JPS6293498A - Operation of speed controlled pump - Google Patents

Operation of speed controlled pump

Info

Publication number
JPS6293498A
JPS6293498A JP23354285A JP23354285A JPS6293498A JP S6293498 A JPS6293498 A JP S6293498A JP 23354285 A JP23354285 A JP 23354285A JP 23354285 A JP23354285 A JP 23354285A JP S6293498 A JPS6293498 A JP S6293498A
Authority
JP
Japan
Prior art keywords
pressure
pump
constant
flow rate
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23354285A
Other languages
Japanese (ja)
Inventor
Yukio Tagawa
田川 幸男
Koichi Sato
幸一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23354285A priority Critical patent/JPS6293498A/en
Publication of JPS6293498A publication Critical patent/JPS6293498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To obtain the high accurate control of a pump, by carrying out the predictive terminal pressure constant control of the pump based on a real pump head and a pipe line constant which is calculated by substituting a discharge pressure and a discharge quantity of flow per terminal quantity of flow for the function of a pipe line load resistance curve. CONSTITUTION:A controller 20 which controls the revolution number of a variable speed motor 12, on the early time of the operation of a pump 11, measures a discharge quantity of flow Q and a discharge pressure H by a flowmeter 14 and a pressure sensor 13 at every terminal quantity of flow which is changed by a cock 16 under a constant pressure at the terminal of a pipe line 15. At the discharge quantity of flow Q and the discharge pressure H are respectively substituted for the function of a pipe line load resistance curve F so as to calculate a pipe line constant K and a real pump head ho. A target pressure Hf is calculated by the K and the ho, then the present discharge pressure H of the pump 11 is measured by the pressure sensor 13, the Hf and the H are compared with, and the revolution number of the variable speed motor 12 is increased or decreased until the pressures H and Hf become an equal pressure. Thus, the pump 11 is speed-controlled along the curve F corresponding to the change of the quantity of water for use, so that the pressure of the water for use can be made constant.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、速度制御ポンプの運転法に係り、特に配管系
の末端流量の圧力を一定に制御する予測末端圧力一定制
御を行うのに好適な運転法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of operating a speed control pump, and is particularly suitable for performing predictive terminal pressure constant control that controls the pressure of the terminal flow rate of a piping system at a constant level. Regarding driving laws.

〔発明の背景〕[Background of the invention]

一般の給水装置にあってポンプの速度を制御する場合、
圧力制御、流量制御、水位制御等のような種々の制御方
式が採用されている。そして前記圧力制御方式の中には
、ポンプの吐出し圧力を一定にする吐出し圧一定制御と
、配管系の末端圧力を一定にする予測末端圧力制御とが
ある。
When controlling the pump speed in a general water supply system,
Various control methods are employed, such as pressure control, flow control, water level control, etc. The pressure control methods include constant discharge pressure control that keeps the pump discharge pressure constant, and predictive end pressure control that keeps the end pressure of the piping system constant.

このような両制御方式においては、理想的には使用水量
に関係なく管路末端の圧力を一定にできる予測圧力一定
制御が望ましい。
In both of these control systems, it is ideal to use predictive pressure constant control that can keep the pressure at the end of the pipe constant regardless of the amount of water used.

第7図は予測末端圧力一定制御を行う給水装置の従来例
を示し、第8図は横軸に吐出し流量Qを、縦軸に吐出し
圧HをとったポンプのQ −I−I性能曲線を示してい
る。
Figure 7 shows a conventional example of a water supply system that performs predictive terminal pressure constant control, and Figure 8 shows the pump's Q-I-I performance, with the horizontal axis representing the discharge flow rate Q and the vertical axis representing the discharge pressure H. It shows a curve.

図において、1は変速電動機2を有するポンプ、3は圧
力センサ、7は流量計、4は演算器、5はタンクである
。この制御方式は、管路6の末端に圧力センサ3を設置
し、この圧力センサ3により検出された末端流量圧が一
定となるようにポンプ1の回転数を制御するのであるが
、実際には、管路6末端に圧力センサ3を設置すると、
管路系が長くなり、また配線8あるいはメンテナンスな
どの面から難しいので、一般には鎖線で示すようにポン
プ1の吐出しがわに圧力センサ3を置き、この部の圧力
が流量計9から求めた使用水量Qがら(1)式で示され
る管路の負荷抵抗曲線Fを満足するように、即ち第8図
に示すa、b+ Qo d、6点で運転されるようにポ
ンプ回転数No、N、。
In the figure, 1 is a pump having a variable speed electric motor 2, 3 is a pressure sensor, 7 is a flow meter, 4 is a calculator, and 5 is a tank. In this control method, a pressure sensor 3 is installed at the end of the pipe line 6, and the rotation speed of the pump 1 is controlled so that the end flow pressure detected by the pressure sensor 3 is constant. , when the pressure sensor 3 is installed at the end of the pipe line 6,
Since the piping system is long and difficult in terms of wiring 8 and maintenance, generally a pressure sensor 3 is placed beside the discharge of the pump 1 as shown by the chain line, and the pressure at this part is determined from the flow meter 9. In order to satisfy the load resistance curve F of the pipeline shown by the formula (1) based on the amount of water used Q, that is, the pump rotation speed No. is adjusted so as to be operated at the 6 points a, b + Qo d shown in Fig. 8. N.

NZt N3+ N4に制御する。Control to NZt N3+N4.

