JPS6295401A - Position detecting device - Google Patents

Position detecting device

Info

Publication number
JPS6295401A
JPS6295401A JP23675385A JP23675385A JPS6295401A JP S6295401 A JPS6295401 A JP S6295401A JP 23675385 A JP23675385 A JP 23675385A JP 23675385 A JP23675385 A JP 23675385A JP S6295401 A JPS6295401 A JP S6295401A
Authority
JP
Japan
Prior art keywords
coil
detected
detection
electromotive force
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23675385A
Other languages
Japanese (ja)
Inventor
Tatsuro Koike
達郎 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP23675385A priority Critical patent/JPS6295401A/en
Publication of JPS6295401A publication Critical patent/JPS6295401A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a noncontacting position detecting device which is affect by neither heat nor vibration by bending lines of magnetic force produced by flowing a current through an exciting coil nearby to be detected and then generating induced electromotive force at a detection coil, and thus detecting the position of the body to be detected. CONSTITUTION:Coil couples 1-(n) consisting of exciting coils B and detection coils C arranged above them are arranged above a plate A made of a ferromagnetic material and the body D to be detected which is made of a ferromagnetic material is provided in a right-left movable state above the detection coil C. A rectangular current is flowed to the exciting coils and coil units where the current is flowed are shifted in the order of 1 2 ... (n) at every period of the rectangular wave. The coil unit 6 nearby the object body D generates large electromotive force. When the body to be detected is detected, a constant threshold voltage VTH which has intermediate value of electromotive force different according to whether there is the body to be detected or not is provided and this VTH is compared with electromotive force generated at each detection coil to detect which coil couple the body to be detected is present nearby.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本9′i!iす1は被検出物体の位置を非接触で検出す
ることができる位置検出装置に関する。
[Detailed description of the invention] [Industrial application field] Book 9'i! iS1 relates to a position detection device that can detect the position of a detected object in a non-contact manner.

〔本発明の目的〕[Object of the present invention]

木発11は熱や振動に影響されず、しかも構造が簡単で
保守の容易な非接触の位置検出装置を実現するものであ
る。
The wood spring 11 realizes a non-contact position detection device that is not affected by heat or vibration, has a simple structure, and is easy to maintain.

〔作用〕[Effect]

励磁コイルに電流を流すことにより生ずる磁力線が、被
検出物の接近によって曲げられ、検出コイルに誘導起電
力が発生することで被検出物の位こを検出する。
The magnetic lines of force generated by passing a current through the excitation coil are bent by the approach of the object to be detected, and an induced electromotive force is generated in the detection coil, thereby detecting the position of the object.

〔実施例〕〔Example〕

以下本発明の一実施例を添付図面に示す几体例により詳
細に説IJIする。
Hereinafter, one embodiment of the present invention will be explained in detail with reference to an example of a structure shown in the accompanying drawings.

第1図において1強磁性体で構成される適当な長さをも
った板Aの北部には励磁コイルBとその上部に配置した
検出コイルCとでなるコイル対1.2.3Φ・・nが配
置してあり、検出コイルCの上部には強磁性体でなる被
検出物りが左右方向に移動可鋤に設けである。
In Fig. 1, a coil pair 1.2.3Φ...n consisting of an excitation coil B and a detection coil C placed above it is located in the northern part of a plate A having an appropriate length and made of a ferromagnetic material. A detection object made of a ferromagnetic material is provided above the detection coil C so as to be movable in the left and right direction.

上述した構成において、第2図に示す矩形波状の1rL
流を励磁コイルへ4次流し、矩形波の1周期毎に電流を
流すコイルユニットを1→2→3→・・・→nと順次変
えて行くものとする。
In the above configuration, the rectangular wave 1rL shown in FIG.
It is assumed that the current is passed to the excitation coil in a fourth order, and the coil unit through which the current flows is sequentially changed from 1→2→3→...→n every cycle of the rectangular wave.

被検出物りが近くにないコイル対(tjS1図1、?、
3.4.5.7・・・n)では検出コイルに発生する起
iH力は小さく、被検出物体が近くにあるコイル対(第
1図では6)では大きな起電力が発生し、n個の検出コ
イルを直列に接続したものの両端に発生する電圧はft
53図のようになる。第4図は第1図に示す6番目のコ
イル対の構成要素を取りだして水平方向から見た図で、
第5図(a)は検出コイルC上に被検出物りが無い場合
、(b)は検出コイルC上に被検出物体が有る場合を示
す。
Coil pair where the object to be detected is not nearby (tjS1 Fig. 1, ?,
3.4.5.7...n), the iH force generated in the detection coil is small, and a large electromotive force is generated in the coil pair (6 in Figure 1) where the detected object is nearby, and The voltage generated across the detection coils connected in series is ft.
It will look like Figure 53. FIG. 4 is a horizontal view of the components of the sixth coil pair shown in FIG.
5(a) shows a case where there is no object to be detected on the detection coil C, and FIG. 5(b) shows a case where there is an object to be detected on the detection coil C.

