JPS6295515A - Optical gate - Google Patents

Optical gate

Info

Publication number
JPS6295515A
JPS6295515A JP23603785A JP23603785A JPS6295515A JP S6295515 A JPS6295515 A JP S6295515A JP 23603785 A JP23603785 A JP 23603785A JP 23603785 A JP23603785 A JP 23603785A JP S6295515 A JPS6295515 A JP S6295515A
Authority
JP
Japan
Prior art keywords
film
films
glass substrate
optical gate
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23603785A
Other languages
Japanese (ja)
Inventor
Shinya Katayama
慎也 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP23603785A priority Critical patent/JPS6295515A/en
Publication of JPS6295515A publication Critical patent/JPS6295515A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form an optical gate of a larger length and larger size by successively laminating a transparent conductive film and polycrystalline garnet film on a glass substrate. CONSTITUTION:ITO2 is first uniformly formded as the transparent conductive film and thereafter the ITO film 2 is patterned by a photolithographic method in such a manner that the many rectangular shaped films with the long sides in contact with each other array at prescribed intervals. An amorphous film 4 corresponding to Bi1.8Gd1.0Fe3.8Al1.4O12 is thereafter uniformly formed on the glass substrate 3 provided with the films 2. The amorphous film 4 is then removed by etching except part in the central parts on the patterned ITO films 2. The amorphous film is crystallized to the garnet film 1 when the glass substrate 3 having the amorphous film 4 is cooled after heating in air. ArCu alloy films 5 having such intervals at which the films are continuous with the patterned ITO films 2 are thereafter provided on the parts except the garnet film 3 parts. The larger area is thereby easily obtd. and the optical gate array is formed.

Description

【発明の詳細な説明】 〔産業上の利用分舒〕 本発明は、光ゲートに関し、特に光プリンターに使用す
るのに適した生産性が高く大型化が可能な光ゲートに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to an optical gate, and more particularly to an optical gate suitable for use in an optical printer, which has high productivity and can be made large.

〔従来の技術〕[Conventional technology]

従来この種の光ゲートとしては第11図に示すようなG
GG(gadolinium gallium gar
net )単結晶基板(4’J)、該基板上に形成され
た単結晶ガーネット膜(≠l)、該単結晶ガーネット膜
上に形成された透明導電膜(ψ2)とからなるものが知
られている。(例えば日経エレクトロニクスク3/り1
2.2./j  ) 〔発明が解決しようとする問題点〕 上記光ゲートは0.5μJと低い消費電力、lμS未満
という高速で動作させることができるという利点がある
ものの、基板としてGGG基結晶を使用しなければなら
ないため生産性が悪く、ゲートアレイのように多数の光
ゲートをならべて使用する場合には、単一のもので長尺
の光ゲートアレイを得にくいためつなぎあわせなければ
ならないなど、長尺化大型化に対して問題があった。又
GGG基板上て成長させた単結晶ガーネットは一般にへ
〇〜≠、ottm厚と厚く、その単結晶ガーネットの上
面および側面を被覆する透明導電膜の側面部に欠点を生
じやすいという問題点があった。
Conventionally, this type of optical gate is a G gate as shown in Fig. 11.
GG (gadolinium gallium gar)
Net) is known which consists of a single crystal substrate (4'J), a single crystal garnet film (≠l) formed on the substrate, and a transparent conductive film (ψ2) formed on the single crystal garnet film. ing. (For example, Nikkei Electronics School 3/1
2.2. /j) [Problems to be solved by the invention] Although the above optical gate has the advantage of having a low power consumption of 0.5 μJ and being able to operate at a high speed of less than 1 μS, it requires the use of a GGG-based crystal as the substrate. When using a large number of optical gates lined up like a gate array, it is difficult to obtain a long optical gate array with a single one, so it is necessary to connect them together. There was a problem with increasing the size. Furthermore, the single crystal garnet grown on the GGG substrate is generally as thick as 0~≠, ottm, and there is a problem that defects are likely to occur on the side surfaces of the transparent conductive film that covers the top and side surfaces of the single crystal garnet. Ta.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記問題点を解決するために、ガラス基板に透
明導電膜および多結晶ガーネット膜を順次積層して光ゲ
ートを構成している。
In order to solve the above problems, the present invention constructs an optical gate by sequentially laminating a transparent conductive film and a polycrystalline garnet film on a glass substrate.