Ht = K Q  十h O・・・・・・・・・(1
)ここでHf:ポンプ吐出し圧力 に:管路定数 Q:使用水量 n:定数(一般には2) h:実揚程 たとえば、今、使用水量がQoの場合、変速電動機2の
回転速度がNoでポンプ1のQ −H性能曲線はAでa
点で運転しているものとする。この状態から、使用水量
がQo  になると、ポンプ1の吐出し圧力がQ −H
性能曲線Aにそって上昇した圧力I−I 、となりa′
点となる。この上昇圧力を圧力センサ3が検出し、吐出
し流量Q1  を流量検出器9が検出する。そして、検
出した流量Q1を(1)式に代入して演算器4により目
標圧力Itr (Hr=KQ 十ho)を求め、圧力セ
ンサ3により検出した圧力H,と演算器4により求めた
目標圧力Hfとの偏差IHrH+lがOとなるように、
変速電動機2の回転速度を制御すると、その回転速度は
N、  となり、ポンプのQ−H性能曲線はBとなり、
運転点a′点よりb点へ移る。以下、使用水量の変化に
応じて、変速電動機2及び、ポンプ1は管路の負荷抵抗
曲線F上にそって速度制御されていく。
Ht = K Q 10h O・・・・・・・・・(1
) Here, Hf: pump discharge pressure: pipe line constant Q: amount of water used n: constant (generally 2) h: actual head For example, if the amount of water used is Qo, the rotation speed of the variable speed motor 2 is No. The Q-H performance curve of pump 1 is A and a
Assume that you are driving at a point. From this state, when the amount of water used becomes Qo, the discharge pressure of pump 1 becomes Q - H
The pressure I-I increased along the performance curve A, and a'
It becomes a point. The pressure sensor 3 detects this increased pressure, and the flow rate detector 9 detects the discharge flow rate Q1. Then, by substituting the detected flow rate Q1 into equation (1), the target pressure Itr (Hr=KQ 10ho) is determined by the calculator 4, and the pressure H detected by the pressure sensor 3 and the target pressure determined by the calculator 4 are calculated. So that the deviation IHrH+l from Hf becomes O,
When the rotational speed of the variable speed electric motor 2 is controlled, the rotational speed becomes N, and the Q-H performance curve of the pump becomes B,
The operating point moves from point a' to point b. Thereafter, the speeds of the variable speed motor 2 and the pump 1 are controlled along the load resistance curve F of the pipe line in accordance with changes in the amount of water used.

ところで、上記に示す従来例では、管路負荷抵抗曲線F
の関数式において管路定数K及び実揚程hOが配管系に
よって決定される為1図面上から計算によって求められ
ている。そのため、装置を現地に設置した場合、管路定
数K及び実揚程り。
By the way, in the conventional example shown above, the pipe load resistance curve F
In the functional formula, the pipe line constant K and the actual head hO are determined by the piping system, so they are calculated from one drawing. Therefore, when the equipment is installed on site, the pipe line constant K and the actual head.

は、実際の据付は時と計算上とで異なることがあり、ま
た配管系の経年変化などによっても変わり得るので、正
確に制御できにくいのが実状である。
The reality is that it is difficult to control accurately because the actual installation may differ depending on time and calculations, and may also change due to changes in the piping system over time.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前記従来技術の不具合に鑑み管路の実
態より管路定数と実揚程とを正確に求めて、予測末端圧
力一定制御を正確に行い得る速度制御ポンプの運転法を
提供することにある。
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, it is an object of the present invention to provide a speed control pump operating method that accurately determines the pipe line constant and actual pump head from the actual condition of the pipe line and accurately performs constant predicted terminal pressure control. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明の1番目の発明は、ポンプの運転初期時、予め管
路末端での一定目標圧のもとで末端流量を変化させ、変
化させた末端流量毎にポンプの吐出し圧及び吐出し流量
を測定し、該末端流量毎の吐出し圧及び吐出し流量を管
路負荷抵抗曲線の関数に代入して管路定数と実揚程とを
算出し、その管路定数と実揚程とに基づいて予測末端圧
力一定制御を行うようにすることに特徴を有し、これに
よって、管路定数と実揚程とをポンプの運転を開始する
際に管路系の実態から正確に求めることができるので、
末端圧力一定制御を正確に行い得る。
The first aspect of the present invention is to change the end flow rate in advance under a constant target pressure at the end of the pipe at the initial stage of operation of the pump, and to adjust the pump discharge pressure and discharge flow rate for each changed end flow rate. , calculate the pipe constant and actual head by substituting the discharge pressure and discharge flow rate for each terminal flow rate into the function of the pipe load resistance curve, and calculate the pipe constant and the actual head based on the pipe constant and the actual head. It is characterized in that it performs predictive terminal pressure constant control, and as a result, the pipe constant and the actual head can be accurately determined from the actual condition of the pipe system when starting pump operation.
It is possible to accurately control the terminal pressure to be constant.

