JPH0431563B2 - - Google Patents

Info

Publication number
JPH0431563B2
JPH0431563B2 JP60236821A JP23682185A JPH0431563B2 JP H0431563 B2 JPH0431563 B2 JP H0431563B2 JP 60236821 A JP60236821 A JP 60236821A JP 23682185 A JP23682185 A JP 23682185A JP H0431563 B2 JPH0431563 B2 JP H0431563B2
Authority
JP
Japan
Prior art keywords
optical fiber
coated
curing
coated optical
spiro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60236821A
Other languages
Japanese (ja)
Other versions
JPS6295510A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60236821A priority Critical patent/JPS6295510A/en
Publication of JPS6295510A publication Critical patent/JPS6295510A/en
Publication of JPH0431563B2 publication Critical patent/JPH0431563B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は光伝送用の光フアイバ、特に被覆光フ
アイバに関するものである。
BACKGROUND AND OBJECTS OF THE INVENTION The present invention relates to optical fibers for light transmission, and more particularly to coated optical fibers.

従来の光伝送用ガラスフアイバは、ガラスフア
イバの表面に、シリコン樹脂、エポキシ樹脂、分
子中にアクリル基のような紫外線に活性な基を有
する各種紫外線硬化性樹脂等の硬化性樹脂を被覆
している。また、さらに、熱可塑性樹脂のポリア
ミド樹脂、フツ素樹脂等の補強層を被覆すること
もある。
Conventional optical transmission glass fibers have their surfaces coated with curable resins such as silicone resins, epoxy resins, and various UV-curable resins that have UV-active groups such as acrylic groups in their molecules. There is. In addition, a reinforcing layer of thermoplastic resin such as polyamide resin or fluororesin may be further coated.

しかし、これらの硬化性樹脂は硬化時に収縮す
ることが知られており、この収縮による歪や内部
応力の発生等が光フアイバの性能に悪影響を及ぼ
すことが懸念される。特に剛性率の大きい硬化性
樹脂を二次被覆したときにこの弊害があらわれる
可能性がある。また光フアイバの被覆に使われる
熱可塑性樹脂は結晶性ポリマであるための加工歪
を生成しやすい。この歪が残存すると光フアイバ
の性能を損う可能性があつた。これらの樹脂を適
切な製造条件で被覆することによりある程度歪の
小さい被覆光フアイバを提供することは可能であ
るが、しかしながら、そのためには厳密な製造条
件の制御を必要とする。
However, these curable resins are known to shrink during curing, and there is a concern that distortion and internal stress caused by this shrinkage may adversely affect the performance of the optical fiber. This problem may occur especially when a curable resin having a high rigidity is used as a secondary coating. Furthermore, since the thermoplastic resin used to coat the optical fiber is a crystalline polymer, processing distortion is likely to occur. If this distortion remained, there was a possibility that the performance of the optical fiber would be impaired. Although it is possible to provide a coated optical fiber with a certain degree of low strain by coating these resins under appropriate manufacturing conditions, this requires strict control of manufacturing conditions.

本発明の目的は、かかる従来技術の難点を解消
し、加工歪が小さくしかも製造することが容易な
被覆光フアイバを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the drawbacks of the prior art and to provide a coated optical fiber that has low processing distortion and is easy to manufacture.

[発明の概要] 本発明は、硬化時に非収縮性を示す硬化性樹脂
により被覆される光フアイバにおいて、前記硬化
性樹脂が、スピロオルトエステル類、スピロオル
トカルボナート類、およびビシクロオルトエステ
ル類から選ばれたものであることを特徴とする。
[Summary of the Invention] The present invention provides an optical fiber coated with a curable resin that exhibits non-shrinkage properties upon curing, wherein the curable resin is made of spiro-orthoesters, spiro-orthocarbonates, and bicyclo-orthoesters. It is characterized by being selected.

