JPS6294903A - Manufacture of multipolar magnet - Google Patents

Manufacture of multipolar magnet

Info

Publication number
JPS6294903A
JPS6294903A JP23444585A JP23444585A JPS6294903A JP S6294903 A JPS6294903 A JP S6294903A JP 23444585 A JP23444585 A JP 23444585A JP 23444585 A JP23444585 A JP 23444585A JP S6294903 A JPS6294903 A JP S6294903A
Authority
JP
Japan
Prior art keywords
pole
molded body
magnetic flux
projected portion
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23444585A
Other languages
Japanese (ja)
Inventor
Yoji Arita
陽二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd, Mitsubishi Kasei Corp filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP23444585A priority Critical patent/JPS6294903A/en
Publication of JPS6294903A publication Critical patent/JPS6294903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a multipolar magnet of polar orientation magnetization by causing the projected portions of the uneven yoke of a magnetizer which are formed at a same pitch to abut on both opposed surfaces of a molded form made of a magnet material with a half pitch shifted, allowing a magnetic flux to flow to apply a pseudo- polar orientation, and thereafter applying magnetization of alternating polarities to the portion on which the projected portion of either surface wave abutting. CONSTITUTION:When pole pieces 1, 1' are excited, the magnetic flux phi generated by this obliquely crosses a molded form 20 from a projected portion 5A of the outer pole 3 and enters a projected portion 7A of the opposite inner pole 6, and returns to the pole pieces 1, 1'. By this, a pseudo-polar orientation is applied to the molded form 20. Then, the magnetizing poles 11, 12 of a magnetizer is abutted on the position on which the projected portion of either surface of the molded form 20, for instance, the projected portion 5A of the outer surface wave abutting. And, if a current is caused to flow through coils 13, 14 in such directions as to generate magnetic fluxes of N- and S-poles, respectively, the magnetic flux phi flows in the direction from the magnetizing pole 11 to the magnetizing pole 12, performing polar orientation magnetization of only one surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁石材料よりなる成形体の一面にN極、S極
を近接して形成させる多極磁石の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a multipolar magnet in which N and S poles are formed close to each other on one surface of a molded body made of magnetic material.

〔従来の技術〕[Conventional technology]

第3図はラジアル配向磁石に着磁されたリング状磁石の
説明図で、磁化の方向がラジアル方向であり、フェライ
ト等の磁石粉末を成形したものや、サマリウム−コバル
ト合金などJ! !−,類元素を含む合金などの磁性材
料よりなる成形体20に外方から内方へ、内方から外方
へと交〃に磁界をかけてN極とS極とを交互に形成する
ものである。
Fig. 3 is an explanatory diagram of a ring-shaped magnet magnetized by a radially oriented magnet, in which the direction of magnetization is the radial direction, such as those formed by molding magnetic powder such as ferrite, samarium-cobalt alloy, etc. ! A magnetic field is alternately applied from the outside to the inside and from the inside to the outside to the molded body 20 made of a magnetic material such as an alloy containing elements of the -, to form N and S poles alternately. It is.

この場合には成形体20の内面と外面にN極とS極が形
成される。
In this case, N and S poles are formed on the inner and outer surfaces of the molded body 20.

第4図(a)は極配向磁石に着磁されたリング状磁石の
説明図で磁化の方向が外面ヒのIIA接部間で行われる
。これとは逆に内面りのみ着磁することもできる。
FIG. 4(a) is an explanatory diagram of a ring-shaped magnet magnetized as a pole-oriented magnet, and the direction of magnetization is between the IIA contacts on the outer surface. Conversely, it is also possible to magnetize only the inner surface.

すなわち、成形体20の外面に交ゲに等冊隔に軟鉄等か
らなるrj磁極31.32を当接し、各着磁極31.3
2に装着したコイル33.34にN極、S極用の磁束が
発生するような電流を流すと、磁束が矢印方向に流れて
着磁が行われる。
That is, rj magnetic poles 31.32 made of soft iron or the like are brought into contact with the outer surface of the molded body 20 at equal intervals, and each magnetized pole 31.3
When a current that generates magnetic flux for N and S poles is passed through the coils 33 and 34 attached to the coils 2, the magnetic flux flows in the direction of the arrow, and magnetization is performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

に記の極配向磁石は、第4図(b)に示すような着磁器
と同じ磁場を発生させ不全型を配向金型として用いる必
要があり、経済的に右利なものではなかった。
The pole-oriented magnet described in 1-3 was not economically advantageous because it generated the same magnetic field as the magnetizer shown in FIG. 4(b) and required the use of a defective type as an alignment mold.