また本発明の2番目の発明は、ポンプの運転初期時、予
め管路末端での一定目標圧のもとで末端流量を変化させ
、変化させた末端流量毎にポンプの回転数を測定すると
共に、該回転数におけるポンプのQ−H性能曲線を予め
定められた基準のQ−H性能曲線に基づいて算出し、次
いで前記回転数における吐出し圧を測定して、該吐出し
圧と対応するポンプのQ −H性能曲線より吐出し流量
を算出し、末端流量毎の吐出し圧及び吐出し流量を管路
負荷抵抗曲線の関数に代入して管路抵抗と実揚程とを算
出し、その管路定数と実揚程とに基づいて予測末端圧力
一定制御を行うことに特徴を有し、これによって、]一
番目の発明の効果を得ることができると共に、流量計を
用いなくとも吐出し流量を求めて、管路定抵と実揚程と
を正確に算出できるので、予測末端圧一定制御を正確に
行い得る。
Further, the second aspect of the present invention is to change the end flow rate in advance under a constant target pressure at the end of the pipe at the initial stage of operation of the pump, and measure the rotation speed of the pump for each changed end flow rate. , calculate the Q-H performance curve of the pump at the rotation speed based on a predetermined reference Q-H performance curve, and then measure the discharge pressure at the rotation speed to correspond to the discharge pressure. Calculate the discharge flow rate from the Q-H performance curve of the pump, substitute the discharge pressure and discharge flow rate for each end flow rate into the function of the pipe load resistance curve, calculate the pipe resistance and actual head, and calculate the pipe resistance and actual head. The feature is that the predicted end pressure is controlled to be constant based on the pipe line constant and the actual head, and as a result, the effect of the first invention can be obtained, and the discharge flow rate can be adjusted without using a flow meter. Since the conduit constant resistance and the actual head can be calculated accurately by determining the constant predicted terminal pressure, it is possible to accurately control the predicted end pressure to be constant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図乃至第6図について説明
する。第1図は本発明方法を実施する為の給水装置の一
実施例を示す概略図、第2図は制御装置のブロック図、
第3図は本発明方法の第1の実施例示すフローチャート
である。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6. FIG. 1 is a schematic diagram showing an embodiment of a water supply device for carrying out the method of the present invention, FIG. 2 is a block diagram of a control device,
FIG. 3 is a flowchart showing a first embodiment of the method of the present invention.

第1図に示すように、本発明方法を実施する為の給水装
置は、変速電動機12を有するポンプ11と、ポンプ1
1の吐出し圧を測定する圧力センサ13と、ポンプ11
の吐出し流量を測定する流量計14と、管路15末端側
に設けられた水栓16と、管路15末端側の流量圧を測
定する圧力計17と、変速電動機12の回転数を制御す
る制御装置20とを備えている。
As shown in FIG. 1, a water supply system for implementing the method of the present invention includes a pump 11 having a variable speed electric motor 12, and a pump 1.
a pressure sensor 13 that measures the discharge pressure of pump 11;
a flow meter 14 that measures the discharge flow rate, a faucet 16 provided at the end of the pipe 15, a pressure gauge 17 that measures the flow pressure at the end of the pipe 15, and controls the rotation speed of the variable speed electric motor 12. A control device 20 is provided.

そして前記制御装置20は、予め定められたプログラム
に従って演算・処理を行うマイクロコンピュータ(以下
、CPUと略称す)21と、回転計で検出された回転数
N及び流量計14で検出された吐出し量Q並びに圧力セ
ンサ13で検出された水の吐出し圧Hr ’a: CP
 U21に入力する入力部22と、第1記憶部(ROM
)23及び第2記憶部(RAM)24からなる記憶手段
と、C:PU21から出力部25を介し入力されて変速
電動機12の回転数をコントロールするコントロール部
26とを有している。
The control device 20 includes a microcomputer (hereinafter abbreviated as CPU) 21 that performs calculations and processing according to a predetermined program, a rotational speed N detected by a tachometer, and a discharge rate detected by a flowmeter 14. Amount Q and water discharge pressure Hr'a detected by the pressure sensor 13: CP
An input unit 22 that inputs to U21 and a first storage unit (ROM
) 23 and a second storage section (RAM) 24, and a control section 26 which receives input from the C:PU 21 via an output section 25 and controls the rotation speed of the variable speed electric motor 12.

この制御装置20は、ポンプ11の運転時、第3図のA
部に示すように、管路定数にと実揚程hOとが前記記憶
手段に記憶された場合、流量計14で測定された吐出し
流量QをCPUが取込み、CPUで前述の(1)式を計
算して末端の目標圧Hrを算出し、また圧力センサで測
定された現在の吐出し圧Hを取込み、この吐出し圧Hと
目標圧H(との大小を比較し、該比較結果、吐出し圧H
と目標圧Hf とに差が生じると、その差に応じコン1
〜ロール部26によって同じ圧になるまで変速電動機1
2の回転数を減速若しくは増速させて、吐出し圧Hと目
標圧Hf とを同圧にすることにより、管路15末端で
の流量圧を一定にできるようにしている。
When the pump 11 is in operation, this control device 20 operates as shown in FIG.
As shown in the section, when the pipe line constant and the actual head hO are stored in the storage means, the CPU takes in the discharge flow rate Q measured by the flowmeter 14, and calculates the above-mentioned equation (1). Calculate the terminal target pressure Hr, take in the current discharge pressure H measured by the pressure sensor, compare the magnitude of this discharge pressure H with the target pressure H, and calculate the comparison result, discharge Pressure H
When a difference occurs between the target pressure Hf and the target pressure Hf, the controller 1
~The variable speed electric motor 1 until the same pressure is achieved by the roll portion 26.
The flow rate pressure at the end of the pipe line 15 can be kept constant by slowing down or increasing the rotational speed of the pump 2 to make the discharge pressure H and the target pressure Hf the same pressure.

