JPS6292513A - Non-grounded type switched capacitor inductor - Google Patents

Non-grounded type switched capacitor inductor

Info

Publication number
JPS6292513A
JPS6292513A JP23185185A JP23185185A JPS6292513A JP S6292513 A JPS6292513 A JP S6292513A JP 23185185 A JP23185185 A JP 23185185A JP 23185185 A JP23185185 A JP 23185185A JP S6292513 A JPS6292513 A JP S6292513A
Authority
JP
Japan
Prior art keywords
capacitor
switches
signal
capacitors
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23185185A
Other languages
Japanese (ja)
Inventor
Masahiko Ono
大野 正日子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23185185A priority Critical patent/JPS6292513A/en
Publication of JPS6292513A publication Critical patent/JPS6292513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filters That Use Time-Delay Elements (AREA)

Abstract

PURPOSE:To make the value of an equivalent inductance accurate by using two sets of switched capacitors so as not to connect both the capacitors to the same terminal by means of the switch control at the same time. CONSTITUTION:Two switched capacitors comprising switches S3, S3', a capacitor 3 and switches S4, S4' and a capacitor 4 are provided. The switches S3, S3' and S4, S4' are controlled to connect one of the capacitors 3, 4 to input terminals 1, 2, while buffers 5, 6 are connected to respective output terminals 10, 11, the capacitors 3, 4 are not connected to the same terminal. Thus, an electric charge flows between signal terminals over the entire period of the sampling period and an error due to the interruption of the flow of electric charge is generated and the equivalent inductor of the non-grounded switched capacitor is made accurate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスイッチドキャパシタ技術を応用した非接地形
インダクタの構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the construction of an ungrounded inductor using switched capacitor technology.

〔従来の技術〕[Conventional technology]

従来、この種の非接地形スイッチドキャパシタインダク
タについては2変換を用いた理論的な解析がなされてい
る。即ち、電圧V(s)が印加されたアドミタンスY(
s)に流れる電荷Q(8)はであシ、ここに双一次変換 を施すと、(1)式は となる。ただし、Tはサンプリング周期である。
Conventionally, this type of non-grounded switched capacitor inductor has been theoretically analyzed using two transformations. That is, the admittance Y(
The electric charge Q(8) flowing in s) is 0. If a bilinear transformation is applied to this, equation (1) becomes as follows. However, T is the sampling period.

サンプリング周期Tの間にアドミタンスY(z) を流
れる電荷ΔQはz”−1を単位遅延演算子として(3)
よΔQ = Q(Z) −Q(Z) Z−1となる。こ
こで、アドミタンスY(s)がインダクタンスLによる
ものとすると、 Y(s) =−・・・(5) L であシ、ここに(2)の変換を施すと、となる。(6)
式ヲ(4)式に代入すれば、ΔQの満足すべき式として が得られる。
The charge ΔQ flowing through the admittance Y(z) during the sampling period T is expressed as (3) where z”-1 is the unit delay operator.
ΔQ = Q(Z) −Q(Z) Z−1. Here, if the admittance Y(s) is due to the inductance L, then Y(s) = - (5) L, and when the conversion of (2) is applied here, it becomes. (6)
By substituting equation (4) into equation (4), a satisfying equation for ΔQ can be obtained.

上述の(7)式を実現する従来の回路例としては第3図
に示す如く、昭和59年9月にオーム社から発行された
、藤井著「エレクトロニクス文庫(28)・スイッチド
キャA’シタフィルタの基礎」において、95頁第5.
12図に示されているものがある。
As shown in Figure 3, an example of a conventional circuit that realizes the above equation (7) is the Switched Capacitor A' Shita Filter by Fujii, Electronics Bunko (28), published by Ohmsha in September 1980. 95, No. 5.
There is one shown in Figure 12.

