JPS6295510A - Coated optical fiber - Google Patents

Coated optical fiber

Info

Publication number
JPS6295510A
JPS6295510A JP60236821A JP23682185A JPS6295510A JP S6295510 A JPS6295510 A JP S6295510A JP 60236821 A JP60236821 A JP 60236821A JP 23682185 A JP23682185 A JP 23682185A JP S6295510 A JPS6295510 A JP S6295510A
Authority
JP
Japan
Prior art keywords
optical fiber
esters
resin
curing
spiroortho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60236821A
Other languages
Japanese (ja)
Other versions
JPH0431563B2 (en
Inventor
Ryoichi Ito
伊東 亮一
Hiroshi Kajioka
博 梶岡
Hisanori Nakai
中居 久典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP60236821A priority Critical patent/JPS6295510A/en
Publication of JPS6295510A publication Critical patent/JPS6295510A/en
Publication of JPH0431563B2 publication Critical patent/JPH0431563B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To decrease work strains by selecting a curable resin from spiroortho- esters, spiroortho-carbonates and bicycloortho-esters. CONSTITUTION:The curable resin for an optical fiber to be coated with the curable resin which exhibits non-shrinkability when cured is selected from the spiroortho-esters, spiroortho-carbonates and bicycloortho-esters. The curable resin which exhibits the non-shrinkability when cured refers to the resin which is a liquid compsn. prior to curing is the insoluble three-dimensional network solid compsn. after curing and does not exhibit volumetric shrinkage at all or makes slight volumetric shrinkage or expansion by curing. The rate of the volumetric shrinkage of the referred resin is preferably <=1%. The above- mentioned spiroortho-esters, bicycloortho-esters and spiroorth-carbonates can be cured under heating by a cationic polymerization catalyst such as Lewis acid and can be cured under heating by using a curing agent such as polybasic acid and the acid anhydride thereof, polycarboxylic acid resin, or phenolic resin.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は光伝送用の光ファイバ、特に被覆光ファイバに
関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to optical fibers for optical transmission, and particularly to coated optical fibers.

従来の光伝送用ガラスファイバは、ガラスファイバの表
面に、シリコン樹脂、エポキシ樹脂、分子中にアクリル
基のような紫外線に活性な基を有する各種紫外線硬化性
樹脂等の硬化性樹脂を被覆している。また、さらに、熱
可塑性樹脂のポリアミド樹脂、フッ素樹脂等の補強層を
被覆することもある。
Conventional optical transmission glass fibers have their surfaces coated with curable resins such as silicone resins, epoxy resins, and various UV-curable resins that have UV-active groups such as acrylic groups in their molecules. There is. In addition, a reinforcing layer of thermoplastic resin such as polyamide resin or fluororesin may be further coated.

しかし、これらの硬化性樹脂は硬化時に収縮することが
知られてあり、この収縮による歪や内部応力の発生等が
光ファイバの性能に悪影響を及ぼすことが懸念される。
However, these curable resins are known to shrink during curing, and there is concern that distortion, internal stress, etc. caused by this shrinkage may adversely affect the performance of the optical fiber.

特に剛性率の大きい硬化性樹脂を二次被覆したときにこ
の弊害が必られれる可能性がある。また光ファイバの被
覆に使われる熱可塑性樹脂は結晶性ポリマでおるだめの
加工歪を生成しやすい。この歪が残存すると光ファイバ
の性能を損う可能性があった。これらの樹脂を適切な製
造条件で被覆することによりある程度量の小さい被覆光
ファイバを提供することは可能であるが、しかしながら
、そのためには厳密な製造条件の制御を必要とする。
In particular, this problem may be inevitable when a curable resin having a high rigidity is used as a secondary coating. In addition, the thermoplastic resin used to coat optical fibers is a crystalline polymer and tends to produce processing distortion. If this distortion remains, there is a possibility that the performance of the optical fiber will be impaired. Although it is possible to provide a small amount of coated optical fiber to some extent by coating these resins under appropriate manufacturing conditions, this requires strict control of manufacturing conditions.