また、この制御装置20は、ポンプの運転初期時、管路
15末端での一定圧力のもとで水栓16によって末端流
量を変化させ、その変化させた末端流量毎に流量計14
及び圧力センサ13によって吐出し流量Q及び吐出し圧
Hを測定し、夫々の吐出し流量Q及び吐出し圧Hを(1
)式に代入して管路定数にと実揚程hOとを算出するよ
うにしている。
In addition, this control device 20 changes the end flow rate using the faucet 16 under a constant pressure at the end of the pipe line 15 at the initial stage of operation of the pump, and uses a flow meter 14 for each changed end flow rate.
The discharge flow rate Q and the discharge pressure H are measured by the pressure sensor 13 and the discharge flow rate Q and the discharge pressure H are calculated as (1
) to calculate the pipe line constant and the actual head hO.

次に、実施例の給水装置の制御動作に関連して本発明方
法の一実施例を第3図に従って述べる。
Next, an embodiment of the method of the present invention will be described with reference to FIG. 3 in connection with the control operation of the water supply device of the embodiment.

まず、ポンプ11の運転初期時、ポンプ11を試運転し
、かつ水栓16を開いて適度の末端流量を流しくSl)
、圧力計17により末端流量の圧力が目標圧POとなる
ように変速電動機12の回転数N1  を調= 6− 節する(S2)。
First, at the initial stage of operation of the pump 11, test run the pump 11, and open the water faucet 16 to allow a suitable terminal flow rate (Sl)
, the rotational speed N1 of the variable speed motor 12 is adjusted so that the pressure of the terminal flow rate becomes the target pressure PO using the pressure gauge 17 (S2).

このとき、流量計14及び圧センサ13で吐出し流量Q
+及び吐出し圧H,を測定して、第2記憶部24に格納
しくS3)、この測定回数が所定回数行われたか否かを
判定する(S4)。該判定結果、所定回数行われないと
、水栓16の開度を変えて流量Qを変化させ(S5)、
以下82〜S5の処理を所定回数に達するまで繰り返し
行う。
At this time, the discharge flow rate Q is measured by the flow meter 14 and the pressure sensor 13.
+ and discharge pressure H, are measured and stored in the second storage unit 24 (S3), and it is determined whether this measurement has been performed a predetermined number of times (S4). As a result of the determination, if the process is not performed a predetermined number of times, the opening degree of the faucet 16 is changed to change the flow rate Q (S5),
The following steps 82 to S5 are repeated until a predetermined number of times is reached.

従って、管路15末端での一定の目標圧poのもとで、
末端流量を種々変化させ、その種々の末端流量Q毎に吐
出し流量Qn及び吐出し圧Hnを測定する。
Therefore, under a constant target pressure po at the end of the pipe line 15,
The terminal flow rate is varied, and the discharge flow rate Qn and discharge pressure Hn are measured for each of the various terminal flow rates Q.

一方、測定回数が所定回数行われると、S3で測定され
た種々の吐出し流量Qn及び吐出し圧HnをCPU21
により(1)式に代入して、管路抵抗にと実揚程hoと
を算出しくS6)、この管路抵抗にと実揚程hOとを第
2記憶部24に記憶する(S7)。
On the other hand, when the measurement is carried out a predetermined number of times, the various discharge flow rates Qn and discharge pressures Hn measured in S3 are sent to the CPU 21.
By substituting into equation (1), the pipe resistance and the actual head ho are calculated (S6), and the pipe resistance and the actual head hO are stored in the second storage unit 24 (S7).

そして、S7の処理後、A部に示す処理内容でポンプ1
]を運転させて末端圧力一定制御を実行する。
After the process in S7, the pump 1 is
] to perform constant terminal pressure control.

即ち、制御装置20は、流量計14によりポンプ11の
吐出し流量Qを測定して取込み(S8)、この吐出し流
量Qと86で算出された管路抵抗に、実揚程hOとを(
1)式に代入して目標圧Hf を求め(S9)、次いで
圧力センサ13によりポンプ11の現在の吐出し圧Hを
測定して取込み(SIO)、その吐出し圧Hと目標圧H
f とを比較する(Sll)。
That is, the control device 20 measures and takes in the discharge flow rate Q of the pump 11 using the flowmeter 14 (S8), and adds the actual head hO to the discharge flow rate Q and the pipe resistance calculated in 86 (S8).
1) Find the target pressure Hf by substituting it into the equation (S9), then measure and take in the current discharge pressure H of the pump 11 with the pressure sensor 13 (SIO), and calculate the discharge pressure H and the target pressure H.
Compare with f (Sll).

該比較結果、吐出し圧Hが目標圧I−I f より大き
い場合には、両者が同じ圧になるまで変速電動機12の
回転数を減速(514)、一方、吐出し圧Hが目標圧H
fより小さい場合には、両者が同じ圧になるまで変速電
動機12の回転数を増速(Sl、5)。
As a result of the comparison, if the discharge pressure H is larger than the target pressure I-If, the rotation speed of the variable speed electric motor 12 is reduced until both pressures become the same (514), while the discharge pressure H is lower than the target pressure H.
If it is smaller than f, the rotational speed of the variable speed motor 12 is increased until both pressures become the same (Sl, 5).

そして、吐出し圧Hと目標圧Hr とが同圧になったと
き、一定時間経過後(31,3)、S8以降の処理を繰
り返し行う。これにより、変速電動機12及びポンプ1
1は使用水量の変化に応じ、第8図に示す管路負荷抵抗
曲線F上に沿って速度制御されるので、使用水の圧力を
一定にさせることができる。
Then, when the discharge pressure H and the target pressure Hr become the same pressure, after a certain period of time has elapsed (31, 3), the processes from S8 onwards are repeated. As a result, the variable speed electric motor 12 and the pump 1
1 is speed-controlled along the line load resistance curve F shown in FIG. 8 in response to changes in the amount of water used, so the pressure of the water used can be kept constant.