ガラス基板上に形成される透明導電膜は通常使用される
5n02.インジウムスズオキサイド等の30〜ioo
nm厚のものが使用できる。又これら透明導電膜は蒸着
法、スパッタ法、浸漬法等により作成することができる
The transparent conductive film formed on the glass substrate is a commonly used 5n02. 30~ioo of indium tin oxide etc.
A material with a thickness of nm can be used. Further, these transparent conductive films can be created by a vapor deposition method, a sputtering method, a dipping method, or the like.

該透明導電膜上に多結晶ガーネット膜を作成する方法と
しては、スパッタリング法を用いてBi置換希土類鉄ガ
ーネット膜を直接又は間接的に作成する方法(例えば基
板上に飛着する酸化物の組成がBi■Ro(Fe、M)
◎O:L2  (RAM、Sm又は希土類元素及びそれ
らの組合せ、M:3価の原子又は3価と等価な原子価と
なるような原子の組合せ、八〇≦[株]≦2.5,2.
5≦■+■≦J、j護、5≦◎≦5.3)となるような
ターゲットを用いたスパッタリングにより直接結晶膜を
作成するか一旦該組成の非晶質膜を作成した後熱処理で
結晶膜とする方法)等が使用できる。
A method for forming a polycrystalline garnet film on the transparent conductive film is to use a sputtering method to directly or indirectly form a Bi-substituted rare earth iron garnet film (for example, if the composition of the oxide deposited on the substrate is Bi■Ro (Fe, M)
◎O:L2 (RAM, Sm or rare earth elements and combinations thereof, M: trivalent atoms or combinations of atoms that have a valence equivalent to trivalent, 80≦[stock]≦2.5,2 ..
5≦■+■≦J, j protection, 5≦◎≦5.3) A crystalline film is directly created by sputtering using a target, or an amorphous film having the composition is once created and then heat treated. method to form a crystalline film) etc. can be used.

本発明の光ゲートは、多結晶ガーネット膜を加熱するた
めの透明導電膜を多結晶ガーネット膜とガラス基板との
間の7ラツト面に設けたものであるが、多結晶ガーネッ
ト膜の上面にさらに透明導電膜を設けてもかまわない。
In the optical gate of the present invention, a transparent conductive film for heating the polycrystalline garnet film is provided on the 7-rat surface between the polycrystalline garnet film and the glass substrate. A transparent conductive film may be provided.

上記多結晶ガーネット膜の両面に透明導電膜を設けると
、多結晶ガーネット膜加熱に要する時間を一方向加熱の
場合より短縮することができる。
When transparent conductive films are provided on both sides of the polycrystalline garnet film, the time required for heating the polycrystalline garnet film can be reduced compared to the case of unidirectional heating.

本発明の多結晶ガーネット膜としては単位厚さあたりの
7アラデ一回転角の大きなり1置換希土類鉄ガーネツト
膜を用いることが好ましく、又ガー大きさの7アラデ一
回転角が得られ、かつガーネット膜に切りこみを入れて
その上に均一に導電膜を被覆する際断線等が少なくなる
ような/〜4Z11mの厚さが好まれる。
As the polycrystalline garnet film of the present invention, it is preferable to use a mono-substituted rare earth iron garnet film having a large rotation angle of 7 Arade per unit thickness, and a film that can obtain a rotation angle of 7 Arade per unit thickness, and A thickness of /~4Z11 m is preferable so that there are fewer disconnections when making incisions in the film and uniformly covering the conductive film thereon.

〔作 用〕[For production]

本発明の光ゲートはガラス基板を用いているのでGGG
基板と異なり生産性が良く大型化が可能である。又ガラ
ス基板上に透明導電膜を設けているので透明導電膜の断
線が少なく生産性、信頼性が向上する。
Since the optical gate of the present invention uses a glass substrate, GGG
Unlike substrates, it has good productivity and can be made larger. Furthermore, since the transparent conductive film is provided on the glass substrate, there is less disconnection of the transparent conductive film, improving productivity and reliability.