本発明の目的は、かかる従来技術の難点を解消し、加工
歪が小さくしかも製造することが容易な被覆光ファイバ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the conventional techniques and provide a coated optical fiber that has low processing distortion and is easy to manufacture.

[発明の概要] 本発明は、硬化時に非収縮性を示す硬化性樹脂により被
覆される光ファイバにおいて、前記硬化性樹脂が、スピ
ロオルトエステル類、スピロオルトカルボナート類、お
よびビシクロオルトエステル類から選ばれたものである
ことを特徴とする。
[Summary of the Invention] The present invention provides an optical fiber coated with a curable resin that exhibits non-shrinkage properties upon curing, wherein the curable resin is made of spiro-orthoesters, spiro-orthocarbonates, and bicycloorthoesters. It is characterized by being selected.

ここで、硬化時に非収縮性を示す硬化性樹脂とは、硬化
前は液状の組成物であって硬化後に不溶性の三次元網目
状固体組成物になるもので必って、かつ、硬化によって
体積収縮を全く示さないか、あるいは僅かに体積収縮ま
たは膨張するものである。本発明で許容される体積収縮
率は特に規定するものではないが、好ましくは1%以下
であるものをいう。なお、硬化前の室温時には固形であ
っても、加熱等によって液状になるものは、液状組成物
とする。すなわち、塗装時に液状であるものは本発明の
範囲に入る。また、硬化時に非収縮性を示す硬化性樹脂
としては分子設計工種々のものが考えられるが、硬化時
に開環重合を利用するものが該当する。具体的にはスピ
ロオルトエステル類、ジシクロオルトエステル類、およ
びスピロオルトカルボナート類からなる組成物が該当す
る。
Here, a curable resin that exhibits non-shrinkage properties when cured is a liquid composition before curing, which becomes an insoluble three-dimensional network solid composition after curing, and which has a volumetric composition after curing. It shows no shrinkage or only a slight volumetric shrinkage or expansion. The volume shrinkage rate permissible in the present invention is not particularly limited, but is preferably 1% or less. Note that even if the composition is solid at room temperature before curing, it becomes liquid upon heating or the like, and this is considered to be a liquid composition. That is, materials that are liquid at the time of coating fall within the scope of the present invention. In addition, various types of molecularly designed curable resins that exhibit non-shrinkage properties during curing can be considered, and those that utilize ring-opening polymerization during curing are applicable. Specifically, compositions consisting of spiro-orthoesters, dicycloorthoesters, and spiro-orthocarbonates are applicable.

スピロオルトエステル類は例えばエポキシ化合物とラク
トン類から次のように合成される。なお、この化合物は
重合時に次式のように開環する。
Spiroorthoesters are synthesized, for example, from epoxy compounds and lactones as follows. Incidentally, this compound undergoes ring opening during polymerization as shown in the following formula.

→R 重合 例えばエピクロルヒドリンとラクトン類の反応による不
飽和スピロオルトエステル類、CHz=C00 ゛。′ が必げられる。この化合物は無水マレイン酸、マレイミ
ド類と反応し、交互共重合体となる。またアクリロニト
リル、メチルメタクリレート等とのラジカル共重合体を
与え、カチオン触媒で辺理するとスピロオルトエステル
基が開環架橋し、非収縮性の硬化物を与える。
→R Polymerization of unsaturated spiro-orthoesters, for example, by reaction of epichlorohydrin and lactones, CHz=C00゛. ′ is required. This compound reacts with maleic anhydride and maleimides to form an alternating copolymer. In addition, when a radical copolymer with acrylonitrile, methyl methacrylate, etc. is prepared and treated with a cationic catalyst, the spiro-orthoester group undergoes ring-opening crosslinking and a non-shrinkable cured product is obtained.

ビシクロオルトエステル類はニトリル類とアルコール類
との反応で容易に得られるオルトエステル類とトリオー
ルから得られる。
Bicycloorthoesters are obtained from orthoesters and triols, which are easily obtained by reacting nitriles and alcohols.