第3図によれば、2つの信号端子1,2と、2つのバッ
ファ5,6のうち正相積分回路の出力と同極性の出力を
発生するほうのバッファの出力端子及び正相積分回路の
出力端子とにスイッチ洗よシ交互に容量全接続すること
により 、 (7)式を満足する非接地形スイッチドキ
ャ・母シタインダクタが実現されている。S4.S4’
、S9’、S9はスイッチ、7はオペアンプ%8は容量
である。
According to FIG. 3, the two signal terminals 1 and 2, the output terminal of the buffer that generates an output of the same polarity as the output of the positive phase integrator circuit, and the output terminal of the one of the two buffers 5 and 6, By alternately connecting the entire capacitance to the output terminal, a non-grounded switched capacitor/mother inductor that satisfies equation (7) is realized. S4. S4'
, S9', S9 are switches, 7 is an operational amplifier, and %8 is a capacitor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の非接地形スイッチドキャパシタインダク
タはスイッチがバッファ及び正相積分回路側に接続され
ている期間の間、2つの信号端子間の電荷移動が妨げら
れる構成となっていることにより、実現されたインダク
タンスに理論値からの誤差が発生する欠点がある。
The conventional non-grounded switched capacitor inductor described above is realized by having a configuration in which charge movement between the two signal terminals is prevented during the period when the switch is connected to the buffer and positive-sequence integrating circuit side. The disadvantage is that the calculated inductance deviates from the theoretical value.

本発明は前記問題点を解消するインダクタを提供するも
のである。
The present invention provides an inductor that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は2つの信号端子ヲ有する2端子回路において、
各々の信号端子に接続された1組のバッファと上記2つ
のバッファの出力を2つの入力とする正相積分回路とを
含み、第1の1組のスイッチにより両端が上記信号端子
の各々の端子と上記バッファの各々の出力端子とに交互
に接続される第1の容量と、第2の1組のスイッチによ
り両端が上記信号端子の各々と上記正相積分回路の出力
端子及び上記バッファのうち、該正相積分回路の出力と
同極性の出力を発生する方のバッファの出力端子とに交
互に接続される第2の容量とを具備し、これら2つの容
量が同時には上記2つの信号端子に接続されないように
上記2つのスイッチを劾 制御するにしたことを特徴とする非接地形スイッチドキ
ャパシタインダクタである。
The present invention provides a two-terminal circuit having two signal terminals,
It includes a set of buffers connected to each signal terminal and a positive-phase integrator circuit which takes the outputs of the two buffers as two inputs, and a first set of switches connects both ends to each of the signal terminals. and a first capacitor alternately connected to each of the output terminals of the buffer, and a second set of switches having both ends connected to each of the signal terminals, the output terminal of the positive phase integrating circuit, and the output terminal of the buffer. , second capacitors are alternately connected to the output terminal of the buffer that generates the output of the positive phase integrating circuit and the same polarity, and these two capacitors are simultaneously connected to the two signal terminals. This is a non-grounded switched capacitor-inductor, characterized in that the two switches are controlled so as not to be connected to the ground.

〔実施例〕〔Example〕

次に本発明の一実施例について図面を参照して説明する
。第1図は本発明の一実施例を示す回路図である。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram showing an embodiment of the present invention.

信号端子1,2はバッファ5,60入力端子に接続され
る。バッファ5,6は入力インピーダンスが十分高くか
つ出力インピーダンスが十分小さく、電圧利得1を有し
ており1例えば電圧ホロワで構成される。容量3はその
両端端子31.32が連動してそれぞれ信号端子1,2
側とバッファ出力端子10゜】1側とに交互に接続され
る。容量4はその両端端子41.42が連動してそれぞ
れ信号端子1,2側とバッファ5の出力端子10側及び
正相積分回路全構成するオペアンプ7の出力端子12側
とに交互に接続される。
Signal terminals 1 and 2 are connected to buffer 5 and 60 input terminals. The buffers 5 and 6 have a sufficiently high input impedance, a sufficiently low output impedance, and a voltage gain of 1, and are constructed of, for example, a voltage follower. The terminals 31 and 32 at both ends of capacitor 3 are linked to signal terminals 1 and 2, respectively.
side and the buffer output terminal 10°]1 side alternately. The terminals 41 and 42 at both ends of the capacitor 4 are interlocked and alternately connected to the signal terminals 1 and 2, the output terminal 10 of the buffer 5, and the output terminal 12 of the operational amplifier 7 that constitutes the entire positive-phase integration circuit. .

