mn
−1,35%、5i−0,15%の同一化学成分、とし
た。 この第4図からも明らかなように、従来の製造方法に比
較して、本発明の製造方法による場合、H形鋼のフィレ
ット部の吸収エネルギそのものを向上することができた
。しかも、その吸収エネルギは、H形鋼の長手方向しの
みならず、7ランテ幅方向C及びフランジ板厚方向2に
おいても著しく高い値が得られた。従って、異方向性の
パOメータとなる、各方向り、C,Zでの吸収エネルギ
β、C,Zの差ぶ−C1ぶ−z 、 c−zの値が小さ
くなり、これにより異方向性の改善も図られたことが分
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for manufacturing a coarse copper piece according to the present invention will be described in detail below with reference to the drawings. As shown in FIGS. 2 and 3, the manufacturing equipment for the rough-shaped steel billet of this embodiment includes a slab forging machine (not shown) that manufactures a slab 12 from a steel ingot 10 by forging, and a slab forging machine using the slab forging machine. The slab 12 is rolled into an intermediate steel piece 15 having a dogbone cross-sectional shape. A plurality of box hole molds 22 and 24 are provided with the bulging portion 21 in the center and the holes @ W are sequentially widened, and the holes are made from the box hole mold 24 in the previous stage. Box hole type 2 with wide width W and flat bottom
6, and a blooming roll hole mold 3 provided with a plurality of shaping holes 28 for rolling the intermediate steel piece 14.15 obtained by the plurality of box hole molds 22, 24, and 26 into a beam blank 16.
It consists of a rolling mill equipped with 0. Next, the operation of this embodiment will be explained. First, as shown in Figure 2, a steel ingot is
0 is forged into a slab 12 with less anisotropy of structure and inclusions. Next, using the slab 12, as shown in FIG.
.. A beam blank 16 is manufactured by 28. That is, first, as shown in FIG. 3(A), a hole mold 22 is provided in the center thereof with a bulge 21 having approximately the same apex angle as that of the slab 12.
Rolling is performed in the width direction. By this rolling in the width direction, grooves are formed in the thickness surface of the slab 12, resulting in an intermediate steel piece 14 having a dogbone cross-sectional shape and having grooves 14B corresponding to the bulges 21 in the bulging surface 14A of the slab 12. Next, similar rolling in the width direction is performed as shown in FIG. This is done by the mold 24. In this way, the middle MtlJ piece 14 has a thickness surface 14A1, that is,
The flange is formed into a dog-bone cross-sectional shape that becomes wider in sequence. The rolling in these box-hole molds 22 and 24 is performed a plurality of times using the same box-hole mold until the flange width of the intermediate steel piece 14 having a dogbone cross-sectional shape becomes approximately equal to the hole width W of the hole. Therefore, the product form 1120
A strain is applied by the bulging portion 21 to the portion of the intermediate steel slab 14.15 corresponding to the fillet portion 2OA, and the strain is applied not only in the rolling direction but also in the flange width direction and the 7 flange thickness direction perpendicular thereto. propagated, thereby forming copper 2
Tissue and inclusions in fillet portion 2OA of No. 0. The anisotropy can be reduced. Incidentally, the bulging portion 21 also functions to prevent the slab 12 from being deformed into a rhombic shape or twisted when the slab 12 is rolled down in the width direction. As shown in FIG. 3(C), the intermediate steel piece 14 having a dogbone cross-sectional shape obtained in this way is rolled down in the width direction by a box hole die 26 having a flat bottom 25, and the intermediate steel piece 14 has a flat thickness surface 15A. 15 is obtained. In addition, in this box hole mold 26 as well, as in the above-mentioned box hole mold 22.24, a plurality of baths are performed until the flange width of the intermediate steel piece 15 becomes approximately equal to the hole width W of the hole mold 26. . The intermediate steel piece 15 thus obtained is shown in FIG. 3(D).
As shown in FIG. 2, the beam blank 16 is rolled into a dogbone cross-sectional shape of a desired size using the forming hole die 28. The beam blank 16 obtained in this way is sufficiently processed by forging in the slab manufacturing process and rolling using a box hole die 22. @ in 2OA
