JPS6294010A - Manufacture of piezoelectric thin film resonator - Google Patents

Manufacture of piezoelectric thin film resonator

Info

Publication number
JPS6294010A
JPS6294010A JP23406585A JP23406585A JPS6294010A JP S6294010 A JPS6294010 A JP S6294010A JP 23406585 A JP23406585 A JP 23406585A JP 23406585 A JP23406585 A JP 23406585A JP S6294010 A JPS6294010 A JP S6294010A
Authority
JP
Japan
Prior art keywords
thin film
piezoelectric thin
support substrate
film
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23406585A
Other languages
Japanese (ja)
Inventor
Tasuku Masuo
増尾 翼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP23406585A priority Critical patent/JPS6294010A/en
Publication of JPS6294010A publication Critical patent/JPS6294010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To obtain a thin film piezoelectric resonator having a high Q by making a support substrate by zinc oxide so as to avoid a silicon oxide film from being etched in etching the substrate. CONSTITUTION:A silicon oxide film 10, a lower electrode 12, a ZnO piezoelectric thin film 14, an upper electrode 15 and a protection film 16 are formed sequentially on a major surface 11a of the ZnO sintered compact made support substrate 11. Then a mask is formed on a major surface 11b of the substrate 11, the substrate is etched in a hydrochloric acid solution to form a recess 18. Since the Si oxide film 10 is resistant to acid, the film is not etched and the oxide film with a uniform thickness is left under the vibration region 21 of the piezoelectric thin film. Then the reflecting characteristic at the lower electrode 12 of the piezoelectric thin film 14 is uniformed to improve the sharpness Q of the piezoelectric thin film resonator 19.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はV HFやU HFの周波数帯で使用可能な圧
電薄膜共振子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a piezoelectric thin film resonator that can be used in the V HF and U HF frequency bands.

(従来技術) 一般に、セラミックや水晶等の圧電支持基板の基本厚み
振動を利用した、いわゆるバルク波共振子は、圧電支持
基板の加工技術」二の制約や機械的強度上の制約から、
圧電支持基板の厚みは数IOμmが限度であり、このた
め、利用可能な共振周波数も数10MH2が限界となっ
ている。
(Prior art) In general, so-called bulk wave resonators, which utilize the basic thickness vibration of a piezoelectric support substrate such as ceramic or crystal, have been developed due to limitations in the processing technology of the piezoelectric support substrate and mechanical strength limitations.
The thickness of the piezoelectric support substrate is limited to several IO μm, and therefore the usable resonance frequency is also limited to several tens of MHz.

そこで、近年、半導体製造技術がそのまま利用でき、し
かも、V HFやtJHFの超高周波帯において動作す
る、第3図、および第4図に示すような構成を宵する、
いわゆるダイヤフラム形と称される圧電薄膜共振子が研
究されている(たとえば、特開昭6(1−68706号
公報、特開昭6O−687IO号公報および特開昭6(
168711号公報参照)、。
Therefore, in recent years, configurations such as those shown in FIGS. 3 and 4 have been developed, which can utilize semiconductor manufacturing technology as is and operate in the VHF and tJHF ultra-high frequency bands.
So-called diaphragm type piezoelectric thin film resonators have been studied (for example, Japanese Patent Laid-Open No. 1-68706, Japanese Patent Laid-Open No. 60-687IO, and Japanese Patent Laid-Open No. 68-687).
168711)).

」二記圧電薄膜共振子は、ノリコン県結晶支持基板1の
一方の主表面に酸化シリコン薄膜2を形成し、この酸化
ソリコン薄膜2の上に第1の電極3、酸化亜鉛の圧電薄
膜4および第2の電極5を順次形成する一方、上記シリ
コン単結晶支持基板1の他方の主表面から圧電薄膜4に
向かって上記シリコン単結晶支持基板1をダイヤフラム
状に異方性エツチングし、上記圧電薄膜4の厚み振動を
可能とするための凹部6を形成したものである。
The piezoelectric thin film resonator mentioned above has a silicon oxide thin film 2 formed on one main surface of a Noricon crystal support substrate 1, and a first electrode 3, a piezoelectric thin film 4 of zinc oxide, and While the second electrodes 5 are sequentially formed, the silicon single crystal support substrate 1 is anisotropically etched into a diaphragm shape from the other main surface of the silicon single crystal support substrate 1 toward the piezoelectric thin film 4, and the piezoelectric thin film A recess 6 is formed to enable thickness vibration of 4.