この発明はL記の問題点を解決するためになされたもの
で、極配向に近い配向および着磁を行うことができる多
極磁石の製造方法を提供することを目的とする。
The present invention was made to solve the problem described in L, and an object of the present invention is to provide a method for manufacturing a multipolar magnet that can perform orientation and magnetization close to polar orientation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の多極磁石の製造方法は、磁石材料よりなる成
形体の一方の面に青磁器の凹凸ヨークに形成された所定
ピッチの凸部を当接させ、前記成形体の他方の面に前記
凸部と同一の所定ピッチに形成された着磁器の凹凸ヨー
クの凸部を半ピッチずらして当接し、前記・方の面の凸
部から前記成形体を介して他方の面の凸部に磁束を集中
させ前記成形体に配向を施し、次いで、前記一方の面ま
たは他方の面の凸部の当接部分に、着磁極のN極とS極
を交互に当てて着磁を施すものである。
The method for manufacturing a multipolar magnet according to the present invention includes contacting convex portions of a predetermined pitch formed on a concavo-convex yoke of celadon porcelain with one surface of a molded body made of a magnetic material, and contacting the convex portions with a predetermined pitch on the other surface of the molded body. The convex portions of the concave-convex yoke of the magnetizer, which are formed at the same predetermined pitch as the convex portions, are brought into contact with the convex portions shifted by a half pitch, and the magnetic flux is transferred from the convex portions on one side to the convex portions on the other side via the molded body. is concentrated to orient the molded body, and then magnetized by alternately applying the north and south poles of the magnetization poles to the abutting portions of the convex portions on one surface or the other surface. .

〔作用〕[Effect]

この発明は成形体の・方の面と他方の面に、それぞれ配
向金型の所定ピンチの凸部をIl二にトピンチずらせて
、 ・力の凸部から他方の凸部へ磁束を流して疑似的な
極配向を施し、その後、いずれかの面の凸部がち接して
いた部分に交Wの極性の着磁を施すことで、極配向させ
たri磁の多極磁石が得られる。
This invention involves shifting the protrusions of the orientation mold by a predetermined pinch on one side and the other side of the molded body, respectively, and causing a magnetic flux to flow from the force protrusion to the other protrusion. By applying polar orientation, and then applying alternating W polarity magnetization to the portion where the convex portions of either surface were in contact, a polar-oriented RI multipolar magnet can be obtained.

〔実施例〕〔Example〕

第1図(a)、(b)はこの発明の一実施例に用いる装
置を示すものである。
FIGS. 1(a) and 1(b) show an apparatus used in an embodiment of the present invention.

第1図(a)において、1.1′はポールピース、2.
2′はコイルで、ポールピース1,1′に装着される。
In FIG. 1(a), 1.1' is a pole piece, 2.
2' is a coil, which is attached to the pole pieces 1 and 1'.

3は外極で、中心に円柱状空間4を有し、内面に凹凸ヨ
ーク5を有している。凹凸ヨーク5は凸部5Aと非磁性
部材からなる四部5Bが所定のピッチで交〃に形成され
ている。6は内極で、外形は円柱状をなし、その外径は
外極3の内径より成形体20の厚み分だけ小さく形成さ
れている。
Reference numeral 3 denotes an outer pole, which has a cylindrical space 4 at the center and a concave-convex yoke 5 on its inner surface. The concavo-convex yoke 5 has convex portions 5A and four portions 5B made of non-magnetic material that are alternately formed at a predetermined pitch. Reference numeral 6 denotes an inner pole, which has a cylindrical outer shape, and its outer diameter is smaller than the inner diameter of the outer pole 3 by the thickness of the molded body 20.

そして、内極6の外周に凹凸ヨ〜り7が形成され、この
凹凸ヨーク7には凸部7Aと四部7Bが所定のピンチで
形成される。そして、凸部5Aと四部5Bのピッチと、
凸部7Aと四部7Bのピッチとは同一ピンチ(この実施
例では成形体2oがモ板でなくリング状であるため角ピ
ッチとなる)に形成されている。
A concave and convex yoke 7 is formed on the outer periphery of the inner pole 6, and convex portions 7A and four portions 7B are formed on this concave and convex yoke 7 with a predetermined pinch. And the pitch of the convex part 5A and the four parts 5B,
The pitches of the convex portions 7A and the four portions 7B are formed at the same pitch (in this embodiment, since the molded body 2o is not a plate but a ring shape, the pitches are square pitches).

