JPS6296322A - Recovery of ru - Google Patents

Recovery of ru

Info

Publication number
JPS6296322A
JPS6296322A JP60234898A JP23489885A JPS6296322A JP S6296322 A JPS6296322 A JP S6296322A JP 60234898 A JP60234898 A JP 60234898A JP 23489885 A JP23489885 A JP 23489885A JP S6296322 A JPS6296322 A JP S6296322A
Authority
JP
Japan
Prior art keywords
electrode
chloride
substrate
oxide
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60234898A
Other languages
Japanese (ja)
Other versions
JPH0657610B2 (en
Inventor
Toru Shoji
亨 庄司
Chihiro Nakanishi
中西 千博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP60234898A priority Critical patent/JPH0657610B2/en
Publication of JPS6296322A publication Critical patent/JPS6296322A/en
Publication of JPH0657610B2 publication Critical patent/JPH0657610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To efficiently separate and recover Ru, by passing Cl gas through a waste material of an electrode, having an RuO2 coating and used in brine electrolytic industry while heating the waste material together with C powder to convert the substrate of the electrode into a chloride. CONSTITUTION:An electrode having an Ru oxide coating on the surface of a substrate, e.g. Ti, TiO2, Co2O3, Al2O3 or SiO2, is used as an electrode used for electrolysis of brine. An electrode having the Ru oxide coating consumed and deactivated by use for a long time is replaced by a new electrode. Since expensive Ru is left in the used old electrode, the electrode is, together with an electrode substrate, e.g. Ti, made into a mixture 1 containing added carbon and put in a chlorination vessel 4. Cl gas is then fed from an inlet pipe 5 through glass fibers 3 while heating the mixture 1 at 600-1,000 deg.C in an electric furnace 2. The Ti or TiO2 in the electrode substrate is reduced into a chloride, volatilized and cooled in a cooling pipe 6, liquefied and introduced into a tank 7. Solid residual materials in the vessel 4 are separated by specific gravity into C powder and Ru to recover the Ru in good yield.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明の方法は、反応部分においてRu又はRu酸化物
および基体金属酸化物の塩素化反応とRu塩化物の解離
反応および基体金属塩化物の揮発分離とを全て行なうこ
とによるRu回収方法に係るものである。
Detailed Description of the Invention (Industrial Field of Application) The method of the present invention involves a chlorination reaction of Ru or Ru oxide and a base metal oxide, a dissociation reaction of Ru chloride, and a reaction of a base metal chloride in a reaction part. The present invention relates to a method for recovering Ru by performing both volatilization and separation.

(従来技術とその問題点) 近年酸化チタン、酸化コバルト、酸化銅、酸化すず、ア
ルミナ、シリカ等の金属酸化物基体上に、ルテニウム酸
化物被膜を設けた不溶性金属電極や酸化触媒が、種々の
電気化学の分野、特に食塩電解工業における不溶性電極
として大量に使用されている。またチタン酸化物等に白
金族金属も被覆した磁性材、半導体材料が広く使用され
ている。
(Prior art and its problems) In recent years, various insoluble metal electrodes and oxidation catalysts have been developed in which a ruthenium oxide film is provided on a metal oxide substrate such as titanium oxide, cobalt oxide, copper oxide, tin oxide, alumina, or silica. It is used in large quantities as an insoluble electrode in the field of electrochemistry, especially in the salt electrolysis industry. Furthermore, magnetic materials and semiconductor materials in which titanium oxide or the like is coated with a platinum group metal are widely used.

このような金属電極や触媒等は、かなりの長寿命を有す
るものであるが、使用中にRu酸化物被膜が徐々に消耗
、低活性化し、一定の性能を維持できなくなった際には
、新しい電極等に取り替える必要がある。こうした使用
済の金属電極等には、尚相当量の高価なルテニウムが被
膜中に残存し、これを回収しを効利用することは工業上
重要である。
Such metal electrodes and catalysts have a fairly long lifespan, but when the Ru oxide film gradually wears out and becomes less active during use, and cannot maintain a certain level of performance, it is necessary to replace them with new ones. It is necessary to replace it with an electrode, etc. A considerable amount of expensive ruthenium still remains in the coating of these used metal electrodes, and it is industrially important to recover and utilize it effectively.