ところで、シリコン単結晶支持基板1の上記異方性エツ
チングによる凹部6の形成は、シリコン単結晶支持基板
lの(100)面と(111)面のエツチング速度の差
を利用するものであり、エツチングがシリコン単結晶支
持基板lから酸化ノリコン薄膜2に到達すると、この酸
化シリコン薄膜2もエツチングされる。このため、シリ
コン単結晶支持基板lの凹部6内の酸化シリコン薄膜2
の厚みが不均一になり、圧電薄膜共振子の共振時の尖鋭
度Qが低下するという問題があった。
By the way, the formation of the recess 6 by the above-mentioned anisotropic etching of the silicon single crystal support substrate 1 utilizes the difference in etching speed between the (100) plane and the (111) plane of the silicon single crystal support substrate l. When the silicon oxide thin film 2 reaches the silicon oxide thin film 2 from the silicon single crystal support substrate 1, this silicon oxide thin film 2 is also etched. For this reason, the silicon oxide thin film 2 in the recess 6 of the silicon single crystal support substrate l
There was a problem in that the thickness of the piezoelectric thin film resonator became non-uniform and the sharpness Q of the piezoelectric thin film resonator during resonance decreased.

(発明の目的) 本発明は、高い尖鋭度を存する圧電β1V膜共振子の製
造方法を提供することを目的としている。
(Objective of the Invention) An object of the present invention is to provide a method for manufacturing a piezoelectric β1V film resonator having high sharpness.

(発明の溝成) このため、本発明は、酸化亜鉛の焼結体からなる支持基
板の一方の主表面にシリコン酸化膜を形成する一方、支
持基板の他方の主表面をマスクし、上記シリコン酸化膜
にてエツチングが停止されるまで酸性のエツチング液で
上記支持基板をその他方の主表面から上記シリコン酸化
膜に向かってエツチングすることを特徴としている。す
なわち、本発明は、酸化亜鉛の焼結体からなる支持基板
をその一方の主表面から酸性のエツチング液でエツチン
グするに際し、支持基板の一方の主表面に形成されたシ
リコン酸化膜がエツチングの停[E層として機能するよ
うにしたものである。
(Group of the invention) For this reason, the present invention forms a silicon oxide film on one main surface of a support substrate made of a sintered body of zinc oxide, while masking the other main surface of the support substrate, and The method is characterized in that the supporting substrate is etched from the other main surface toward the silicon oxide film using an acidic etching solution until etching is stopped at the oxide film. That is, in the present invention, when a support substrate made of a sintered body of zinc oxide is etched from one main surface thereof with an acidic etching solution, the silicon oxide film formed on one main surface of the support substrate stops etching. [It is designed to function as an E layer.]

(発明の効果) 本発明によれば、支持基板の一方の主表面に形成された
シリコン酸化膜にてエツチングが停止されるので、圧電
薄膜の厚み振動部分の下に位置するシリコン酸化膜の厚
みが均一となるので、高い尖鋭度を有する圧電薄膜共振
子を製造することができる。また、本発明によれば、酸
化亜鉛の支持基板を使用するので、シリコンの単結晶支
持基板を使用するものよりも安価な圧電薄膜共振子を得
ることができ、しかも、圧電薄膜と支持基板とが同一の
材料により形成されるので、両者の熱膨張係数が等しく
、温度特性の安定した圧電薄膜共振子を得ることができ
る。さらに、本発明によれば、シリコン酸化膜と酸化亜
鉛の圧電薄膜とは異符号の温度係数を有しているので、
圧電薄膜共振子の電気的特性の温度による変化を理想状
態では零にすることができる。
(Effects of the Invention) According to the present invention, etching is stopped at the silicon oxide film formed on one main surface of the support substrate, so that the thickness of the piezoelectric thin film and the thickness of the silicon oxide film located under the vibrating portion are reduced. Since the piezoelectric thin film resonator is uniform, it is possible to manufacture a piezoelectric thin film resonator with high sharpness. Further, according to the present invention, since a support substrate of zinc oxide is used, a piezoelectric thin film resonator can be obtained which is cheaper than one using a single crystal support substrate of silicon. Since they are made of the same material, both have the same coefficient of thermal expansion, making it possible to obtain a piezoelectric thin film resonator with stable temperature characteristics. Furthermore, according to the present invention, since the silicon oxide film and the zinc oxide piezoelectric thin film have temperature coefficients of opposite signs,
Changes in the electrical characteristics of the piezoelectric thin film resonator due to temperature can be reduced to zero in an ideal state.