このように、本実施例では、実際に設置された給水装置
を使用し、ポンプ11の運転初期時、その管路15に流
通させてポンプ11の吐出し圧Hn及び吐出し流量Qn
を測定することにより、管路抵抗にと実揚程hOとを算
出するので、従来のような図面上から求める値と異なり
、管路抵抗にと実揚程hOとを管路の実態から正確に求
めることができ、従って、予測末端圧力一定制御を正確
に行い得る。しかも、経年変化等によって管路15の実
態が変化しても、これに応じた管路抵抗にと実揚程hO
とを正確に求めることができ、経年変化に関係なく、常
に予測末端圧力一定制御を正確に行い得る。
As described above, in this embodiment, an actually installed water supply device is used, and when the pump 11 is initially operating, the water is supplied to the conduit 15 to adjust the discharge pressure Hn and the discharge flow rate Qn of the pump 11.
By measuring , the pipe resistance and the actual head hO are calculated, so unlike the conventional values obtained from drawings, the pipe resistance and the actual head hO can be calculated accurately from the actual condition of the pipe. Therefore, predictive terminal pressure constant control can be performed accurately. Moreover, even if the actual state of the pipe line 15 changes due to aging, etc., the pipe resistance will change accordingly.
can be determined accurately, and constant predicted terminal pressure control can always be performed accurately regardless of changes over time.

第4図及び第5図は、本発明方法の第2の実施例を示し
ている。
4 and 5 show a second embodiment of the method of the invention.

この場合は、ポンプ11の夫々の回転数におけるQ−)
T性能曲線が相対関係にあることに着目し、末端流量毎
にポンプ11の回転数Nnを測定したとき、その回転数
NnにおけるポンプのQ −H性能曲線を、予め定めら
れた基準のQ−H性能曲線に基づいて算出し、この算出
したQ−H性能曲線を利用して、管路抵抗にと実揚程h
oとを求めるようにしたものである。
In this case, Q-) at each rotation speed of the pump 11
Focusing on the fact that the T performance curves are in a relative relationship, when the rotational speed Nn of the pump 11 is measured for each end flow rate, the Q-H performance curve of the pump at that rotational speed Nn is calculated from the predetermined standard Q- The calculated Q-H performance curve is used to calculate the pipe resistance and the actual head h.
o.

例えば第5図に示すように、予めポンプ11の回転数N
′における基準のQ −H性能曲線Xが与えられ、これ
に基づいて回転数NにおけるQ−H性能曲線Yを求める
場合、基準のQ −H性能曲線X上の点H′I、Q′1
、H’2. Q’2、H’3. Q’3・・・H’ n
 、 Q ’ nと、Q −H性能曲線Y上の点HIy
Ql、H2,Q2、H3,Qa、HntQn  との各
2点間には次式(2)の相対関係がある。
For example, as shown in FIG.
Given a standard Q-H performance curve
, H'2. Q'2, H'3. Q'3...H' n
, Q' n and the point HIy on the Q-H performance curve Y
There is a relative relationship between each of the two points Ql, H2, Q2, H3, Qa, and HntQn as shown in the following equation (2).

この(2)式の関係により、基準のQ −H性能曲線X
の各点H’+ y Q’+ 、 H’zt Q’z・−
H’nt Q’nから回転数Nにおける各点Hl、 Q
+、 Hzt Qz・・・Hn、Qnを換算して、回転
数NにおけるQ−H性能曲線Yを求めることができる。
Based on the relationship of this equation (2), the standard Q-H performance curve
Each point H'+ y Q'+ , H'zt Q'z・-
Each point Hl, Q at rotation speed N from H'nt Q'n
+, Hzt Qz...Hn, Qn can be converted to obtain the Q-H performance curve Y at the rotational speed N.

そして、この求めた回転数NにおけるQ−H性能曲線Y
上に、測定された吐出し圧Hxをプロットして、吐出し
流量Qxを算出するようにしている。従って、流量計1
4を用いないで吐出し流量Qxを求めるようにしている
Then, the Q-H performance curve Y at this determined rotational speed N
The measured discharge pressure Hx is plotted on the top to calculate the discharge flow rate Qx. Therefore, flow meter 1
4 is not used to determine the discharge flow rate Qx.

次に、本発明方法の第2の実施例を具体的に述べると、
第4図に示すように、ポンプ11の運転初期時、予め制
御装置20の第1記憶部23にポンプ11の基準のQ 
−H性能曲線Xを記憶させておき、次いでポンプ11を
試運転させかつ水栓16を開いて適度の末端流量を流し
くSl)、圧力計17により末端流量の圧力が目標圧p
o となるように変速電動機12の回転数Nnを調節す
る(S2)。
Next, to specifically describe the second embodiment of the method of the present invention,
As shown in FIG. 4, at the initial stage of operation of the pump 11, the reference Q of the pump 11 is stored in advance in the first storage unit 23 of the control device 20.
-H Performance curve
The rotational speed Nn of the variable speed electric motor 12 is adjusted so that the rotational speed Nn becomes 0 (S2).