〔実 施 例〕〔Example〕

実施例1 本発明の実施例を第1図および第2図に基づき説明する
。縦Jew横7Qcm厚さl朋のガラス基板(3)にま
ず透明導電膜として約ronm厚のインジウムスズオキ
サイド膜(以下ITO膜と略称する)(2)をスパッタ
法にて均一に作成し、その後フォトリソグラフィ法によ
り該ITO膜(2)を縦70μm横/30μmの長方形
が長辺を接して100μm間隔で多数ならぶ様にパター
ニングした。その後このITO膜(2)つきガラス基板
(3)上にスパッター法によりBil、 BGdl、0
Fe3,8AA’1.4012相当の厚さ約211mの
非晶質膜(4)を均一に作成した。その後該非晶質膜(
4)を前記パターニングしたITO膜(2)土中央部の
70μm角を残してエツチングして除去した。その後該
非晶質膜(4)つきガラス基板(3)を空気中630″
Cで5時間加熱した後冷却した。該加熱によって非晶質
膜は結晶化してガーネット膜(1)となった。その後前
記パターニングしたITO膜(2)に連続するような7
00μm間隔を有するArQu合金被膜(5)を該ガー
ネット膜(3)部具外の部分に設けた。
Example 1 An example of the present invention will be described based on FIGS. 1 and 2. First, an indium tin oxide film (hereinafter abbreviated as ITO film) (2) with a thickness of about ronm was uniformly formed as a transparent conductive film on a glass substrate (3) measuring 7 Q cm in length and 7 Q cm in width by sputtering, and then The ITO film (2) was patterned by photolithography so that a large number of rectangles measuring 70 μm long and 30 μm wide were lined up at intervals of 100 μm with their long sides touching. Thereafter, Bil, BGdl, 0 were deposited on the glass substrate (3) with this ITO film (2) by sputtering
An amorphous film (4) having a thickness of about 211 m and corresponding to Fe3,8AA'1.4012 was uniformly formed. Then the amorphous film (
4) was removed by etching leaving a 70 μm square area in the center of the patterned ITO film (2) soil. After that, the glass substrate (3) with the amorphous film (4) was placed in the air for 630"
The mixture was heated at C for 5 hours and then cooled. The amorphous film was crystallized by the heating to become a garnet film (1). After that, 7 layers that are continuous with the patterned ITO film (2) are
An ArQu alloy film (5) having a spacing of 00 μm was provided on the outside of the garnet film (3).

Q千 本光ゲートの7アラデ一回転角ぜはs s o nmの
波長の光線に対して20度以上あり、又ArCu合金被
膜(5)の両端部に通電し外部磁界をかけることで反転
することも確認された。又上記反転に要する時間は10
μSで十分であった。反ガラス板全体にわたり断線等は
みられなかった。
The angle of rotation of the Qsenbon optical gate is more than 20 degrees with respect to the light beam with a wavelength of s o nm, and it can be reversed by applying an external magnetic field by applying current to both ends of the ArCu alloy coating (5). was also confirmed. Also, the time required for the above reversal is 10
μS was sufficient. No breakage or the like was observed throughout the anti-glass plate.

実施例2 非晶質膜(4)の結晶化までは実施例1と同様に作成し
たガーネット膜(IL ITO膜(2)つきガラス基板
(3)のガーネット膜(1)上に、さらにスパッタリン
グ法によって厚さ約jOnmのITO膜(6)を均一に
作成した。その後、下層のITO膜(2)と同じ形状を
残してパターニングし、その後実施例/同様ArCu合
金被膜(5)を作成した。
Example 2 A garnet film (IL) was prepared in the same manner as in Example 1 until the crystallization of the amorphous film (4). A sputtering method was further applied on the garnet film (1) of the glass substrate (3) with the ITO film (2). An ITO film (6) with a thickness of about jOnm was created uniformly using the above method.Then, it was patterned to leave the same shape as the underlying ITO film (2), and then an ArCu alloy film (5) was created in the same manner as in the example.

本光ゲートの反転に要する時間は5μsと実施例/より
も早くなった。
The time required for reversing the optical gate was 5 μs, which was faster than in the example.

〔発明の効果〕〔Effect of the invention〕

することができる。 can do.