(実施例) 以下、添付図面を参照して本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

先ず、酸化亜鉛(ZnO)にMnCO5とv、0.を添
加し、マンガン(Mn)およびバナジウム(V)が夫々
5原子%および0.1原子%含何されるように調合して
湿式混合する。これを湿式ミルで粉砕滲−車堤緒に加圧
戊汁チt−て約1200℃で2時間焼結する。これによ
り得られた厚さ10mm、50X50mmの焼結体(図
示せず。)を0 、5 mmの享さにスライスカッット
し、#8000番のSiCで鏡面研磨し、第1図(a)
に示すような厚さ0 、3 mmの平板状の支持基板1
1を作成する。−F記のように、酸化亜鉛にマンガンを
添加するのは、支持基板11の絶縁抵抗を高めるためで
、支持基板11はio”オーム以上の絶縁抵抗を有する
。また、酸化亜鉛にバナジウムを添加するのは、酸化亜
鉛の焼結性を高め、密度の高い焼結体を得るためである
First, zinc oxide (ZnO) was mixed with MnCO5 and v, 0. are added and wet-mixed so that manganese (Mn) and vanadium (V) are contained at 5 atomic % and 0.1 atomic %, respectively. This was pulverized in a wet mill and then sintered at about 1200° C. for 2 hours under pressure. The resulting sintered body (not shown) with a thickness of 10 mm and a size of 50 x 50 mm was cut into slices of 0.5 mm in diameter and mirror-polished with #8000 SiC, as shown in Figure 1 (a).
A flat support substrate 1 with a thickness of 0.3 mm as shown in
Create 1. - The reason why manganese is added to zinc oxide is to increase the insulation resistance of the support substrate 11, and the support substrate 11 has an insulation resistance of io'' ohm or more. Also, vanadium is added to zinc oxide. This is to improve the sinterability of zinc oxide and obtain a sintered body with high density.

上記のようにして作成された支持基板11の一方の主表
面11aには、RFマグネトロンスパッタ法により、第
1図(b)に示すように、シリコン酸化膜10を約60
00オングストロームの摩さに形成する。
As shown in FIG. 1(b), a silicon oxide film 10 is deposited on one main surface 11a of the support substrate 11 created in the manner described above using an RF magnetron sputtering method, with a thickness of approximately 60 mm.
Formed to a polish of 0.00 angstroms.

次にこのシリコン酸化膜IO上に、第1図(C)に示す
ように、鉄(Fe)、ニッケル(N i)およびクロム
(Cr)からなる恒弾性鋼組成の下部電極12を蒸着法
らしくはスパッタリング法により形成する。このスパッ
タリング法により下部電極12を形成する場合、シリコ
ン酸化膜10が酸化物であり、形成される下部電極12
が酸化されやすいので、Ar:Ht= 80 +20の
混合ガス中で行なうことが好ましい。なお、このシリコ
ン酸化膜10は、後述するように、支持基板11のエツ
チングの停止層として機能する。
Next, on this silicon oxide film IO, as shown in FIG. 1(C), a lower electrode 12 of constant modulus steel composition consisting of iron (Fe), nickel (Ni) and chromium (Cr) is deposited using a vapor deposition method. is formed by a sputtering method. When forming the lower electrode 12 by this sputtering method, the silicon oxide film 10 is an oxide, and the lower electrode 12 to be formed
Since it is easily oxidized, it is preferable to carry out the process in a mixed gas of Ar:Ht=80+20. Note that this silicon oxide film 10 functions as an etching stop layer for the support substrate 11, as will be described later.

次いで、第1図(d)に示すように、上記下部電極12
を覆ってシリコン酸化膜10上に、C軸配向性酸化亜鉛
結晶からなる圧電膜14をRFマグネトロンスパッタ法
により形成する。
Next, as shown in FIG. 1(d), the lower electrode 12
A piezoelectric film 14 made of C-axis oriented zinc oxide crystal is formed on the silicon oxide film 10 by RF magnetron sputtering.