このとき、変速電動機12の回転数Nを測定する(S1
6)と、制御装置20は、予め記憶された基準のQ−H
性能曲線Xに基づき(2)式より点H1、Ql、H2?
Q2・・・Hn、Qnを求めて、その回転数Nにおける
Q−H性能曲線Yを算出する。
At this time, the rotation speed N of the variable speed electric motor 12 is measured (S1
6), and the control device 20 uses the pre-stored standard Q-H.
Based on the performance curve X, points H1, Ql, H2? from equation (2)?
Q2...Hn and Qn are determined, and the Q-H performance curve Y at the rotation speed N is calculated.

また、制御装置20は、Q−H性能曲線Yの算出後、圧
力センサ13によりポンプ11の吐出し圧Hxを測定し
、この吐出し圧Hxlを前記Q −H性能曲線Y上にプ
ロットすることにより、ポンプ11の吐出し流量Qxを
算出する(S17)。
Further, after calculating the Q-H performance curve Y, the control device 20 measures the discharge pressure Hx of the pump 11 using the pressure sensor 13, and plots this discharge pressure Hxl on the Q-H performance curve Y. Accordingly, the discharge flow rate Qx of the pump 11 is calculated (S17).

そして、管路末端での一定目標圧poのもとで末端流量
を変化させ、変化させた末端流量毎に吐出し圧Hxnの
測定及び吐出し流jii:Qxnの算出を所定回数行っ
た後、その吐出し圧T−1xn及び吐出し流量Qxnを
(1)式に代入して、管路抵抗にと実揚程hOとを算出
しくS6) 、これらの値を記憶させ(S7)後、A部
に示す処理内容で予測末端圧力一定制御を実行する。
Then, after changing the end flow rate under a constant target pressure po at the end of the pipe, and measuring the discharge pressure Hxn and calculating the discharge flow jii:Qxn for each changed end flow rate, a predetermined number of times, Substitute the discharge pressure T-1xn and the discharge flow rate Qxn into equation (1) to calculate the pipe resistance and the actual head hO (S6), and after storing these values (S7), Execute predictive terminal pressure constant control with the processing content shown in .

このように、本実施例では、基準のQ −H性能曲線X
を利用し、この基準のQ −I−I性能曲線Xに基づき
測定した回転数のQ −H性能曲線Yを算出し、そのQ
 −H性能曲線Yで測定した吐出し圧Hxnをプロット
で吐出し流星Qxnを算出し、算出した吐出し流量Qx
n及び吐出し圧Hxnにより管路抵抗にと実揚程hoと
を求めるようにしたので、管路抵抗にと実揚程hOとを
正確に求めることができ、従って、第1の実施例と同様
の効果を得る− 1へ − ことができる。
In this way, in this example, the standard Q-H performance curve
Using this, calculate the Q-H performance curve Y of the rotation speed measured based on the Q-I-I performance curve X of this standard, and calculate the Q
- Plot the discharge pressure Hxn measured with the H performance curve Y, calculate the meteor Qxn, and calculate the discharge flow rate Qx
Since the pipe resistance and the actual head ho are determined by n and the discharge pressure Hxn, the pipe resistance and the actual head hO can be determined accurately. You can get the effect - to 1 -.

なお、図示実施例では、基準のQ −H性能曲線Xを利
用することによって吐出し流量Qxを求めた例を示した
が、このQ−H性能曲線Xを例えば、次式(3)に置き
換え、 Q= a H’+ b H+ c          
・・13)a、b、c:定数 この(3)式を利用することによっても吐出し流量Qx
を求めることができる。
In addition, in the illustrated embodiment, an example was shown in which the discharge flow rate Qx was obtained by using the standard Q-H performance curve X, but this Q-H performance curve , Q= a H'+ b H+ c
...13) a, b, c: constants By using this equation (3), the discharge flow rate Qx
can be found.

即ち、第6図に示すように、(3)式で表示されるQ 
−H性能曲線上のQ’、H’と、管路抵抗曲線F上の点
Hx、Qxとの間にはそれぞれ下記の式が成立する。
That is, as shown in FIG. 6, Q expressed by equation (3)
The following equations are established between Q' and H' on the -H performance curve and points Hx and Qx on the pipe resistance curve F, respectively.

Q’= a H” + b H’+ c      ・
・・(4)N′ Q’= Qx Nx           −(5)N
′ H’=Hx(Nx )’          ・=(6
)(4) 、 (5) 、 (6)式より従って、既知
のa、b、c、N’および測定値のHx、Nxから流量
Qxを求めることができるので、第2実施例と同様にし
て管路抵抗にと実揚程hOとを算出することもできる。
Q'= a H" + b H'+ c ・
...(4)N'Q'= Qx Nx - (5)N
'H'=Hx(Nx)' ・=(6
)(4), (5), and (6), the flow rate Qx can be found from the known a, b, c, N' and the measured values Hx, Nx, so the procedure is similar to the second embodiment. It is also possible to calculate the pipe resistance and the actual head hO.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、ポンプの運転初期
時、管路末端での一定目標圧のもとで末端流量を変化さ
せ、変化させた末端流量毎のポンプの吐出し圧及び吐出
し流星に基づいて管路抵抗と実揚程とを算出し、この管
路抵抗と実揚程とに基づいて予測末端圧力一定制御を行
うようにしたので、管路抵抗と実揚程とを配管の実態か
ら正確に求めることができ、予測末端圧力一定制御を高
精度に行うことができ、しかも配管係の経年変化に拘る
ことなく正確に行うこともできる。
As described above, according to the present invention, at the initial stage of operation of the pump, the end flow rate is changed under a constant target pressure at the end of the pipe, and the pump discharge pressure and discharge for each changed end flow rate are The pipe resistance and actual head are calculated based on the meteors, and the predicted end pressure is controlled to be constant based on the pipe resistance and the actual head. It is possible to accurately determine the predicted end pressure constant control from the above, and to perform the predicted terminal pressure constant control with high precision, and it is also possible to perform the predicted end pressure constant control with high precision, regardless of the aging of the pipe staff.