従来、この種の技術に関連するものとして特開51−6
8493号には、ルテニウム又はその化合物を含む難溶
性物質の可溶化法が、特開51−68499号にはルテ
ニウム又はその化合物を含む離溶性物質を処理してルテ
ニウムを回収する方法が示されている。しかし、これら
の方法は、剥離物に対するアルカリ溶融塩処理、酸化溶
液溶解工程に複雑かつ長時間の処理を要する。また、基
体金属酸化物をも溶融するため大型の高温加熱装置が必
要となり、さらに白金族金属と基体金属を分離する際、
基体金属酸化物が析出し、効率が悪く工業的に最適なル
テニウム等の白金族金属の回収方法とは言えない。
Conventionally, Japanese Patent Application Laid-open No. 51-6 is related to this type of technology.
No. 8493 discloses a method for solubilizing a poorly soluble substance containing ruthenium or its compound, and JP-A-51-68499 discloses a method for recovering ruthenium by treating a dissolvable substance containing ruthenium or its compound. There is. However, these methods require complicated and time-consuming processes for the alkali molten salt treatment and oxidizing solution dissolution steps for the peeled material. In addition, large-scale high-temperature heating equipment is required to melt the base metal oxide, and when separating the platinum group metal and base metal,
The base metal oxide precipitates out, making it inefficient and cannot be said to be an industrially optimal method for recovering platinum group metals such as ruthenium.

(発明の目的) 本発明は、叙上の事情に鑑みなされたもので、その目的
は、Ru又はその酸化物と基体金属酸化物を含む回収物
から簡便かつ効率良くルテニウムを回収する方法を提供
することにある。
(Object of the Invention) The present invention was made in view of the above circumstances, and its object is to provide a method for simply and efficiently recovering ruthenium from a recovered material containing Ru or its oxide and a base metal oxide. It's about doing.

(発明の構成) 本発明は、Ruを回収する方法において、Ru又はその
酸化物と基体金属酸化物を含む回収物をカーボンの存在
下で塩素を流しながら加熱することにより、基体金属酸
化物及びRu又はその酸化物を塩化物に変え、直ちにR
u塩化物のみを金属Ruに解離させた後、分離回収する
ことを特徴とする。
(Structure of the Invention) The present invention provides a method for recovering Ru by heating a recovered material containing Ru or its oxide and a base metal oxide in the presence of carbon while flowing chlorine. Convert Ru or its oxide to chloride and immediately R
The method is characterized in that only the u chloride is dissociated into metal Ru, and then separated and recovered.

塩素化においては、Ru又はその酸化物と基体金属を含
む回収物をカーボン粉末と混合した後、塩素を流しなが
ら加熱すると、Ru又はその酸化物と基体金属酸化物は
塩素化物に変わるが、Ru塩化物の解離温度以上ではR
u又はその酸化物と基体金属酸化物とを含む回収物とカ
ーボン粉末との混合物と塩素とが反応し、その混合物が
塩素■に対して過剰にあると、塩素は、はぼ完全に反応
し、塩素分圧が微小となり。Ru塩化物は容易に解離反
応を起こし金属Ruになる。一般的に使用される基体金
属の塩化物は、解離反応を起こさす又沸点もRuの解離
温度に比べて低いため、気体相として反応系外へ容易に
運び出す事ができる。
In chlorination, when the recovered material containing Ru or its oxide and base metal is mixed with carbon powder and then heated while flowing chlorine, Ru or its oxide and base metal oxide turn into chlorinated products, but Ru Above the dissociation temperature of chloride, R
When chlorine reacts with a mixture of carbon powder and the recovered material containing u or its oxide and base metal oxide, and the mixture is in excess of chlorine, chlorine reacts almost completely. , the chlorine partial pressure becomes minute. Ru chloride easily undergoes a dissociation reaction to become metal Ru. The commonly used chloride of the base metal causes a dissociation reaction and has a boiling point lower than the dissociation temperature of Ru, so it can be easily carried out of the reaction system as a gas phase.