ここで、硬化時に非収縮性を示す硬化性樹脂と
は、硬化前は液状の組成物であつて硬化後に不溶
性の三次元網目状固体組成物になるものであつ
て、かつ、硬化によつて体積収縮を全く示さない
か、あるいは僅かに体積収縮または膨張するもの
である。本発明で許容される体積収縮率は特に規
定するものではないが、好ましくは1%以下であ
るものをいう。なお、硬化前の室温時には固形で
あつても、加熱等によつて液状になるものは、液
状組成物とする。すなわち、塗装時に液状である
ものは本発明の範囲に入る。また、硬化時に非収
縮性を示す硬化性樹脂としては分子設計上種々の
ものが考えられるが、硬化時に開環重合を利用す
るものが該当する。具体的にはスピロオルトエス
テル類、ジシクロオルトエステル類、およびスピ
ロオルトカルボナート類からなる組成物が該当す
る。
Here, a curable resin that exhibits non-shrinkage properties when cured is one that is a liquid composition before curing and becomes an insoluble three-dimensional network solid composition after curing, and that It shows no volumetric contraction or only slight volumetric contraction or expansion. The volume shrinkage rate permissible in the present invention is not particularly limited, but is preferably 1% or less. Note that even if the composition is solid at room temperature before curing, it becomes liquid upon heating or the like, and this is considered to be a liquid composition. That is, materials that are liquid at the time of coating fall within the scope of the present invention. In addition, various types of curable resins that exhibit non-shrinkage properties during curing can be considered in terms of molecular design, but those that utilize ring-opening polymerization during curing are suitable. Specifically, compositions consisting of spiro-orthoesters, dicycloorthoesters, and spiro-orthocarbonates are applicable.

スピロオルトエステル類は例えばエポキシ化合
物とラクトン類から次のように合成される。な
お、この化合物は重合時に次式のように開環す
る。
Spiroorthoesters are synthesized, for example, from epoxy compounds and lactones as follows. Incidentally, this compound undergoes ring opening during polymerization as shown in the following formula.

例えばエピクロルヒドリンとラクトン類の反応
による不飽和スピロオルトエステル類、 があげられる。この化合物は無水マレイン酸、マ
レイミド類と反応し、交互共重合体となる。また
アクリロニトリル、メチルメタクリレート等との
ラジカル共重合体を与え、カチオン触媒で処理す
るとスピロオルトエステル基が開環架橋し、非収
縮性の硬化物を与える。
For example, unsaturated spiro-orthoesters produced by the reaction of epichlorohydrin and lactones, can be given. This compound reacts with maleic anhydride and maleimides to form an alternating copolymer. Furthermore, when a radical copolymer with acrylonitrile, methyl methacrylate, etc. is prepared and treated with a cationic catalyst, the spiro-orthoester group undergoes ring-opening crosslinking, giving a non-shrinkable cured product.

ビシクロオルトエステル類はニトリル類とアル
コール類との反応で容易に得られるオルトエステ
ル類とトリオールから得られる。
Bicycloorthoesters are obtained from orthoesters and triols, which are easily obtained by reacting nitriles and alcohols.

または、 またビシクロエステル構造をもつウレタン、二
官能性モノマ、ビニルモノマ、アクリレート、お
よびメタクリレート類もそれぞれ開環重合して非
収縮性を示す硬化物を与える。
or Further, urethane having a bicycloester structure, difunctional monomer, vinyl monomer, acrylate, and methacrylate are each subjected to ring-opening polymerization to give a cured product exhibiting non-shrinkage properties.

スピロオルトカルボナート類はカチオン触媒で
開環重合してポエーテルカルボナートを与え、重
合時にむしろ体積を膨張させる。
Spiro-orthocarbonates undergo ring-opening polymerization with cationic catalysts to give polyether carbonates, which rather expand in volume during polymerization.

これらのスピロオルトエステル類、ビシクロオ
ルトエステル類、およびスピロオルトカルボナー
ト類はルイス酸のようなカチオン重合触媒による
加熱硬化、多塩基酸およびその酸無水物、ポリカ
ルボン酸樹脂、フエノール樹脂等の硬化剤を用い
て加熱硬化させることができる。また分子中にア
クリル基やメタクリル基を導入したものは、電子
線による硬化あるいは周知の光増感剤の存在によ
つて紫外線照射による硬化が可能である。
These spiro-orthoesters, bicyclo-orthoesters, and spiro-orthocarbonates can be cured by heating using a cationic polymerization catalyst such as a Lewis acid, or by curing polybasic acids and their acid anhydrides, polycarboxylic acid resins, phenolic resins, etc. It can be heated and cured using a chemical agent. Furthermore, those having an acrylic group or a methacrylic group introduced into the molecule can be cured by electron beams or by ultraviolet irradiation in the presence of a known photosensitizer.

なお本発明の硬化物はガラスフアイバに直接被
覆してもよいし、場合によつては、硬化時の収縮
が比較的少ないシリコーン樹脂等をあらかじめ被
覆したのち被覆してもよい。
The cured product of the present invention may be directly coated on the glass fiber, or in some cases, the glass fiber may be coated after being coated with a silicone resin or the like which has relatively little shrinkage during curing.