励磁コイルBには第4図の矢印の向きの’itt流を流
すものとし、この電流の向きを第5図では紙面に垂直に
表→裏に流れる場合を×、裏→表に流れる場合を拳で表
わす。
It is assumed that an 'itt current flows in the direction of the arrow in Fig. 4 through the excitation coil B. In Fig. 5, the direction of this current is shown as x when it flows perpendicular to the page from the front to the back, and when it flows from the back to the front. Represent with a fist.

励磁コイルBに上記の向きで電流を流すと(a)図に示
す向きに磁束が発生するが、励磁コイルBより発生した
磁束の分布は強磁性体の透Gi率が空気のそれに比べて
極めて大きいため、下側(強磁性体板側)にかたよった
ものになる、  しかしくb)図のように検出コイル上
部に被検出物りが接近すると被検出物体りは透磁率の高
い強磁性体であるため磁力線の分111は上側(コイル
B側)に広がった分子lJをする。ところで、電磁誘導
の法則によれば、コイルに発生する起電力eはコイルに
鎖交する磁束Φの時間変化に比例し くただしNはコイルの巻数) なる起電力を発生する。このため励磁コイルBに流す電
流を第2図に示す様に各コイル対に゛順次矩形波を流せ
ば、検出コイルに発生する磁束も時間的に変化するもの
が得られる。
When a current is passed through the excitation coil B in the above direction, magnetic flux is generated in the direction shown in the diagram (a), but the distribution of the magnetic flux generated from the excitation coil B shows that the Gi permeability of the ferromagnetic material is extremely higher than that of air. Because it is large, it is biased towards the bottom (ferromagnetic plate side). However, as shown in the figure, when the object to be detected approaches the top of the detection coil, the object to be detected is a ferromagnetic material with high magnetic permeability. Therefore, the magnetic field line component 111 forms a molecule lJ that spreads upward (toward the coil B side). By the way, according to the law of electromagnetic induction, the electromotive force e generated in the coil is proportional to the time change of the magnetic flux Φ interlinking with the coil, where N is the number of turns of the coil. For this reason, if the current flowing through the excitation coil B is sequentially made to flow in a rectangular wave through each coil pair as shown in FIG. 2, the magnetic flux generated in the detection coil can also be changed over time.

このように励磁コイルBに流す電流を変化させて、検出
コイルCの起電力を検出するとコイル対6の検出コイル
Cに鎖交する磁束数は他のコイル対の検出コイルに鎖交
する磁束より多いため、発生する起電力も大きくなる。
When the electromotive force of the detection coil C is detected by changing the current flowing through the excitation coil B in this way, the number of magnetic fluxes interlinking to the detection coil C of coil pair 6 is greater than the magnetic flux interlinking to the detection coils of other coil pairs. Since there are many, the generated electromotive force also becomes large.

この検出は被検出物体の有無によって異なる起電力の中
間の値を持つ一定田値1[圧VT)lを3図のごとく設
け、このVTRと検出コイルに発生する起電力との比較
を行う事により被検出物体が現在どのコイル対の近くに
あるかを検出する事ができる。
This detection is performed by setting a constant value 1 [voltage VT)l, which has an intermediate value of the electromotive force that differs depending on the presence or absence of the object to be detected, as shown in Figure 3, and comparing the electromotive force generated in this VTR and the detection coil. Accordingly, it is possible to detect which coil pair the object to be detected is currently near.

具体的な一方式として、励磁コイルに流す矩形波状の波
形をカウンタ等でat a L、検出コイルの起電力が
VTHを超した瞬間に計数を中止さ仕る方式が考えられ
る。ただしコイル対1の励磁コイルに電流を波す前にカ
ウンタをリセットし、計数をOにしておく必要がある。
As a specific method, a method can be considered in which a rectangular waveform applied to an excitation coil is set at a L by a counter or the like, and counting is stopped at the moment the electromotive force of the detection coil exceeds VTH. However, before applying current to the excitation coil of coil pair 1, it is necessary to reset the counter and set the count to O.

この方式であれば被検出物体の位置を分解能1/nにて
検出できる。
With this method, the position of the object to be detected can be detected with a resolution of 1/n.

又、被検出物体がコイル対nとn+1の中間に :存在
する場合でVTHを超す起電力が2つ以上のコイル対で
発生した場合にはその平均値を取る等の計数方法を行う
!ISにより分解能をさらに向上させる事も可鋤である
Also, if the object to be detected exists between coil pairs n and n+1, and an electromotive force exceeding VTH is generated in two or more coil pairs, a counting method such as taking the average value is used! It is also possible to further improve the resolution using IS.

〔末完lJjの効果〕[Effect of final completion lJj]

以上のように本発明によれば熱や振動などに影響されず
、しかも簡単な構造の装とで物体の位置を検出すること
ができる。また磁力を用いているため汚濁した液等に使
用する液面計や流jJ計にも用いることができる利点が
ある。
As described above, according to the present invention, the position of an object can be detected without being affected by heat, vibration, etc., and with a device having a simple structure. Furthermore, since it uses magnetic force, it has the advantage that it can also be used in liquid level meters and flow meters used for polluted liquids.