反応部分の温度は800〜1000℃で行うのが好まし
い。これより低い温度では長時間を要したり、塩素化が
完全に行われないことがあると共に、反応部分で塩化が
完全に行われず、塩素分圧の高い状態で保持されるとR
u塩化物が金属Ruに解離出来ず蒸発して系外へ出てし
まう恐れがある。ここで反応部分の温度は800〜10
00℃が好ましいが塩化反応が発熱反応である場合、加
熱温度が800℃未満であっても反応熱により800〜
1000℃内に保持することは可能である。
The temperature of the reaction part is preferably 800 to 1000°C. If the temperature is lower than this, it may take a long time or the chlorination may not be completed completely.
There is a possibility that the u chloride cannot be dissociated into metal Ru and may evaporate and come out of the system. Here, the temperature of the reaction part is 800-10
00℃ is preferable, but if the chlorination reaction is an exothermic reaction, even if the heating temperature is less than 800℃, the reaction temperature
It is possible to maintain the temperature within 1000°C.

しかし、加熱温度が600°C未満になると塩化反応が
起こりにくく、それによる発熱が期待できなくなる。又
1000℃よりも高い温度では高価な高温設備が必要と
なるからである。
However, when the heating temperature is less than 600°C, the chlorination reaction is difficult to occur, and the resulting heat generation cannot be expected. Moreover, if the temperature is higher than 1000° C., expensive high-temperature equipment is required.

カーボンの存在下で加熱する理由は金属酸化物と塩素の
置換を促すためである。
The reason for heating in the presence of carbon is to promote the substitution of metal oxides and chlorine.

なお、Ru及び基体金属の代表的な塩化物の諸性質は以
下の通りである。
The properties of Ru and typical chlorides of the base metal are as follows.

RuC1,解離塩素圧450’Cで24+m11g74
0℃で389mmHgAA’C7!z沸点 182.7
℃ T+Cj!a沸点136.4℃ ZrCl a       331℃ TaC1a沸点 242℃ 5iC(14〃   57.57℃ 5nCj’4    ”    114.1℃以下図面
にもとすいて実施例と従来例に付いて説明する。
RuC1, 24+m11g74 at dissociated chlorine pressure 450'C
389mmHgAA'C7 at 0℃! zboiling point 182.7
℃ T+Cj! a Boiling point 136.4°C ZrCl a 331°C TaC1a Boiling point 242°C 5iC (14〃 57.57°C 5nCj'4'' 114.1°C or less Examples and conventional examples will be explained with reference to the drawings.

(実施例1) 二酸化チタン3.5kg、二酸化ルテニウム200g、
カーボン粉末1.05kgを混合し、図に示す如くこの
混合物1を底部にガラス繊維3を装着した塩素化容器4
中に入れ、電気炉2により塩素化容器3を800°Cに
加熱し、塩素ガスを塩素ガス導入管5から5//min
流すことにより基体金属酸化物を塩化物にして蒸発させ
、それを冷却管6を通して液化し、基体塩化物捕集タン
ク7に移した。これを5時間続けた後、残材料を取り出
し、比重分離によりカーボン粉末を分離して金属Ru粉
末を回収したところ金属Ruの純度は99%以上で回収
率も99%以上であった。
(Example 1) 3.5 kg of titanium dioxide, 200 g of ruthenium dioxide,
1.05 kg of carbon powder was mixed and the mixture 1 was placed in a chlorination container 4 equipped with a glass fiber 3 at the bottom as shown in the figure.
The chlorination container 3 is heated to 800°C using the electric furnace 2, and chlorine gas is introduced from the chlorine gas introduction pipe 5 for 5//min.
By flowing, the base metal oxide was converted into chloride and evaporated, which was liquefied through a cooling pipe 6 and transferred to a base chloride collection tank 7. After this was continued for 5 hours, the remaining material was taken out and the metal Ru powder was recovered by separating the carbon powder by specific gravity separation, and the purity of the metal Ru was 99% or more and the recovery rate was also 99% or more.

(従来例) 二酸化チタン36.7kg、二酸化ルテニウム4 、0
 kgを混合したものをK OH+ K N Ozを用
い800℃で融解したところK OH2S、4kg、 
K N O36,1kgを要し、ルテニウムの回収率は
90%であった。
(Conventional example) Titanium dioxide 36.7kg, Ruthenium dioxide 4.0
When a mixture of KOH2S and KNOZ was melted at 800°C, 4kg of KOH2S was obtained.
36.1 kg of K N O was required, and the recovery rate of ruthenium was 90%.