上記圧電薄膜14の上には、第1図(e)に示すように
、下部電極12と同じ恒弾性鋼組成を有する上部電極1
5をスパッタリング法により形成する。
On the piezoelectric thin film 14, as shown in FIG. 1(e), an upper electrode 1 having the same constant elastic steel composition as the lower electrode 12 is placed.
5 is formed by a sputtering method.

その後、酸化亜鉛からなる圧電膜@14が吸湿して特性
が劣化するのを防止するため、第1図(f)に示すよう
に、上記圧電薄膜14および上部電極15の上から感光
性ポリイミドを回転塗布し、紫外線露光により保護膜」
6を形成する。この保護膜16は、圧電薄膜14の原み
振動が阻害されないようにするため、質量が小さく、か
つ、厚みが薄いことが好ましい。
Thereafter, in order to prevent the piezoelectric film @ 14 made of zinc oxide from absorbing moisture and deteriorating its characteristics, a photosensitive polyimide film is coated over the piezoelectric thin film 14 and the upper electrode 15, as shown in FIG. 1(f). A protective film is formed by spin coating and exposure to ultraviolet light.
form 6. This protective film 16 preferably has a small mass and a small thickness so that the original vibration of the piezoelectric thin film 14 is not inhibited.

なお、上記圧電薄膜14の厚み【は、目的とする共振周
波数をf(Hz)とし、複合振動膜固育の周波数定数を
N(Hz、mm)とすれば、t=N/fにより決定され
る。
The thickness of the piezoelectric thin film 14 is determined by t=N/f, where f (Hz) is the desired resonance frequency and N (Hz, mm) is the frequency constant of the composite vibration membrane stiffening. Ru.

一方、支持基板IIの他方の主表面11bには、第1図
(g)に示すように、感光性ポリイミドを回転塗布し、
紫外線露光によりマスク■7を形成する。
On the other hand, as shown in FIG. 1(g), photosensitive polyimide is spin-coated on the other main surface 11b of the support substrate II.
A mask (7) is formed by exposure to ultraviolet light.

その後、支持基板11を塩酸(I(ci2)50%の水
溶液(50℃)中に30分浸漬し、第1図(h)に示す
ように、支持基板11をエツチングする。このエツチン
グは支持基板11の一方の主面11aに形成された耐酸
性のシリコン酸化膜10に達すると停止する。これによ
り、支持基板11には、下部電極12と上部電極15と
の間に挾まれた圧電薄膜14の厚み振動を許容する四部
18が形成される。
Thereafter, the supporting substrate 11 is immersed in an aqueous solution (50° C.) of 50% hydrochloric acid (I(ci2)) for 30 minutes to etch the supporting substrate 11 as shown in FIG. 1(h). It stops when it reaches the acid-resistant silicon oxide film 10 formed on one main surface 11a of the support substrate 11. As a result, the piezoelectric thin film 14 sandwiched between the lower electrode 12 and the upper electrode 15 is attached to the support substrate 11. Four parts 18 are formed that allow for thickness vibration.

上記のように、エツチングにより、支持基板11に凹部
18を形成した後、酸化亜鉛からなる支持基板11が湿
気を吸収するのを防止するため、第1図(i)に示すよ
うに、上記凹部18の内壁面から支持基板Itの他方の
主表面11bにかけて、保護膜20を形成する。この保
護膜20は保護膜I6と同様の感光性ポリイミドを使用
することができる。
After forming the recesses 18 in the support substrate 11 by etching as described above, in order to prevent the support substrate 11 made of zinc oxide from absorbing moisture, the recesses 18 are etched as shown in FIG. 1(i). A protective film 20 is formed from the inner wall surface of the substrate 18 to the other main surface 11b of the support substrate It. This protective film 20 can be made of the same photosensitive polyimide as the protective film I6.

以上の工程により、第2図に平面図を示すような圧電薄
膜共振子19を得ることができる。この圧@薄膜共振子
19は、圧電薄膜14の下部電極I2と上部電極15に
挟まれた振動領域21の下に支持基板11の凹部18が
形成されているので、圧電薄膜14の上記部分21は厚
み振動することができる。上記下部電極12および上部
電極15は、夫々引き出し電極12aおよび15aによ
り支持基板11の周縁部に引き出される。
Through the above steps, a piezoelectric thin film resonator 19 as shown in a plan view in FIG. 2 can be obtained. In this pressure@thin film resonator 19, the recess 18 of the support substrate 11 is formed below the vibration region 21 sandwiched between the lower electrode I2 and the upper electrode 15 of the piezoelectric thin film 14. The thickness can be vibrated. The lower electrode 12 and the upper electrode 15 are drawn out to the peripheral edge of the support substrate 11 by lead electrodes 12a and 15a, respectively.