正相積分回路は、非反転入力端子がバッファ6の出力端
子11に接続されたオ被アンプ7と、オ被アンプ7の反
転入力端子と出力端子12との間に接続されたコンデン
サ8と、両端端子9]、92が連動してそれぞれバッフ
ァ5の出力端子10及びオペアンプ7の非反転入力端子
と、バッファ6の出力端子11及びオペアンプ7の反転
入力端子とに交互に接続されるコンデンサ9とから構成
される。
The positive phase integrator circuit includes an amplifier 7 whose non-inverting input terminal is connected to the output terminal 11 of the buffer 6, a capacitor 8 connected between the inverting input terminal of the amplifier 7 and the output terminal 12, A capacitor 9 whose both ends terminals 9] and 92 are connected alternately to the output terminal 10 of the buffer 5 and the non-inverting input terminal of the operational amplifier 7, and to the output terminal 11 of the buffer 6 and the inverting input terminal of the operational amplifier 7, respectively. It consists of

第1図の回路における3組のスイッチS3.S3’。Three sets of switches S3 in the circuit of FIG. S3'.

S4.S4’、S9.S9’ の動作タイミングを第2
図に示す。
S4. S4', S9. The operation timing of S9' is set to the second
As shown in the figure.

全てのスイッチは、第2図において、スイッチ制御信号
φ7.φ2に関し、信号φ1がハイレベルのとき第1図
に示す接点■側に接続し、信号φ2がハイレベルのとき
接点■側に接続する。信号φ、とφ2とは互いに逆位相
で重なりあうことはない。
All switches are controlled by switch control signals φ7. Regarding φ2, when the signal φ1 is at a high level, it is connected to the contact ■ side shown in FIG. 1, and when the signal φ2 is at a high level, it is connected to the contact ■ side. The signals φ and φ2 are in opposite phases and do not overlap.

本構成によれば、容量3,4.9の各々の両端に接続さ
れたスイッチS3.S3’、S4.S4’、S9.S9
’について信号φ1がハイレベルのときスイッチS3 
、S3 ’は各々バッファ5,6の出力端子10.11
に接続され、スイッチS4.S4’は各々信号端子1,
2に接続され、スイッチS9.S9’は各々バッファ5
の出力端子10.オペアンシフの非反転端子に接続され
る。
According to this configuration, the switch S3. S3', S4. S4', S9. S9
' When the signal φ1 is at high level, the switch S3
, S3' are output terminals 10 and 11 of buffers 5 and 6, respectively.
connected to switch S4. S4' are signal terminals 1,
2 and the switch S9. S9' is each buffer 5
output terminal 10. Connected to the non-inverting terminal of the operational shift.

信号φ2がハイレベルのとき、スイッチS3.S3’は
各々信号端子1,2に接続され、スイッチ84 、S4
’は各々バッファ5の出力端子10、オペアンプ7の出
力端子12に接続され、スイッチS9,89’は各々バ
ッファ6の出力端子11、オペフッ1フ0反転入力端子
に接続される。
When the signal φ2 is at high level, the switches S3. S3' are connected to signal terminals 1 and 2, respectively, and switches 84 and S4
' are respectively connected to the output terminal 10 of the buffer 5 and the output terminal 12 of the operational amplifier 7, and switches S9 and 89' are connected to the output terminal 11 of the buffer 6 and the operational amplifier 1f0 inverting input terminal, respectively.

次に第1図を参照して回路動作を説明する。Next, the circuit operation will be explained with reference to FIG.

便宜上信号端子2の電位を基準(0デルト)として説明
するが、明かに、このことは何ら本質的な制約ではない
。信号端子1の電圧’tV(Z)、オペアンプ7の出力
電圧をVo(z) 、容量3の値1c、。
For convenience, the potential of the signal terminal 2 will be described as a reference (0 delt), but this is clearly not an essential restriction. The voltage of the signal terminal 1 is 'tV(Z), the output voltage of the operational amplifier 7 is Vo(z), and the value of the capacitor 3 is 1c.

容量4の値を04.容量8の値をC8、容量9の値fc
C7とすると、正相積分回路の入力電圧はV(z)とな
るから、その出力電圧V (z)は衆知のようにとなる
。一方容量4に充電される電荷Q4(Z)は信号φ、が
ハイレベルのとき、 Q4(Z) = CaV(z)           
−(9)信号φ2が・・イレペルのトキ、 q4(z) = C4[v(z) −V。(z) ) 
     −・・α値となる。他方容量3に充電される
電荷Q3(Z)は信号φ4.φ2の変化にかかわらず。
Set the value of capacity 4 to 04. The value of capacitance 8 is C8, the value of capacitance 9 is fc
C7, the input voltage of the positive phase integrating circuit is V(z), and its output voltage V(z) is as well known. On the other hand, when the signal φ is at high level, the charge Q4(Z) charged in the capacitor 4 is Q4(Z) = CaV(z)
-(9) Signal φ2 is . (z) )
−... is α value. On the other hand, the charge Q3(Z) charged in the capacitor 3 is the signal φ4. Regardless of the change in φ2.