第1図(b)において、11.12は着磁器の、n磁極
、13.14はこれらの着磁極11.12に装着された
コイルである。
In FIG. 1(b), 11.12 is the n magnetic pole of the magnetizer, and 13.14 is the coil attached to these magnetized poles 11.12.

今、D11図(a)において、ポールピース1゜1′が
N極になったとすると、これにより発生した磁束φは、
外極3の凸部5Aから成形体2oを斜めに横切って対向
する内極6の凸部7Aに入り1図示しない磁路を通って
ポールピース1゜1 ′に還る。
Now, in Figure D11 (a), if pole piece 1°1' becomes the N pole, the magnetic flux φ generated by this is:
It diagonally crosses the molded body 2o from the convex portion 5A of the outer pole 3, enters the convex portion 7A of the opposing inner pole 6, and returns to the pole piece 1°1' through a magnetic path (not shown).

これによって成形体20には第2図に示すような磁束の
向きの疑似的な極配向が施される。
As a result, the molded body 20 is given a pseudo polar orientation of the magnetic flux as shown in FIG.

次に、成形体2oのどちらか・面、例えば1第1図(b
)のように外面の第1図(a)の凸部5Aが当接してい
た位置に、着磁器の着磁極11゜12を当接する。そし
て、コイル13.14にそれぞれN極、S極の磁束を発
生するような方向に電流を流すと、磁束φは着磁極11
から着磁極12へ向う方向に流れ、片面のみの極配向青
磁が行われる。
Next, either side of the molded body 2o, for example 1 (b
), the magnetizing poles 11 and 12 of the magnetizer are brought into contact with the position where the convex portion 5A of FIG. 1(a) on the outer surface was brought into contact. Then, when current is passed through the coils 13 and 14 in a direction that generates N-pole and S-pole magnetic fluxes, the magnetic flux φ changes to the magnetized pole 11.
The magnetic flux flows in the direction from the magnetic pole toward the magnetized pole 12, and pole-oriented celadon is produced on only one side.

なおヒ記実施例では、リング状の成形体20の場合につ
いて述べたが、成形体20がモ板状であっても、円弧状
その他の形状であっても差支えないことはいうまでもな
い。
In the embodiment described above, the case of the ring-shaped molded body 20 has been described, but it goes without saying that the molded body 20 may be in the form of a plate, an arc, or any other shape.

〔発明の効果〕〔Effect of the invention〕

この発明は以4二説明したように、成形体の両面に配向
金型の凹凸ヨークの凸部をWに7ピッチずらせて一方の
凸部から成形体を介して他方の凸部に磁束を流して成形
体に同一・磁極の配向を施し、次いで、成形体のいずれ
か片面の凸部が当接していた部分に着磁極のN極とS極
を交互に当てて着磁を施すようにしたので配向が疑似極
配向となるので、磁石表面から発生する磁束槽をラジア
ル配向磁石より有効に取出せる利点がある。
As explained above, this invention has the convex portions of the uneven yoke of the alignment mold on both sides of the molded body shifted by 7 pitches in the W direction, and magnetic flux is caused to flow from one convex portion to the other convex portion through the molded body. Then, the molded body was magnetized by applying the north and south poles of the magnetization poles alternately to the part of the molded body that had been in contact with the convex portion on one side of the molded body. Therefore, since the orientation becomes a quasi-polar orientation, there is an advantage that the magnetic flux tank generated from the magnet surface can be taken out more effectively than in a radially oriented magnet.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)はこの発明の多極磁石の製造方法
に用いる装置の概略図、第2図は第1図(a)を用いて
成形体に疑似配向を!1えた状態の説明図、第3図は従
来のラジアル方向の着磁方法を説明するための図、第4
図(a)、(b)は従来の極配向の着磁方法を説明する
ための図である。 図中、1.1′はポールピース、2.2′はコイル、3
は外様、4は円柱状空間、5は凹凸ヨーク、5Aは凸部
、5Bは凹部、6は内極、7は凹凸ヨーク、7Aは凸部
、7Bは四部、11.12は着磁極、13.14はコイ
ル、2oは成形体である。 第1v!J 第2図 第3図 4図 (b)
FIGS. 1(a) and (b) are schematic diagrams of the apparatus used in the method for manufacturing a multipolar magnet of the present invention, and FIG. 2 shows how to simulate the orientation of a molded body using FIG. 1(a). Figure 3 is a diagram for explaining the conventional radial direction magnetization method.
Figures (a) and (b) are diagrams for explaining a conventional polar orientation magnetization method. In the figure, 1.1' is a pole piece, 2.2' is a coil, and 3
is the outside, 4 is the cylindrical space, 5 is the uneven yoke, 5A is the convex part, 5B is the concave part, 6 is the inner pole, 7 is the uneven yoke, 7A is the convex part, 7B is the fourth part, 11.12 is the magnetized pole, 13 and 14 are coils, and 2o is a molded body. 1st v! J Figure 2 Figure 3 Figure 4 (b)