R−C(OR″)3 + (HOCHz )3 CR−
○−CH・/ ビシクロオルトエステル類 または、 またビシクロエステル溝造をもつウレタン、二官能性モ
ノマ、ビニルモノマ、アクリレート、およびメタクリレ
ート類もそれぞれ開環手合して非収縮性を示す硬化物を
与える。
RC(OR″)3 + (HOCHz)3 CR-
-CH./Bicycloorthoesters or urethanes, bifunctional monomers, vinyl monomers, acrylates, and methacrylates having a bicycloester groove structure also undergo ring-opening procedures to give cured products exhibiting non-shrinkage properties.

スピロオルトカルボナート類はカチオン触媒で開環重合
してポエーテルカルポナートを与え、重合時にむしろ体
積を膨張させる。
Spiro-orthocarbonates undergo ring-opening polymerization with cationic catalysts to give polyether carbonates, which rather expand in volume during polymerization.

スピロオルトカルボナート類 これらのスピロオルトエステル類、ビシクロオルトエス
テル類、およびスピロオルトカルボナート類はルイス酸
のようなカチオン重合触媒による加熱硬化、多塩基酸お
よびその酸無水物、ポリカルホン醒樹脂、フェノール樹
脂等の硬化剤を用いて加熱硬化させることができる。ま
た分子中にアクリル基やメタクリル基を導入したものは
、電子線による硬化あるいは周知の光増感剤の存在によ
って紫外線照射による硬化が可能である。
Spiro-orthocarbonates These spiro-orthoesters, bicyclo-orthoesters, and spiro-orthocarbonates can be cured by heat using a cationic polymerization catalyst such as a Lewis acid, polybasic acids and their acid anhydrides, polycarphone-stabilized resins, and phenols. It can be cured by heating using a curing agent such as a resin. Furthermore, those having an acrylic group or a methacrylic group introduced into the molecule can be cured by electron beams or by ultraviolet irradiation in the presence of a well-known photosensitizer.

なお本発明の硬化物はガラスファイバに直接被覆しても
よいし、場合によっては、硬化時の収縮が比較的少ない
シリコーン樹脂等をあらかじめ被覆したのち被覆しても
よい。
Note that the cured product of the present invention may be directly coated on the glass fiber, or in some cases, it may be coated after being coated with a silicone resin or the like which has relatively little shrinkage during curing.

また本発明の組成物は単独で用いてもよいし、2種以上
混合して用いてもよい。ざらに、硬化時に収縮を生じな
い範囲内で仙の添加剤、例えば接着剤、反応性上ツマ、
着色剤、酸化防止剤、可撓[生付与剤、反応調整剤等を
混合しても差支えない。
Further, the composition of the present invention may be used alone or in combination of two or more. Additives such as adhesives, reactive adhesives, etc. within the range that does not cause shrinkage during curing.
Colorants, antioxidants, flexibility agents, reaction modifiers, etc. may be mixed.

また粘度を下げるため有機溶剤を用いてもよい。Furthermore, an organic solvent may be used to lower the viscosity.

本発明の組成物は補強層の19割を果たすので、通常使
用される熱可塑性樹脂を必要としないが、本発明の被覆
光ファイバの外側に熱可塑性樹脂や繊維強化プラスチッ
ク等の保護層を設けることもできる。
Since the composition of the present invention serves as 190% of the reinforcing layer, it does not require the normally used thermoplastic resin, but a protective layer such as a thermoplastic resin or fiber reinforced plastic is provided on the outside of the coated optical fiber of the present invention. You can also do that.