以上、第1図(a)ないし第1図(i)の工程により圧
電薄膜共振子19を製造すれば、圧電薄膜14の下部電
極12の下に形成されたシリコン酸化膜10が耐酸性を
有しているので、この下部電極12が塩酸による支持基
板11のエツチングの停止層として機能する。これによ
り、下部電極12の厚みが均一な状態で上記エツチング
か停止され、圧電薄膜14にて発生した厚み振動の下部
電極12における反射特性が均一化され、圧電薄膜共振
子19の尖鋭度Qを高めることができる。
As described above, if the piezoelectric thin film resonator 19 is manufactured by the steps shown in FIGS. 1(a) to 1(i), the silicon oxide film 10 formed under the lower electrode 12 of the piezoelectric thin film 14 has acid resistance. Therefore, this lower electrode 12 functions as a stop layer for etching of the supporting substrate 11 with hydrochloric acid. As a result, the etching is stopped with the thickness of the lower electrode 12 being uniform, and the reflection characteristics of the thickness vibration generated in the piezoelectric thin film 14 on the lower electrode 12 are made uniform, and the sharpness Q of the piezoelectric thin film resonator 19 is reduced. can be increased.

なお、上記実施例において、第1図(c)に示すように
、支持基板11の一方の主表面11aに下部電極12を
形成し、第1図(h)において説明したのと同様の手法
で支持基板11をエツチングして凹部18を形成した後
、支持基板IIの一方の主表面11a側に圧電薄膜14
、上部電極15および保護膜16等を形成するようにし
てもよい。
In the above example, as shown in FIG. 1(c), the lower electrode 12 was formed on one main surface 11a of the support substrate 11, and the lower electrode 12 was formed in the same manner as explained in FIG. After etching the support substrate 11 to form the recess 18, a piezoelectric thin film 14 is formed on one main surface 11a side of the support substrate II.
, the upper electrode 15, the protective film 16, etc. may be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第1図(b)、第1図(c)、第1図(
d)、第1図(e)、第1図(f)、第1図(g)、第
1図(h)および第1図(i)は夫々本発明に係る圧電
薄膜共振子の製造工程の説明図、 第2図は本発明方法により製造され1こ圧電薄膜共振子
の電極構造を示す平面図、 第3図は従来方法により製造された圧電薄膜共振子の斜
視図、第4図は第3図のA −、A線に沿う断面図であ
る。 11・・支持基板、  lla、llb・・・主表面、
10・・・ノリコン酸化膜、  12・・・下部電極、
13・・・金属層、  14・・・圧電薄膜、+5・・
・上部電極、  16・・・保護膜、+7・・マスク、
  18・・・凹部、20・・・保護膜。 特許出願人 株式会社 村田製作所 代 理 人 弁理士 青 山  葆 ほか2名1a 1b ib 1b +5  16  14 1b セ 1b =23 G 麻4図
Figure 1(a), Figure 1(b), Figure 1(c), Figure 1(
d), FIG. 1(e), FIG. 1(f), FIG. 1(g), FIG. 1(h), and FIG. 1(i) respectively show the manufacturing process of the piezoelectric thin film resonator according to the present invention. FIG. 2 is a plan view showing the electrode structure of a single piezoelectric thin film resonator manufactured by the method of the present invention, FIG. 3 is a perspective view of a piezoelectric thin film resonator manufactured by the conventional method, and FIG. FIG. 4 is a sectional view taken along line A-, A in FIG. 3; 11... Support substrate, lla, llb... Main surface,
10... Noricon oxide film, 12... Lower electrode,
13...Metal layer, 14...Piezoelectric thin film, +5...
・Top electrode, 16...protective film, +7...mask,
18... Concavity, 20... Protective film. Patent applicant Murata Manufacturing Co., Ltd. Agent Patent attorney Aoyama Aoyama and 2 others 1a 1b ib 1b +5 16 14 1b Se1b = 23 G Hemp 4 diagram

Claims (1)