【図面の簡単な説明】[Brief explanation of drawings]

1ti− 第1図は本発明方法を実施する為の給水装置の一実施例
を示す概略図、第2図は給水装置の制御装置を示すブロ
ック図、第3図は本発明方法の第1の実施例を示すフロ
ーチャート、第4図は本発明方法の第2の実施例を示す
フローチャート、第5図は基準のQ −H性能曲線と測
定された回転数におけるQ −H性能曲線との関係を示
す説明図、第6図は基準のQ−H性能曲線を関数式に置
き換えた場合の説明図、第7図は従来の給水装置の一例
を示す配管図、第8図はポンプのQ−H性能曲線を示す
説明図である。 11・・・ポンプ、12・・・変速電動機、13・・・
圧力センサ、14・・・流量計、15・・・管路、16
・・・水栓、17・・・圧力計、F・・・管路負荷抵抗
曲線、H・・・吐出し圧、Q・・・吐出し流量。 代理人 弁理士    秋 本 正 実第1図 第 3 図 第 5 図 Q【 一うQ(q±、出し流量) 第 6 図 縁て − 第7図 第8図 m−÷Q(吐出しi量)
1ti- Fig. 1 is a schematic diagram showing an embodiment of a water supply device for implementing the method of the present invention, Fig. 2 is a block diagram showing a control device for the water supply device, and Fig. 3 is a schematic diagram showing an embodiment of the water supply device for carrying out the method of the present invention. FIG. 4 is a flowchart showing the second embodiment of the method of the present invention, and FIG. 5 shows the relationship between the standard Q-H performance curve and the Q-H performance curve at the measured rotation speed. Figure 6 is an explanatory diagram when the standard Q-H performance curve is replaced with a functional equation, Figure 7 is a piping diagram showing an example of a conventional water supply device, and Figure 8 is the Q-H of a pump. It is an explanatory diagram showing a performance curve. 11... Pump, 12... Variable speed electric motor, 13...
Pressure sensor, 14...Flowmeter, 15...Pipeline, 16
...Water faucet, 17..Pressure gauge, F.. Pipe load resistance curve, H..Discharge pressure, Q..Discharge flow rate. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 3 Figure 5 Figure Q [One Q (q±, discharge flow rate) Figure 6 Edge - Figure 7 Figure 8 m-÷Q (discharge i amount )

Claims (1)

【特許請求の範囲】 1、ポンプの回転数を、管路負荷抵抗曲線で定まるQ−
H性能曲線に従って変化させて、予測末端圧一定制御を
行う速度制御ポンプの運転法において、ポンプの運転初
期時、予め管路末端での一定目標圧のもとで末端流量を
変化させ、変化させた末端流量毎にポンプの吐出し圧及
び吐出し流量を測定し、該末端流量毎の吐出し圧及び吐
出し流量を管路負荷抵抗曲線の関数に代入して管路定数
と実揚程とを算出し、その管路定数と実揚程とに基づい
て予測末端圧力一定制御を行うようにすることを特徴と
する速度ポンプの運転法。 2、ポンプの回転数を、管路負荷抵抗曲線で定まるQ−
H性能曲線に従って変化させて、末端圧力一定制御を行
う速度制御ポンプの運転法において、ポンプの運転初期
時、予め管路末端での一定目標圧のもとで末端流量を変
化させ、変化させた末端流量毎にポンプの回転数を測定
すると共に、該回転数におけるポンプのQ−H性能曲線
を予め定められた基準のQ−H性能曲線に基づいて算出
し、次いで前記回転数における吐出し圧を測定して、該
吐出し圧と対応するポンプのQ−H性能曲線より吐出し
流量を算出し、末端流量毎の吐出し圧及び吐出し流量を
管路負荷抵抗曲線の関数に代入して管路抵抗と実揚程と
を算出し、その管路定数と実揚程とに基づいて予測末端
圧力一定制御を行うようにすることを特徴とする速度制
御ポンプの運転法。
[Claims] 1. The rotation speed of the pump is determined by the Q-
In a speed control pump operation method that performs constant predicted terminal pressure control by varying it according to the H performance curve, the terminal flow rate is varied in advance under a constant target pressure at the end of the pipe at the initial stage of pump operation. Measure the pump discharge pressure and discharge flow rate for each terminal flow rate, and substitute the discharge pressure and discharge flow rate for each terminal flow rate into the function of the pipe load resistance curve to calculate the pipe constant and actual head. A method of operating a speed pump, characterized in that the predicted terminal pressure is controlled to be constant based on the calculated pipe line constant and the actual pump head. 2. Set the pump rotation speed to Q-, which is determined by the pipe load resistance curve.
In the speed control pump operating method, which controls the end pressure at a constant level by changing it according to the H performance curve, the end flow rate is changed in advance under a constant target pressure at the end of the pipe at the initial stage of pump operation. The rotational speed of the pump is measured for each terminal flow rate, and the Q-H performance curve of the pump at the rotational speed is calculated based on a predetermined standard Q-H performance curve, and then the discharge pressure at the rotational speed is calculated. , calculate the discharge flow rate from the Q-H performance curve of the pump corresponding to the discharge pressure, and substitute the discharge pressure and discharge flow rate for each terminal flow rate into the function of the pipe load resistance curve. A method of operating a speed control pump characterized by calculating pipe resistance and actual head, and performing predictive terminal pressure constant control based on the pipe line constant and actual head.
JP23354285A 1985-10-21 1985-10-21 Operation of speed controlled pump Pending JPS6293498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23354285A JPS6293498A (en) 1985-10-21 1985-10-21 Operation of speed controlled pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23354285A JPS6293498A (en) 1985-10-21 1985-10-21 Operation of speed controlled pump