[実施例] 実施例1 ビスフェノールAグリシジルエーテル型エポキシ樹脂と
ε−カプロラクトンから1%られたスピロオルトエステ
ル樹脂(東亜合成化学製EXP−101>100重量部
にドデシニルこはく酸無水物72重量部を混合した組成
物と、線引速度60TrL/minで外径125μmに
線引されたマルチモード型石英カラスファイバに被覆し
、400’Cに保持された加熱炉で焼付硬化して外径2
00μmの被覆光ファイバを製造した。
[Example] Example 1 72 parts by weight of dodecynylsuccinic anhydride was mixed with 100 parts by weight of spiro-orthoester resin (EXP-101 manufactured by Toagosei Chemical Co., Ltd.) made by 1% bisphenol A glycidyl ether type epoxy resin and ε-caprolactone. The composition was coated on a multimode quartz glass fiber drawn to an outer diameter of 125 μm at a drawing speed of 60 TrL/min, and baked and hardened in a heating furnace maintained at 400'C to obtain an outer diameter of 2
A coated optical fiber of 00 μm was manufactured.

このようにして得られた被覆光ファイバの被覆物の硬化
収縮率は0.3%であり、光ファイバ歪は0.02%と
憧めて小さく、被覆光ファイバの伝送損失は通常の被覆
ファイバの値と比べ同等以下であった。
The curing shrinkage rate of the coated optical fiber thus obtained was 0.3%, the optical fiber strain was as low as 0.02%, and the transmission loss of the coated optical fiber was as low as that of a normal coated fiber. It was the same or lower than the value of .

実施例2 あらかじめ線引速度60m/minで外径125μmに
線引きされたマルチモード型石英ガラスファイバにフェ
ニル基を含有するシリコーン樹脂を外径が200!1T
rLになるように被覆し、加熱硬化させてから、直ちに
実施例1の組成物を外径が400μmになるように被覆
し、450’Cに保持された加熱炉で焼付硬化して被覆
光ファイバを製造した。このようにして得られた被覆光
ファイバの被覆物の硬化収縮率は0.4%であり、光フ
ァイバ歪は0.03%と極めて小さく、被覆光ファイバ
の伝送損失は通常の被覆ファイバの場合と同程度であっ
た。
Example 2 A silicone resin containing a phenyl group was applied to a multi-mode quartz glass fiber that had been previously drawn to an outer diameter of 125 μm at a drawing speed of 60 m/min to an outer diameter of 200!1T.
The composition of Example 1 was immediately coated with the composition of Example 1 so as to have an outer diameter of 400 μm, and baked and cured in a heating furnace maintained at 450'C to obtain a coated optical fiber. was manufactured. The curing shrinkage rate of the coated optical fiber thus obtained was 0.4%, the optical fiber strain was extremely small at 0.03%, and the transmission loss of the coated optical fiber was as low as that of a normal coated fiber. It was about the same.

実施例3 ペンタエリスリトールとトリメチルオルトプロピオナー
トの反応で得られる1〜エチル−4−ヒドロキシメチル
−2,6,7−ドリオキサビジクロ[2,2,2]オク
タンとビスフェノールへグリシジルエーテル型エポキシ
樹脂の反応によって生成した二官能性ビシクロオルトエ
ステル東亜合成化学製EXP−151>にルイス酸触媒
を添加した練成物を線引速度60m/minで外径12
5μmに線引きされたマルチモード型石英ガラスファイ
バに被覆し、400’Cに保持された加熱炉で焼付硬化
して外径200μmの被覆光ファイバを製造した。その
被)ヨ物の硬化収縮率は0.1%であり、光ファイバ歪
は0.01%と)距めて小さく、被覆光ファイバの伝送
損失は通常の被覆光ファイバの場合と同等であった。
Example 3 Glycidyl ether type epoxy to 1-ethyl-4-hydroxymethyl-2,6,7-drioxabidiclo[2,2,2]octane and bisphenol obtained by the reaction of pentaerythritol and trimethyl orthopropionate A kneaded product prepared by adding a Lewis acid catalyst to the difunctional bicycloorthoester produced by the reaction of the resin, EXP-151 manufactured by Toagosei Chemical Co., Ltd., was drawn at a drawing speed of 60 m/min to an outer diameter of 12 mm.
A multimode quartz glass fiber drawn to 5 μm was coated and baked and hardened in a heating furnace maintained at 400°C to produce a coated optical fiber with an outer diameter of 200 μm. The curing shrinkage rate of the coating is 0.1%, the optical fiber strain is 0.01%, which is comparatively small, and the transmission loss of the coated optical fiber is the same as that of ordinary coated optical fiber. Ta.