4図面の簡単な説IJI 第1図は本発明に係る位置検出塁の一実施例を示した図
、第2図は励磁コイルに流す電流波形図、第3図は検出
コイルに誘起される電流の波形図、第4図は特定のコイ
ル対を取り出した斜視図、第5図(+)は被検出物がな
い状態における励磁コイルの磁束分布を示す図、(b)
は被検出物が接近した状態における励磁コイルの磁束分
布を示す図である。
4 Brief explanation of the drawings IJI Fig. 1 is a diagram showing an embodiment of the position detection base according to the present invention, Fig. 2 is a waveform diagram of the current flowing through the exciting coil, and Fig. 3 is the current induced in the detection coil. Figure 4 is a perspective view of a specific coil pair, Figure 5 (+) is a diagram showing the magnetic flux distribution of the excitation coil when there is no object to be detected, (b)
2 is a diagram showing the magnetic flux distribution of the excitation coil in a state where the object to be detected approaches. FIG.

4中4th grade

Claims (1)

【特許請求の範囲】[Claims] 強磁性体でなる板の側近に励磁コイルとこれに近接して
設けられた検出コイルでなるコイル対を適当な数だけ配
設し、前記検出コイルの近くに強磁性体でなる被検出物
体が板の接線にコイル対して平行に移動するようにし、
励磁コイルに電流を流すことにより発生する磁力線が被
検出物体により曲げられることで、検出コイルに発生す
る誘起電圧を検出して被検出物体の位置を検出すること
を特徴とする位置検出装置。
An appropriate number of coil pairs consisting of an excitation coil and a detection coil provided close to this are arranged near a plate made of a ferromagnetic material, and an object to be detected made of a ferromagnetic material is placed near the detection coil. Make it move parallel to the coil on the tangent line of the plate,
A position detection device that detects the position of a detected object by detecting an induced voltage generated in a detection coil when magnetic lines of force generated by passing a current through an excitation coil are bent by the detected object.
JP23675385A 1985-10-22 1985-10-22 Position detecting device Pending JPS6295401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23675385A JPS6295401A (en) 1985-10-22 1985-10-22 Position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23675385A JPS6295401A (en) 1985-10-22 1985-10-22 Position detecting device

Publications (1)

Publication Number Publication Date
JPS6295401A true JPS6295401A (en) 1987-05-01

Family

ID=17005280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23675385A Pending JPS6295401A (en) 1985-10-22 1985-10-22 Position detecting device

Country Status (1)

Country Link
JP (1) JPS6295401A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629202A (en) * 1979-07-23 1981-03-24 Pirelli General Cable Works Optical fiber cable
JPS5845642A (en) * 1981-07-31 1983-03-16 Clarion Co Ltd Magnetic tape device
JPS58122403A (en) * 1982-01-13 1983-07-21 Fuji Heavy Ind Ltd Position detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629202A (en) * 1979-07-23 1981-03-24 Pirelli General Cable Works Optical fiber cable
JPS5845642A (en) * 1981-07-31 1983-03-16 Clarion Co Ltd Magnetic tape device
JPS58122403A (en) * 1982-01-13 1983-07-21 Fuji Heavy Ind Ltd Position detector

Similar Documents

Publication Publication Date Title
US4774465A (en) Position sensor for generating a voltage changing proportionally to the position of a magnet
KR840002524A (en) Device for detecting metal body
KR970028544A (en) Magnetic component concentration measuring method and apparatus
KR20060012240A (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
CA2135583A1 (en) Coil Monitoring Device
DE69313630D1 (en) MAGNETIZATION OF PERMANENT MAGNETIC TAPE MATERIALS
KR890013487A (en) Fluxgate magnetometer device with wide temperature range accuracy and fluxgate adjustment method for temperature compensation in the device
US2810880A (en) Apparatus for detecting magnetic objects or the like
CN109073715A (en) Magnet sensor arrangement
US6078172A (en) Current-compensated current sensor for hysteresis-independent and temperature-independent current measurement
JPS6295401A (en) Position detecting device
Shindo et al. High frequency nonlinear modeling of magnetic sheets using polynomial expansions for eddy-current field
US2636158A (en) Magnetic saturation device
JPH03191870A (en) Method for detecting current for both ac and dc
JP2000266786A (en) Current sensor
KR920008489A (en) Inspection device by electromagnetic induction
JPS6295425A (en) Magnetic flux type flow meter
SU1742745A1 (en) Device for non-contact measurement of electrical conduction of active systems
JPS6295426A (en) Magnetic flux type liquid level gauge
Klopper et al. A sensor for balancing flux in converters with a high frequency transformer link
SU563653A1 (en) Apparatus for measuring ferromagnetic material coercivity force
RU2023235C1 (en) Magneto-modulated induction pickup of linear movement
JPS57165717A (en) Detecting device for stress
JPH0355905Y2 (en)
SU7570A1 (en) Permanent magnetization device