上記実施例及び従来例で明らかなように本発明は回収効
率が99%以上であるのに対し、従来例は90%と低い
ことがわかる。また、従来例では溶融塩処理工程、酸性
溶液溶解工程等の複雑かつ、長時間の処理を必要として
いた。
As is clear from the above embodiments and conventional examples, the recovery efficiency of the present invention is 99% or more, whereas it is as low as 90% in the conventional example. Further, the conventional method requires complicated and long-time processing such as a molten salt treatment step and an acidic solution dissolution step.

(発明の効果) 以上詳述したように、本発明によれば従来例に比し、効
率良く、Ruを金属基体酸化物から分離、回収すること
ができしかも従来のように多段の湿式処理工程を必要と
しないため、経済的にしかも短時間で回収することがで
きるという効果がある。
(Effects of the Invention) As described in detail above, according to the present invention, Ru can be separated and recovered from the metal base oxide more efficiently than in the conventional example, and it does not require the multi-stage wet treatment process as in the conventional example. Since this method does not require the use of 300 ml, it has the advantage of being economical and can be recovered in a short period of time.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のRu回収方法に用いる回収装置の概略図で
ある。 出願人  田中貴金属工業株式会社 7・・・1(体す盈イロ虜捕渫り〉り 手続補正書(自発) 昭和61年/l−月30日 1、事件の表示 昭和60年特許願第234898号 2、発明の名称 Ruを回収する方法 3、補正をする者 4、補正の対象 5、補正の内容 1)明細書第2頁第4行目の「近年」の後に「チタン、
」を加入する。 2)同第5行目の「・・−等の」後に「金属や」を加入
する。 3)同第9行目の「も」を「を」に補正する。 4)同第10行目の「磁性材、半導体」を「電子」に補
正する。 5)同第3頁第8行目の「白金族金属」を「ルテニウム
」に補正する。 6)同第3頁第9行目の「基体金属」の後に「水」を加
入する。 7)同第10行目の「等の白金族金属」を削除する。 8)同第4頁5行目の「塩素化」を「塩化物化」に補正
する。 9)同第8行目の「素」を削除する。 10)同第9行目乃至11行目のrRu又は−・−・・
反応し、その混合物」を「回収物」に補正する。 11)同第13行目の「。」を「、」に補正する。 12)同第16行目のrRuJO後に「塩化物」を加入
する。 13)同第20行目の「塩素化が完全に行われないこと
があると共に、」を削除する。 14)同第5頁第1行目の「塩化が完全に」を「塩化物
化が完全には」に補正する。 15)同第5行目の「塩化反応」を「塩化物化反応」に
補正する。 16)同第8行目の「塩化」を「塩化物化」に補正する
。 17)同第6頁9行目の「塩素化」を「塩化物化」に補
正する。 18)同第10行目の「塩素化容器3」を「塩化物化容
器4」に補正する。 19)同第7頁12行目の「金属基体」を「基体金属」
に補正する。
The figure is a schematic diagram of a recovery device used in the Ru recovery method of the present invention. Applicant: Tanaka Kikinzoku Kogyo Co., Ltd. 7...1 (Spontaneous amendment to the procedure for the capture of prisoners of war) 1985/1-30th 1, Indication of the case 1985 Patent Application No. 234898 No. 2, Method for recovering the title Ru of the invention 3, Person making the amendment 4, Subject of the amendment 5, Contents of the amendment 1) After “recent years” in the fourth line of page 2 of the specification, “Titanium,
” to join. 2) Add ``Metal ya'' after ``...- etc.'' in the 5th line. 3) Correct "mo" in the 9th line to "wo". 4) Correct "magnetic material, semiconductor" in the 10th line to "electron". 5) "Platinum group metal" in the 8th line of page 3 is corrected to "ruthenium". 6) Add "water" after "base metal" on page 3, line 9. 7) Delete "platinum group metals such as" on the 10th line. 8) Correct "chlorination" in line 5 of page 4 to "chloride". 9) Delete "element" in the 8th line. 10) rRu on the 9th line to 11th line or ---
React and correct the "mixture" to "recovered product". 11) Correct "." in the 13th line to ",". 12) Add "chloride" after rRuJO on the 16th line. 13) Delete "In some cases, chlorination may not be completed completely" in the 20th line. 14) In the first line of page 5, "chlorination is complete" is corrected to "chlorination is complete". 15) Correct "chloride reaction" in the 5th line to "chloride reaction". 16) Correct "chlorination" in the 8th line to "chloride". 17) "Chlorination" on page 6, line 9 of the same page is corrected to "chlorination." 18) Correct "chlorination container 3" on the 10th line to "chloride container 4". 19) “Metal base” on page 7, line 12 of the same page is “base metal”
Correct to.