実施例4 末端にアクリル基を有するビシクロオルトエステル化合
物 に光増感剤ベンゾフェノン5重世部を添加した組成物を
線引速度60m/m r nで外径125μmに線引さ
れたマルチモード型石英ガラスファイバに被覆し、紫外
線硬化装置(120W/cm)を通過させて硬化し、被
覆外径200μmの被覆光ファイバを製造した。その被
覆物の硬化収縮率は0.2%であり、光ファイバ歪は0
.02%と極めて小さく、被覆光ファイバの伝送損失は
通常の被覆光ファイバと同等であった。
Example 4 Multi-mode quartz was drawn to an outer diameter of 125 μm at a drawing speed of 60 m/m r n using a composition in which a bicycloorthoester compound having an acrylic group at the end was added with 5 parts of a photosensitizer benzophenone. It was coated on a glass fiber and cured by passing through an ultraviolet curing device (120 W/cm) to produce a coated optical fiber with a coated outer diameter of 200 μm. The curing shrinkage rate of the coating is 0.2%, and the optical fiber strain is 0.
.. The transmission loss of the coated optical fiber was as small as 0.02%, and was equivalent to that of a normal coated optical fiber.

なお、上記実施例における被覆光ファイバの被覆物の硬
化収縮率、および周光ファイバ歪の測定方法を下記する
The method for measuring the curing shrinkage rate of the coating of the coated optical fiber and the strain on the circumferential optical fiber in the above examples will be described below.

(1)硬化収縮率 硬化前の組成物の比重をdlとし、被覆光ファイバから
剥離した硬化後の被覆物の比重をdlとする。硬化収縮
率は次式によって計算した。
(1) Curing Shrinkage Rate The specific gravity of the composition before curing is dl, and the specific gravity of the cured coating peeled from the coated optical fiber is dl. The curing shrinkage rate was calculated using the following formula.

(2)光ファイバ歪 第1図に示す測定装置を用いて、長さ100mの光ファ
イバについて変調周波数12MHzで位相差θを検出し
、測定前後における位相差の変化△θ=θ1−02を求
め、この△θがら光ファイバ歪を計算した。図において
、1は光源、2は被測定ファイバ、3はO/E変換器、
4は増幅器、5はベクトルポルトメータ、6はシンセサ
イズド標準信号発生器、ψ1、ψ2は正弦波信号の位相
である。
(2) Optical fiber distortion Using the measuring device shown in Figure 1, detect the phase difference θ at a modulation frequency of 12 MHz for an optical fiber with a length of 100 m, and find the change in phase difference Δθ = θ1-02 before and after the measurement. , the optical fiber strain was calculated from this Δθ. In the figure, 1 is a light source, 2 is a fiber to be measured, 3 is an O/E converter,
4 is an amplifier, 5 is a vector portometer, 6 is a synthesized standard signal generator, and ψ1 and ψ2 are the phases of the sine wave signal.

[発明の効果j 以上説明したように、本発明の被覆光フイ・イバは、非
収縮性の硬化性樹脂を被覆物として用いており、硬化時
に収縮しないため加工歪かほとんど残存しない。従って
、マイクロベンディングによる伝送特性への悪影響を軽
減することができる。
[Effects of the Invention j] As explained above, the coated optical fiber of the present invention uses a non-shrinkable curable resin as a coating, and since it does not shrink during curing, almost no processing strain remains. Therefore, the adverse effect of microbending on transmission characteristics can be reduced.