また本発明の組成物は単独で用いてもよいし、
2種以上混合して用いてもよい。さらに、硬化時
に収縮を生じない範囲内で他の添加剤、例えば接
着剤、反応性モノマ、着色剤、酸化防止剤、可撓
性付与剤、反応調整剤等を混合しても差支えな
い。また粘度を下げるため有機溶剤を用いてもよ
い。
Moreover, the composition of the present invention may be used alone,
Two or more types may be mixed and used. Furthermore, other additives such as adhesives, reactive monomers, colorants, antioxidants, flexibility imparters, reaction regulators, etc. may be mixed within the range that does not cause shrinkage during curing. Furthermore, an organic solvent may be used to lower the viscosity.

本発明の組成物は補強層の役割を果たすので、
通常使用される熱可塑性樹脂を必要としないが、
本発明の被覆光フアイバの外側に熱可塑性樹脂や
繊維強化プラスチツク等の保護層を設けることも
できる。
Since the composition of the present invention acts as a reinforcing layer,
Does not require the normally used thermoplastics, but
A protective layer of thermoplastic resin, fiber-reinforced plastic, or the like can also be provided on the outside of the coated optical fiber of the present invention.

[実施例] 実施例 1 ビスフエノールAグリシジルエーテル型エポキ
シ樹脂とε−カプロラクトンから得られたスピロ
オルトエステル樹脂(東亜合成化学製EXP−
101)100重量部にドデシニルこはく酸無水物72重
量部を混合した組成物と、線引速度60m/minで
外径125μmに線引されたマルチモード型石英ガラ
スフアイバに被覆し、 400℃に保持された加熱炉で焼付硬化して外径
200μmの被覆光フアイバを製造した。
[Example] Example 1 Spiroorthoester resin obtained from bisphenol A glycidyl ether type epoxy resin and ε-caprolactone (EXP- manufactured by Toagosei Chemical Co., Ltd.)
101) A multimode quartz glass fiber drawn to an outer diameter of 125 μm at a drawing speed of 60 m/min was coated with a composition prepared by mixing 100 parts by weight with 72 parts by weight of dodecynylsuccinic anhydride and maintained at 400°C. The outer diameter is baked and hardened in a heated furnace.
A 200μm coated optical fiber was fabricated.

このようにして得られた被覆光フアイバの被覆
物の硬化収縮率は0.3%であり、光フアイバ歪は
0.02%と極めて小さく、被覆光フアイバの伝送損
失は通常の被覆フアイバの値と比べ同等以下であ
つた。
The curing shrinkage rate of the coated optical fiber thus obtained was 0.3%, and the optical fiber strain was
It was extremely small at 0.02%, and the transmission loss of the coated optical fiber was equal to or lower than that of a normal coated fiber.

実施例 2 あらかじめ線引速度60m/minで外径125μmに
線引きされたマルチモード型石英ガラスフアイバ
にフエニル基を含有するシリコーン樹脂を外径が
200μmになるように被覆し、加熱硬化させてか
ら、直ちに実施例1の組成物を外径が400μmにな
るように被覆し、450℃に保持された加熱炉で焼
付硬化して被覆光フアイバを製造した。このよう
にして得られた被覆光フアイバの被覆物の硬化収
縮率は0.4%であり、光フアイバ歪は0.03%と極
めて小さく、被覆光フアイバの伝送損失は通常の
被覆フアイバの場合と同程度であつた。
Example 2 A silicone resin containing a phenyl group was applied to a multimode quartz glass fiber that had been previously drawn to an outer diameter of 125 μm at a drawing speed of 60 m/min.
The coated optical fiber was coated to a thickness of 200 μm and cured by heating, and then immediately coated with the composition of Example 1 to have an outer diameter of 400 μm, and baked and cured in a heating furnace maintained at 450° C. to form a coated optical fiber. Manufactured. The curing shrinkage rate of the coated optical fiber thus obtained was 0.4%, the optical fiber strain was extremely small at 0.03%, and the transmission loss of the coated optical fiber was about the same as that of ordinary coated fiber. It was hot.