【特許請求の範囲】[Claims] (1)酸化亜鉛の焼結体からなる支持基板を用意し、そ
の一方の主表面にシリコン酸化膜を形成する工程と、 このシリコン酸化膜の上に下部電極を形成する工程と、 この下部電極を覆って上記シリコン酸化膜上に酸化亜鉛
の圧電薄膜を形成する工程と、 この圧電薄膜の上に上部電極を形成する工程と、上記圧
電薄膜および上部電極を覆って耐酸性を有する保護膜を
形成する工程と、 上記支持基板の他方の主表面をマスクし、上記シリコン
酸化膜にてエッチングが停止するまで酸性のエッチング
液で上記支持基板をその他方の主表面から上記シリコン
酸化膜に向かってエッチングする工程と、 からなることを特徴とする圧電薄膜共振子の製造方法。
(1) A step of preparing a support substrate made of a sintered body of zinc oxide and forming a silicon oxide film on one main surface of the support substrate, a step of forming a lower electrode on this silicon oxide film, and a step of forming a lower electrode on the silicon oxide film. forming a piezoelectric thin film of zinc oxide on the silicon oxide film, forming an upper electrode on the piezoelectric thin film, and forming an acid-resistant protective film over the piezoelectric thin film and the upper electrode. masking the other main surface of the support substrate, and applying an acidic etching solution to the support substrate from the other main surface toward the silicon oxide film until etching stops at the silicon oxide film; A method of manufacturing a piezoelectric thin film resonator, comprising the steps of etching.
JP23406585A 1985-10-19 1985-10-19 Manufacture of piezoelectric thin film resonator Pending JPS6294010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23406585A JPS6294010A (en) 1985-10-19 1985-10-19 Manufacture of piezoelectric thin film resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23406585A JPS6294010A (en) 1985-10-19 1985-10-19 Manufacture of piezoelectric thin film resonator

Publications (1)

Publication Number Publication Date
JPS6294010A true JPS6294010A (en) 1987-04-30

Family

ID=16965036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23406585A Pending JPS6294010A (en) 1985-10-19 1985-10-19 Manufacture of piezoelectric thin film resonator

Country Status (1)

Country Link
JP (1) JPS6294010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391408A (en) * 2002-07-30 2004-02-04 Agilent Technologies Inc FBAR thin-film resonator with protective layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2391408A (en) * 2002-07-30 2004-02-04 Agilent Technologies Inc FBAR thin-film resonator with protective layer

Similar Documents

Publication Publication Date Title
CN107317560B (en) Temperature compensation surface acoustic wave device and preparation method thereof
US4456850A (en) Piezoelectric composite thin film resonator
US5894647A (en) Method for fabricating piezoelectric resonators and product
US7861389B2 (en) AT cut quartz crystal resonator element and method for manufacturing the same
US7240410B2 (en) Method for manufacturing a piezoelectric resonator
JP4624005B2 (en) Device manufactured with controlled piezoelectric coupling coefficient in thin film bulk acoustic resonator
CN110995196B (en) Method for manufacturing resonator and resonator
US20070028433A1 (en) SAW Filter Device and Method Employing Normal Temperature Bonding for Producing Desirable Filter Production and Performance Characteristics
KR20060129514A (en) Boundary acoustic wave device manufacturing method and boundary acoustic wave device
JP3509709B2 (en) Piezoelectric thin film resonator and method of manufacturing piezoelectric thin film resonator
JP2011120241A (en) Method for manufacturing bulk wave acoustic resonator of fbar type
CN112688657A (en) Acoustic wave resonator and preparation method thereof
JPH10335974A (en) Elastic boundary wave element
JPS58153412A (en) Piezo-electric thin film composite vibrator
CN114124023A (en) Multilayer homogeneous piezoelectric structure and preparation method thereof
JP2002076824A (en) Piezoelectric thin film resonator, filter and electronic device
JP4196641B2 (en) Ultra-thin piezoelectric device and manufacturing method thereof
JPS6294010A (en) Manufacture of piezoelectric thin film resonator
JP2000165188A (en) Piezoelectric resonator
CN115514340A (en) Transverse excitation bulk acoustic wave resonator with phononic crystal and preparation method thereof
JPH10200369A (en) Piezoelectric thin film resonator
JPH0236608A (en) Frequency adjusting method for surface acoustic wave element
JPS6286910A (en) Manufacture of piezoelectric thin film resonator
JPS61218214A (en) Piezoelectric thin film resonator
JPS6294007A (en) Manufacture of piezoelectric thin film resonator