The anisotropy of ruts and inclusions is reduced. The beam blank 16 thus obtained is rolled into a shaped steel such as an H-shaped steel or a ■-shaped steel by a universal rolling mill (not shown). The results of this example will be explained below with reference to FIG. FIG. 4 shows a method of the present invention for obtaining HFf3tlA20 from a steel ingot 10 through a forged slab 12 and a beam blank 16, a first conventional method for obtaining an H-section steel from a steel ingot through a rolled slab and a beam blank, and It is a diagram showing a comparison of the impact characteristics of the fillet portion of each H-beam manufactured by the second conventional method of obtaining an H-shape from an ingot through a beam blank directly without going through a rolling slab. is the test temperature ('C), and the vertical axis is the absorbed energy (kgf-s).
This is the one taken. In addition, the actual IE in the figure shows the test results obtained from the test piece taken from the H-beam steel obtained by the method of the present invention, and the single-point chain aF shows the test results obtained from the H-beam steel obtained by the first conventional method. The test results obtained from the test piece taken from the section steel are shown, and Fracture IG shows the test result obtained from the test piece taken from the H section steel obtained by the second conventional method. Also, the symbols E, F, G (7) subscripts, C, Z indicating each line.
The test results of impact properties obtained from test pieces taken in the longitudinal direction of Gt and H-section steel, in the flange width direction C1, and in the flange thickness direction 2 are shown. In order to match the conditions for each method, the same steel ingot was used, and the slab was 1500mm wide and 300mm thick.
The beam blank has a wear height of 910 mm.
m5. °The flange width is 435mm, and the H-shaped steel has a wear height of 7001am and a flange width of 300111mm.
, web thickness 13111, 7 langes thickness 25+ea+. In addition, each steel ingot contains C-0°18%, Mn
-1,35%, 5i-0,15% of the same chemical composition. As is clear from FIG. 4, compared to the conventional manufacturing method, the manufacturing method of the present invention was able to improve the absorption energy itself of the fillet portion of the H-section steel. Furthermore, extremely high values of absorbed energy were obtained not only in the longitudinal direction of the H-beam steel, but also in the 7 runte width direction C and the flange plate thickness direction 2. Therefore, the value of absorption energy β in each direction, C, Z, -C1bu-z, c-z, which is the parameter of different direction, becomes smaller, and this causes It can be seen that sexual performance has also been improved.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、フィレット部の靭
性を向上すると共に、Ii撃特性の異方向性を軽減し、
形鋼断面内の材質の均一化を図って、浸れた品質を得る
ことができるという優れた効果を有する。
As explained above, according to the present invention, the toughness of the fillet portion is improved, and the anisotropy of Ii impact characteristics is reduced,
It has the excellent effect of making the material uniform in the cross section of the section steel and achieving a soaked quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る相形銅片の製造方法の要旨を示
す流れ図、第2図は、本発明の実施例における各工程で
得られる鋼片の断面形状を示す断面図、第3図は、同じ
く、分塊圧延ロールによる第1乃至第3圧延工程を示す
正面図、第4図は、本発明方法と従来法とにより製造し
たH形鋼のフィレット部の衝撃特性を比較して示す線図
である。 10・・・鋼塊、 12・・・スラブ、 14.15・・・中間鋼片、 16・・・ビームブランク、 20・・・H形tI4゜
FIG. 1 is a flowchart showing the gist of the method for producing a matched copper piece according to the present invention, FIG. 2 is a sectional view showing the cross-sectional shape of a steel piece obtained in each step in an example of the present invention, and FIG. 4 is a front view showing the first to third rolling steps using the blooming rolls, and FIG. 4 is a comparison showing the impact characteristics of the fillet portion of H-section steel produced by the method of the present invention and the conventional method. It is a line diagram. 10... Steel ingot, 12... Slab, 14.15... Intermediate steel piece, 16... Beam blank, 20... H-shaped tI4゜