Claims (1)

【特許請求の範囲】[Claims]  磁石材料よりなる成形体の一方の面に配向金型の凹凸
ヨークに形成された所定ピッチの凸部を当接させ、前記
成形体の他方の面に前記凸部と同一の所定ピッチに形成
された配向金型の凹凸ヨークの凸部を半ピッチずらして
当接し、前記一方の面の凸部から前記成形体を介して他
方の面の凸部に優先的に磁束を集めて前記成形体に配向
を施し、次いで、前記一方の面または他方の面の凸部の
当接部分に着磁極のN極とS極を交互に当てて着磁を施
すことを特徴とする多極磁石の製造方法。
Convex portions formed at a predetermined pitch formed on a concavo-convex yoke of an orientation mold are brought into contact with one surface of a molded body made of a magnetic material, and convex portions formed at a predetermined pitch identical to the convex portions are brought into contact with the other surface of the molded body. The convex portions of the uneven yoke of the orientation mold are brought into contact with each other by being shifted by half a pitch, and the magnetic flux is preferentially concentrated from the convex portion of the one surface to the convex portion of the other surface via the molded body, and the magnetic flux is directed to the molded body. A method for manufacturing a multipolar magnet, which comprises oriented the magnet, and then magnetizes it by alternately applying the north and south poles of the magnetized poles to the abutting portions of the convex portions of the one surface or the other surface. .
JP23444585A 1985-10-22 1985-10-22 Manufacture of multipolar magnet Pending JPS6294903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23444585A JPS6294903A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23444585A JPS6294903A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Publications (1)

Publication Number Publication Date
JPS6294903A true JPS6294903A (en) 1987-05-01

Family

ID=16971116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23444585A Pending JPS6294903A (en) 1985-10-22 1985-10-22 Manufacture of multipolar magnet

Country Status (1)

Country Link
JP (1) JPS6294903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296342B1 (en) * 2000-02-10 2007-11-20 Tritex Corporation Fixture for magnetization of a shaft for a linear stepper motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296342B1 (en) * 2000-02-10 2007-11-20 Tritex Corporation Fixture for magnetization of a shaft for a linear stepper motor
US7752736B2 (en) 2000-02-10 2010-07-13 Tritex Corporation Method of magnetizing the shaft of a linear stepper motor

Similar Documents

Publication Publication Date Title
US6087915A (en) Radially periodic magnetization of permanent magnet rings
JPS6294903A (en) Manufacture of multipolar magnet
JPS63206144A (en) Magnetically controllable pole induction generator
JP4304869B2 (en) Magnetic encoder
JPH048926B2 (en)
US5666097A (en) Periodic magnetizer
JP2006049794A (en) Method and equipment for polarizing tone wheel
JP2018182118A (en) Magnetizing device and magnetizing method
JP2018133453A (en) Magnetization method, magnetization device and magnet for magnetic encoder
JPH02140907A (en) Magnetization in radial direction
JPS6294904A (en) Manufacture of multipolar magnet
JP2002199669A (en) Magnetizing method for permanent magnet
JPS6058565B2 (en) Magnetization method of asymmetric multipolar magnet disk
JPS6239003A (en) Manufacture of multipolar magnet
JP2597618Y2 (en) Magnetic fluid sealing device
JPS629688Y2 (en)
JPS58170347A (en) Rotor magnet
JPS61116956A (en) Rotor for motor of magnet rotation type
JPS6239004A (en) Manufacture of multipolar magnet
JPS63124761A (en) Manufacture of rotor for outer-rotor type hybrid motor
JPH0410655Y2 (en)
JPS62106608A (en) Magnetizing method for permanent magnet
JPS58107609A (en) Magnet and apparatus of the same
JPH0212902A (en) Magnetizing head
JPH05316673A (en) Outer-rotor type permanent magnet rotor