又、ガーネット膜の両側に透明導電膜を設けることがで
きるようになり、反転に要する時間を短縮することもで
きるようKなる。
Furthermore, transparent conductive films can be provided on both sides of the garnet film, and the time required for inversion can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例/で作成した光ゲートの断面図であり、
第2図は同平面図である。第3図は実施例2で作成した
光ゲートの断面図であり、第ψ図は従来の光ゲートの断
面図である。 第1図 第2図
FIG. 1 is a cross-sectional view of the optical gate prepared in Example/.
FIG. 2 is a plan view of the same. FIG. 3 is a sectional view of the optical gate prepared in Example 2, and FIG. ψ is a sectional view of a conventional optical gate. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 [1]ガラス基板(3)に透明導電膜(2)および多結
晶ガーネット膜(1)が順次積層されている光ゲート。 [2]多結晶ガーネット膜(1)の上面に透明導電膜(
6)が設けられている特許請求の範囲第1項記載の光ゲ
ート。 [3]該多結晶ガーネット膜(イ)が1.0〜4μm厚
のBi置換希土類鉄ガーネット膜である特許請求の範囲
第1項又は第2項記載の光ゲート。
[Scope of Claims] [1] An optical gate in which a transparent conductive film (2) and a polycrystalline garnet film (1) are sequentially laminated on a glass substrate (3). [2] A transparent conductive film (
6). The light gate according to claim 1, wherein the light gate is provided with: [3] The optical gate according to claim 1 or 2, wherein the polycrystalline garnet film (a) is a Bi-substituted rare earth iron garnet film having a thickness of 1.0 to 4 μm.
JP23603785A 1985-10-22 1985-10-22 Optical gate Pending JPS6295515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23603785A JPS6295515A (en) 1985-10-22 1985-10-22 Optical gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23603785A JPS6295515A (en) 1985-10-22 1985-10-22 Optical gate

Publications (1)

Publication Number Publication Date
JPS6295515A true JPS6295515A (en) 1987-05-02

Family

ID=16994825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23603785A Pending JPS6295515A (en) 1985-10-22 1985-10-22 Optical gate

Country Status (1)

Country Link
JP (1) JPS6295515A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022243A1 (en) * 2003-08-28 2005-03-10 Fdk Corporation Magneto-optical device
US8167193B2 (en) 2006-10-11 2012-05-01 Ricoh Company, Ltd. Packaging container

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527322A (en) * 1978-08-17 1980-02-27 Mitsui Petrochem Ind Ltd Ethylene copolymer rubber and its vulcanized product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527322A (en) * 1978-08-17 1980-02-27 Mitsui Petrochem Ind Ltd Ethylene copolymer rubber and its vulcanized product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022243A1 (en) * 2003-08-28 2005-03-10 Fdk Corporation Magneto-optical device
US7280264B2 (en) 2003-08-28 2007-10-09 Fdk Corporation Magneto-optical device
US8167193B2 (en) 2006-10-11 2012-05-01 Ricoh Company, Ltd. Packaging container

Similar Documents

Publication Publication Date Title
JP3096573B2 (en) Silicon layer growth method
JPH07114841A (en) Transparent conductive film and its forming and working method
JPH07262829A (en) Transparent conductive film and its forming method
JPS6295515A (en) Optical gate
TW200304578A (en) Liquid crystal display device and the method for manufacturing the same
JP2001194639A (en) Magneto-optical body
EP0183388B1 (en) Multicolor liquid crystal display panel
US20020018913A1 (en) Magneto-optical body and optical isolator using the same
US4128681A (en) Method for producing an InSb thin film element
Shaposhnikov et al. Bi-substituted iron garnet films for one-dimensional magneto-photonic crystals: Synthesis and properties
Seward et al. Prototype all-solid lithiated smart window devices
KR20120077566A (en) Method of fabricating oxide thin film transistor
JP2002184242A (en) Substrate with electrode and method of manufacturing the substrate
JPH0562808B2 (en)
JPH10208554A (en) Transparent conductive film and liquid crystal element using the same
JP2003027216A (en) Method and apparatus for producing transparent electrically conductive film
JPS626221A (en) Liquid crystal cell
JPS5917510A (en) Optical waveguide
JPH0377158B2 (en)
JP2002139718A (en) Magneto-optical body and method of manufacturing foe the same
JPS6017719A (en) Liquid crystal display device
JPS58105217A (en) Display
Tsuzuki et al. Fomation and properties of multiple-tone spatial light modulator using garnet film with in-plane magnetization
JP2980716B2 (en) Optical element using oxide high temperature superconducting thin film electrode layer
JPS54162688A (en) Forming method for oxide single crystal thin film