Claims (1)

【特許請求の範囲】[Claims] (1)鋼塊から鍛造によりスラブを製造する工程と、 該スラブ製造工程で得られたスラブを、膨出部が中央部
に設けられ且つ孔幅が順次広くされた複数のボックス孔
型で圧延する第1の圧延工程と、該第1の圧延工程で得
られた中間鋼片を平底のボックス孔型で圧延する第2の
圧延工程と、該第2の圧延工程で得られた中間鋼片を造
形孔型で圧延して粗形鋼片とする第3の圧延工程と、を
有することを特徴とする粗形鋼片の製造方法。
(1) A process of manufacturing a slab from a steel ingot by forging, and rolling the slab obtained in the slab manufacturing process with a plurality of box hole dies in which a bulge is provided in the center and the hole width is gradually widened. a first rolling process of rolling the intermediate steel piece obtained in the first rolling process in a flat-bottomed box hole die; and a second rolling process of rolling the intermediate steel piece obtained in the second rolling process. A method for manufacturing a rough-shaped steel billet, comprising: a third rolling step of rolling the steel billet in a shaping hole die to obtain a rough-shaped steel billet.
JP14806485A 1985-07-05 1985-07-05 Production of rough shape billet Pending JPS629702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14806485A JPS629702A (en) 1985-07-05 1985-07-05 Production of rough shape billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14806485A JPS629702A (en) 1985-07-05 1985-07-05 Production of rough shape billet

Publications (1)

Publication Number Publication Date
JPS629702A true JPS629702A (en) 1987-01-17

Family

ID=15444385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14806485A Pending JPS629702A (en) 1985-07-05 1985-07-05 Production of rough shape billet

Country Status (1)

Country Link
JP (1) JPS629702A (en)

Similar Documents

Publication Publication Date Title
JPS629702A (en) Production of rough shape billet
JP3065877B2 (en) Rough rolling method for H-shaped steel slab
KR100370578B1 (en) Cold rolling system to prevent overlapping flaws on wire rod surface
JP6627641B2 (en) Method for manufacturing H-section steel
JP2534223B2 (en) Rolling method of rough billet for H-section steel
JP7556368B2 (en) Manufacturing method of hat-shaped steel sheet pile
JPH07124602A (en) Rolling method of rough billet for z-shaped steel short pile
JP3339466B2 (en) H-section steel and its rolling method
JP2004098102A (en) Method and equipment for manufacturing flat bar
JP7544081B2 (en) Manufacturing method of hat-shaped steel sheet pile
JP2681536B2 (en) Channel rolling mill row
JP2000271601A (en) Manufacture of rough shape billet for wide flange shape
JP2529493B2 (en) Method for producing rough billet for H-section steel
JP2004322105A (en) Method for manufacturing wide flange shape and grooved roll
JP6614339B2 (en) Manufacturing method of H-section steel
JP3389831B2 (en) Rolling method for channel steel
JP6531653B2 (en) H-shaped steel manufacturing method
JPH04288903A (en) Method for rough rolling z shaped steel sheet pile
JPH11156512A (en) Unsolidified press down manufacturing method of blank beam
DE2757071A1 (en) PROCESS FOR ROLLING STUDS
JP4089543B2 (en) Universal rolling method for narrow flange width H-section steel
JPS5893501A (en) Rolling method for approximately h-shaped steel ingot
JPH05269501A (en) Method for rolling roughly shaped slab for h-shape steel with thick flange
JPH0798201B2 (en) Rough rolling method for H-section steel
JP2000158001A (en) Manufacture of rough shape billet for large-sized wide- flange shape