実施例 3 ペンタエリスリトールとトリメチルオルトプロ
ピオナートの反応で得られる1−エチル−4−ヒ
ドロキシメチル−2,6,7−トリオキサビジク
ロ[2,2,2]オクタンとビスフエノールAグ
リシジルエーテル型エポキシ樹脂の反応によつて
生成した二官能性ビシクロオルトエステル(東亜
合成化学製EXP−151)にルイス酸触媒を添加し
た組成物を線引速度60m/minで外径125μmに線
引きされたマルチモード型石英ガラスフアイバに
被覆し、400℃に保持された加熱炉で焼付硬化し
て外径200μmの被覆光フアイバを製造した。その
被覆物の硬化収縮率は0.1%であり、光フアイバ
歪は0.01%と極めて小さく、被覆光フアイバの伝
送損失は通常の被覆光フアイバの場合と同等であ
つた。
Example 3 1-ethyl-4-hydroxymethyl-2,6,7-trioxabidiclo[2,2,2]octane and bisphenol A glycidyl ether type obtained by reaction of pentaerythritol and trimethyl orthopropionate A multimode wire was drawn to an outer diameter of 125 μm at a drawing speed of 60 m/min from a composition in which a Lewis acid catalyst was added to a bifunctional bicycloorthoester (EXP-151 manufactured by Toagosei Chemical Co., Ltd.) produced by the reaction of an epoxy resin. A coated optical fiber with an outer diameter of 200 μm was produced by coating a molded quartz glass fiber and baking hardening it in a heating furnace maintained at 400°C. The curing shrinkage rate of the coating was 0.1%, the optical fiber strain was extremely small at 0.01%, and the transmission loss of the coated optical fiber was equivalent to that of a normal coated optical fiber.

実施例 4 末端にアクリル基を有するビシクロオルトエス
テル化合物 に光増感剤ベンゾフエノン5重量部を添加した組
成物を線引速度60m/minで外径125μmに線引さ
れたマルチモード型石英ガラスフアイバに被覆
し、紫外線硬化装置(120W/cm)を通過させて
硬化し、被覆外径200μmの被覆光フアイバを製造
した。その被覆物の硬化収縮率は0.2%であり、
光フアイバ歪は0.02%と極めて小さく、被覆光フ
アイバの伝送損失は通常の被覆光フアイバと同等
であつた。
Example 4 Bicycloorthoester compound having an acrylic group at the end A composition containing 5 parts by weight of the photosensitizer benzophenone was coated on a multimode quartz glass fiber drawn to an outer diameter of 125 μm at a drawing speed of 60 m/min, and passed through an ultraviolet curing device (120 W/cm). The coated optical fiber was cured to produce a coated optical fiber with a coated outer diameter of 200 μm. The curing shrinkage rate of the coating is 0.2%,
The optical fiber strain was extremely small at 0.02%, and the transmission loss of the coated optical fiber was equivalent to that of a normal coated optical fiber.

なお、上記実施例における被覆光フアイバの被
覆物の硬化収縮率、および同光フアイバ歪の測定
方法を下記する。
The method for measuring the curing shrinkage rate of the coating of the coated optical fiber and the strain of the coated optical fiber in the above examples will be described below.

(1) 硬化収縮率 硬化前の組成物の比重をd1とし、被覆光フアイ
バから剥離した硬化後の被覆物の比重をd2とす
る。硬化収縮率は次式によつて計算した。
(1) Curing shrinkage rate The specific gravity of the composition before curing is d1 , and the specific gravity of the cured coating peeled from the coated optical fiber is d2 . The curing shrinkage rate was calculated using the following formula.

硬化収縮率(%)=d2−d1/d2×100 (2) 光フアイバ歪 第1図に示す測定装置を用いて、長さ100mの
光フアイバについて変調周波数12MHzで位相差θ
を検出し、測定前後における位相差の変化Δθ=
θ1−θ2を求め、このΔθから光フアイバ歪を計算
した。図において、1は光源、2は被測定フアイ
バ、3はO/E変換器、4は増幅器、5はベクト
ルボルトメータ、6はシンセサイズド標準信号発
生器、ψ1,ψ2は正弦波信号の位相である。
Curing shrinkage rate (%) = d 2 − d 1 /d 2 ×100 (2) Optical fiber distortion Using the measuring device shown in Figure 1, the phase difference θ was measured for an optical fiber with a length of 100 m at a modulation frequency of 12 MHz.
is detected, and the change in phase difference before and after measurement Δθ=
θ 1 −θ 2 was determined, and the optical fiber strain was calculated from this Δθ. In the figure, 1 is a light source, 2 is a fiber to be measured, 3 is an O/E converter, 4 is an amplifier, 5 is a vector voltmeter, 6 is a synthesized standard signal generator, ψ 1 and ψ 2 are sine wave signals is the phase of

[発明の効果] 以上説明したように、本発明の被覆光フイイバ
は、非収縮性の硬化性樹脂を被覆物として用いて
あり、硬化時に収縮しないため加工歪がほとんど
残存しない。従つて、マイクロベンデイングによ
る伝送特性への悪影響を軽減することができる。
[Effects of the Invention] As explained above, the coated optical fiber of the present invention uses a non-shrinkable curable resin as a coating, and does not shrink during curing, so that almost no processing strain remains. Therefore, the adverse effect of microbending on transmission characteristics can be reduced.