Claims (1)

【特許請求の範囲】 1)Ru又はその酸化物と基体金属酸化物を含む回収物
をカーボンの存在下で、加熱しながら塩素ガスを流すこ
とにより基体金属酸化物を塩化物にして蒸発分離するこ
とを特徴とするRuを回収する方法。 2)加熱温度がRu塩化物の解離温度以上で、かつ基体
金属塩化物の沸点以上の温度であることを特徴とする特
許請求の範囲の第1項記載の方法。 3)加熱温度が600℃〜1000℃であることを特徴
とする特許請求の範囲第1項又は第2項記載の方法。
[Claims] 1) In the presence of carbon, the recovered material containing Ru or its oxide and the base metal oxide is heated while flowing chlorine gas to convert the base metal oxide into chloride and evaporate and separate it. A method for recovering Ru, characterized in that: 2) The method according to claim 1, wherein the heating temperature is higher than the dissociation temperature of the Ru chloride and higher than the boiling point of the base metal chloride. 3) The method according to claim 1 or 2, wherein the heating temperature is 600°C to 1000°C.
JP60234898A 1985-10-21 1985-10-21 How to recover Ru Expired - Lifetime JPH0657610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60234898A JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60234898A JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Publications (2)

Publication Number Publication Date
JPS6296322A true JPS6296322A (en) 1987-05-02
JPH0657610B2 JPH0657610B2 (en) 1994-08-03

Family

ID=16978027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60234898A Expired - Lifetime JPH0657610B2 (en) 1985-10-21 1985-10-21 How to recover Ru

Country Status (1)

Country Link
JP (1) JPH0657610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960573A (en) * 1988-01-22 1990-10-02 Takeshi Okutani Recovering method of catalytic component and carrier from waste catalyst
WO2007064027A1 (en) 2005-11-30 2007-06-07 Sumitomo Chemical Company, Limited Method for production of supported ruthenium and method for production of chlorine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08132432A (en) * 1994-11-09 1996-05-28 Kyowa Seisakusho:Kk Boring working-machine for lithic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960573A (en) * 1988-01-22 1990-10-02 Takeshi Okutani Recovering method of catalytic component and carrier from waste catalyst
WO2007064027A1 (en) 2005-11-30 2007-06-07 Sumitomo Chemical Company, Limited Method for production of supported ruthenium and method for production of chlorine
US7858065B2 (en) 2005-11-30 2010-12-28 Sumitomo Chemical Company, Ltd. Process for producing supported ruthenium and process for producing chlorine

Also Published As

Publication number Publication date
JPH0657610B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
RU2518839C2 (en) Processing of titanium ores
JPH0438826B2 (en)
JPH0339494A (en) Method for obtaining uranium by using chloride method
JPS6296322A (en) Recovery of ru
JPS59104438A (en) Recovery of ruthenium from metal electrode
JPH07508704A (en) Method for producing ferric chloride
JPS62256930A (en) Method for recovering ruthenium
JPS62256931A (en) Method for recovering ruthenium
JPH01142040A (en) Method for recovering ru
JPS62280336A (en) Recovering method for ruthenium
EP0266128A2 (en) Production of hexavalent chromium for use in chlorate cells
JPH02197532A (en) Method for recovering ru from metallic electrode
US2752300A (en) Beneficiating titanium oxide ores
CN115011808B (en) Method for separating and recovering ruthenium and iridium from ruthenium and iridium-containing material
JPS62280337A (en) Recovering method for ir
JP2004099975A (en) Process for recovering ruthenium and/or iridium
JPH01142039A (en) Method for recovering ru
CA1239613A (en) Recovery of tin from starting material and low tin concentrates by melting with potassium hydroxide
JPH01502916A (en) Method for producing and purifying Group 4B transition metal-alkali metal-fluoride salt
JP2698424B2 (en) Liquefaction method of iridium
JP3455942B2 (en) Method for producing metal alkoxide by electrolytic method
JPH02205635A (en) Method for recovering ru
JPS62256932A (en) Method for recovering iridium
JPS62256936A (en) Method for recovering au
JP3566774B2 (en) Method for producing high purity titanium trichloride aqueous solution