しかも被覆物は従来の硬化性樹脂と同様な方法で容易に
カラスファイバに被ヱすることができるため特に新規な
装置を必要とぜず、被覆光ファイバの製造には従来の装
置が適用できるなどのすぐれた工業的効果を奏すること
ができる。
Furthermore, since the coating can be easily applied to glass fibers in the same manner as conventional curable resins, no new equipment is required, and conventional equipment can be used to manufacture coated optical fibers. It can produce excellent industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光フアイバ歪測定に用いた測定装置の
構成図である。 1・・・光源、2・・・被測定ファイバ、3・・・O/
E変換器、4・・・増幅器、5・・・ベクトルボルトメ
ータ、 6・・・シンセサイズド標準信号発生器。
FIG. 1 is a configuration diagram of a measuring device used for measuring optical fiber strain according to the present invention. 1... Light source, 2... Fiber to be measured, 3... O/
E converter, 4... amplifier, 5... vector voltmeter, 6... synthesized standard signal generator.

Claims (1)

【特許請求の範囲】[Claims] (1)硬化時に非収縮性を示す硬化性樹脂により被覆さ
れる光ファイバにおいて、前記硬化性樹脂が、スピロオ
ルトエステル類、スピロオルトカルボナート類およびビ
シクロオルトエステル類から選ばれたものであることを
特徴とする被覆光ファイバ。
(1) In an optical fiber coated with a curable resin that exhibits non-shrinkage properties when cured, the curable resin is selected from spiro-orthoesters, spiro-orthocarbonates, and bicyclo-orthoesters. A coated optical fiber characterized by:
JP60236821A 1985-10-23 1985-10-23 Coated optical fiber Granted JPS6295510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60236821A JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236821A JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Publications (2)

Publication Number Publication Date
JPS6295510A true JPS6295510A (en) 1987-05-02
JPH0431563B2 JPH0431563B2 (en) 1992-05-26

Family

ID=17006280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236821A Granted JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Country Status (1)

Country Link
JP (1) JPS6295510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329907A (en) * 1989-06-28 1991-02-07 Sumitomo Electric Ind Ltd Coated optical fiber
US6004675A (en) * 1991-09-03 1999-12-21 Sumitomo Electric Industries, Ltd. Optical glass fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329907A (en) * 1989-06-28 1991-02-07 Sumitomo Electric Ind Ltd Coated optical fiber
US6004675A (en) * 1991-09-03 1999-12-21 Sumitomo Electric Industries, Ltd. Optical glass fiber

Also Published As

Publication number Publication date
JPH0431563B2 (en) 1992-05-26

Similar Documents

Publication Publication Date Title
SE503559C2 (en) Radiation curable hyperbranched polyester, its method of preparation and its use
JPH03185010A (en) Clad composition capable of hardening radiation
JPS631257B2 (en)
US5756777A (en) (Meth)acrylate having an alkenyl group, an epoxy (meth)acrylate, a (meth)acrylic resin having alkenyl groups, a (meth)acrylic resin having epoxy groups, a thermosetting resin composition, a coating composition, a powder coating composition
CA1045637A (en) Radiation curable oligomers
CA1128234A (en) Adhesive compositions
CA1089143A (en) Radiation curable epoxy ester resin containing a vinyl polymer
JPS6295510A (en) Coated optical fiber
US5557007A (en) Unsaturated polylactone acrylates and derivatives thereof
KR960035147A (en) Energy ray curable resin composition and method for producing the same
JPS61157520A (en) Curable composition
EP0656386B1 (en) Novel organopolysiloxane and method for the preparation of the same
KR970021130A (en) Radiation Curing of Dihydrofuran Derivatives
KR960007711A (en) Thermosetting Compositions Suitable for Lacquer Use
JPS5742724A (en) Curable composition
US5106924A (en) Maleic anhydride-epoxy resin prepolymer, (vinyl or isopropenyl)phenyl glycidyl ether and anhydride
US5824762A (en) Organopolysiloxane and method for the preparation of the same
DE60220114D1 (en) Process for the preparation of powdered coating material
JPS5523143A (en) Cold-setting resin composition
JPS60233114A (en) Crosslinked polymer
JPH0372647B2 (en)
JPH03215453A (en) (meth)acrylic acid ester, resin composition using the same, coating agent for heat-resistant optical fiber and their cured product
US4120875A (en) Novel curing agents derived from organothiostannoic acids
JPH029068B2 (en)
KR20010071082A (en) Method for Producing Vinyl Compounds