Publications (1)

Publication Number Publication Date
JPS6293498A true JPS6293498A (en) 1987-04-28

Family

ID=16956684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23354285A Pending JPS6293498A (en) 1985-10-21 1985-10-21 Operation of speed controlled pump

Country Status (1)

Country Link
JP (1) JPS6293498A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196493A (en) * 1987-10-08 1989-04-14 Kawamoto Seisakusho:Kk Method for controlling running of variable speed pump
EP0973082A1 (en) * 1998-07-16 2000-01-19 Ewald Hennel Method for controlling a fluid pressure
AT408680B (en) * 1995-04-03 2002-02-25 Atb Austria Antriebstech Ag METHOD FOR REGULATING THE PUMP HEIGHT OF A PUMP
JP2010174842A (en) * 2009-02-02 2010-08-12 Hitachi Industrial Equipment Systems Co Ltd Water feed device
JP2012112363A (en) * 2010-11-29 2012-06-14 Hitachi Industrial Equipment Systems Co Ltd Water supply device
CN102619765A (en) * 2011-01-28 2012-08-01 株式会社日立产机系统 Water supply device
EP2562424A3 (en) * 2012-09-07 2013-03-13 Gidelmar, S.A. Method and equipment for controlling a multipoint fluid distribution system
CN103362178A (en) * 2012-04-09 2013-10-23 株式会社日立产机系统 Water supply system
JP2017089393A (en) * 2015-11-02 2017-05-25 株式会社川本製作所 Feed water equipment and control method of feed water equipment
JP2018091248A (en) * 2016-12-05 2018-06-14 株式会社川本製作所 Feed water supply system and control method for feed water supply system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113992A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Pump velocity controlling process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113992A (en) * 1981-01-07 1982-07-15 Hitachi Ltd Pump velocity controlling process

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196493A (en) * 1987-10-08 1989-04-14 Kawamoto Seisakusho:Kk Method for controlling running of variable speed pump
AT408680B (en) * 1995-04-03 2002-02-25 Atb Austria Antriebstech Ag METHOD FOR REGULATING THE PUMP HEIGHT OF A PUMP
EP0973082A1 (en) * 1998-07-16 2000-01-19 Ewald Hennel Method for controlling a fluid pressure
US6234759B1 (en) 1998-07-16 2001-05-22 Ewald Hennel Method for regulating a fluid pressure
JP2010174842A (en) * 2009-02-02 2010-08-12 Hitachi Industrial Equipment Systems Co Ltd Water feed device
JP2012112363A (en) * 2010-11-29 2012-06-14 Hitachi Industrial Equipment Systems Co Ltd Water supply device
CN102619765A (en) * 2011-01-28 2012-08-01 株式会社日立产机系统 Water supply device
CN103362178A (en) * 2012-04-09 2013-10-23 株式会社日立产机系统 Water supply system
CN103362178B (en) * 2012-04-09 2015-03-18 株式会社日立产机系统 Water supply system
EP2562424A3 (en) * 2012-09-07 2013-03-13 Gidelmar, S.A. Method and equipment for controlling a multipoint fluid distribution system
JP2017089393A (en) * 2015-11-02 2017-05-25 株式会社川本製作所 Feed water equipment and control method of feed water equipment
JP2018091248A (en) * 2016-12-05 2018-06-14 株式会社川本製作所 Feed water supply system and control method for feed water supply system

Similar Documents

Publication Publication Date Title
JPS6293498A (en) Operation of speed controlled pump
US4112494A (en) Refinery and pipeline monitoring system
JP2000039347A (en) Flowrate inspection device
JPH059639B2 (en)
WO2021157541A1 (en) Decarburization end-point determination method, decarburization end-point determination device, secondary refining operation method for steel making, and method for producing molten steel
CN106768127A (en) A kind of pulsed flow accurate measurement and control system and method
JPH0914180A (en) Method and device for detecting delivery flow rate of variable speed pump
KR101825308B1 (en) Flow rate calculation method incident to rotation velocity in Inverter controlled pump
KR102557167B1 (en) Method for predicting discharge flow rate of inverter booster pump
JPH10274554A (en) Liquid level measuring device for pressure vessel
JP2002350199A (en) Water-passing apparatus having flow rate calculation section for calculating flow rate by operation
JPS59119239A (en) Method and device for water permeability test
RU2795903C1 (en) Device for controlling concentration of nitric acid
JPH08200593A (en) Steam trap
JP2854887B2 (en) Flow meter difference test equipment
JPH0735785B2 (en) Pump operation control device
JP2002054577A (en) Controlling method for pump
CN105099324B (en) The state observer and its velocity estimation and system of driver
JP3263593B2 (en) Water level control device
JPS6256354B2 (en)
JPS60181904A (en) Viscosity adjusting device of liquid
JP2001201476A (en) Acid densitometer and method for measuring acid concentration
JPH07174607A (en) Instrumental error correcting device
JPH03149395A (en) Flow detecting method for variable speed pump
JPH08271491A (en) Gas chromatography