しかも被覆物は従来の硬化性樹脂と同様な方法
で容易にガラスフアイバに被覆することができる
ため特に新規な装置を必要とせず、被覆光フアイ
バの製造には従来の装置が適用できるなどのすぐ
れた工業的効果を奏することができる。
Moreover, since the coating can be easily coated on glass fibers in the same manner as conventional curable resins, no new equipment is required, and conventional equipment can be used to manufacture coated optical fibers. It can produce industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光フアイバ歪測定に用いた測
定装置の構成図である。 1……光源、2……被測定フアイバ、3……
O/E変換器、4……増幅器、5……ベクトルボ
ルトメータ、6……シンセサイズド標準信号発生
器。
FIG. 1 is a configuration diagram of a measuring device used for measuring optical fiber strain according to the present invention. 1... Light source, 2... Fiber to be measured, 3...
O/E converter, 4... amplifier, 5... vector voltmeter, 6... synthesized standard signal generator.

Claims (1)

【特許請求の範囲】[Claims] 1 硬化時に非収縮性を示す硬化性樹脂により被
覆される光フアイバにおいて、前記硬化性樹脂
が、スピロオルトエステル類、スピロオルトカル
ボナート類およびビシクロオルトエステル類から
選ばれたものであることを特徴とする被覆光フア
イバ。
1. An optical fiber coated with a curable resin that exhibits non-shrinkage properties upon curing, characterized in that the curable resin is selected from spiro-orthoesters, spiro-orthocarbonates, and bicyclo-orthoesters. coated optical fiber.
JP60236821A 1985-10-23 1985-10-23 Coated optical fiber Granted JPS6295510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60236821A JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60236821A JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Publications (2)

Publication Number Publication Date
JPS6295510A JPS6295510A (en) 1987-05-02
JPH0431563B2 true JPH0431563B2 (en) 1992-05-26

Family

ID=17006280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60236821A Granted JPS6295510A (en) 1985-10-23 1985-10-23 Coated optical fiber

Country Status (1)

Country Link
JP (1) JPS6295510A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329907A (en) * 1989-06-28 1991-02-07 Sumitomo Electric Ind Ltd Coated optical fiber
JPH0560953A (en) * 1991-09-03 1993-03-12 Sumitomo Electric Ind Ltd Glass fiber for optical transmission

Also Published As

Publication number Publication date
JPS6295510A (en) 1987-05-02

Similar Documents

Publication Publication Date Title
US20120201965A1 (en) Multi-phase self-stratifying coating exhibiting gradient behavior
JPH02625A (en) Reactive covering material containing acid functional compound, acid anhydride functional compound, epoxy functional compound, and hydroxy functional compound
US3954712A (en) Hot-curable mixtures based on epoxide resin
JPS631257B2 (en)
ATE165374T1 (en) HEAT CURING GLYCIDYL MODIFIED ACRYLIC POWDER COATINGS
US8492001B2 (en) Self-stratifying coating
KR950704414A (en) AN ACID-EPOXY-MELAMINE COATING COMPOSITION MODIFIED WITH A SILALE POLYMER
US3878076A (en) Photocurable composition and a method of preparing same
CA1089143A (en) Radiation curable epoxy ester resin containing a vinyl polymer
EP0069363B1 (en) Use of a coating material for optical glass fibers
JPH0431563B2 (en)
US5298291A (en) Epoxy-functional fluoropolyol polyacrylate coating of optical fibers
KR960035147A (en) Energy ray curable resin composition and method for producing the same
US4396645A (en) Coated optical glass fibers and method for production thereof
JPS61157520A (en) Curable composition
JPH06172445A (en) Epoxy resin with acrylic or methacrylic radical
EP0656386B1 (en) Novel organopolysiloxane and method for the preparation of the same
US5106924A (en) Maleic anhydride-epoxy resin prepolymer, (vinyl or isopropenyl)phenyl glycidyl ether and anhydride
KR960007711A (en) Thermosetting Compositions Suitable for Lacquer Use
US5824762A (en) Organopolysiloxane and method for the preparation of the same
DE60220114D1 (en) Process for the preparation of powdered coating material
JPH01158404A (en) Plastic clad optical fiber and clad material
AU601819B2 (en) Anhydride-based fortifiers for anhydride-cured epoxy resins
JPH029068B2 (en)
KR20010071082A (en) Method for Producing Vinyl Compounds