Q3(Z) = C,V(Z)           
−・・α力である。つまシ容量3にはスイッチS3.S
3’切替えに伴う急激な電荷の移動はない。さてサンプ
リング時刻において、信号φ2がハイレベルの状態から
信号φ、がハイレベルの状態に遷移すると、サンプリン
グ周期Tの間に信号端子1,2間を流れる電荷ΔQは以
下の3つの成分の和で与えられる。
Q3(Z) = C, V(Z)
−・・It is α force. For the capacity 3, there is a switch S3. S
There is no rapid charge movement associated with 3' switching. Now, at the sampling time, when the signal φ2 transitions from a high level state to a high level state, the charge ΔQ flowing between signal terminals 1 and 2 during the sampling period T is the sum of the following three components. Given.

(1)  信号φ1がハイレベルの間に容量4を流れる
電荷 (11)信号φ2がハイレベルの間に容量3を流れる電
荷 O巾 信号φ2がハイレベルから信号φ1がハイレベル
に変化した瞬間容量4を瞬間的に流れる電荷ここで容量
3と容量4の値を等しくし、C3=C4とすれば、上記
(i)と(11)との電荷の和は等制約に信号端子1,
2間に接続されたままの、容量値C3を有する容量にサ
ンプリング周期Tの間に流れる電荷に等しく、C5V(
z)−CsV(z)Z−1−(Llに等しい。
(1) Charge flowing through capacitor 4 while signal φ1 is high level (11) Charge O width flowing through capacitor 3 while signal φ2 is high level Momentary capacitance when signal φ2 changes from high level to signal φ1 high level If the values of capacitance 3 and capacitance 4 are made equal and C3=C4, then the sum of the charges in (i) and (11) above is equal to the signal terminal 1,
C5V(
z)-CsV(z)Z-1-(equal to Ll.

次に上記0巾の電荷は(9)式と01式の差であり、C
4V(z ) C4(V(z ) V。(z))=C4
■。(Z) = C3Vo(Z) ・04である。従っ
て周期Tの間に信号端子】、2間を流れる全電荷ΔQは
60式と01式の和としてΔQ=C3V(z)−C3V
(z)Z−’ +C3V0(z)     −α→であ
る。ここに(8)式を代入し整理すればとなる。ここで
、正相積分回路の利得C9/C8i 4とすれば(C,
/C8= 4 ) 、(ト)式はとなる。これと(7)
式とを等量することにより等価インダクタLが得られる
。即ち第1図に示す回路はインダクタンス なるインダクタを実現していることとなる。
Next, the above zero-width charge is the difference between equation (9) and equation 01, and C
4V(z) C4(V(z) V.(z))=C4
■. (Z) = C3Vo(Z) 04. Therefore, the total charge ΔQ flowing between the signal terminals ] and 2 during the period T is the sum of equations 60 and 01 as ΔQ=C3V(z)−C3V
(z)Z-' +C3V0(z) -α→. If we substitute equation (8) here and rearrange it, we get the following. Here, if the gain of the positive phase integrator circuit is C9/C8i 4, then (C,
/C8=4), formula (g) becomes. This and (7)
The equivalent inductor L can be obtained by equating the equations. In other words, the circuit shown in FIG. 1 realizes an inductor.

なお上記説明により第3図に示す従来例は(2)式が成
立しないため、等価インダクタに誤差を含むこととなる
ことは明らかである。
From the above explanation, it is clear that in the conventional example shown in FIG. 3, since equation (2) does not hold, the equivalent inductor includes an error.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように2つの交互に信号端子に接
続される容量を具備することにょシサンプリング周期の
全てに渡って信号端子間を電荷が流れるようにして正確
な等価インダクタンスの値を実現できる効果がある。
As explained above, the present invention realizes an accurate equivalent inductance value by providing two capacitors that are alternately connected to the signal terminals so that charge flows between the signal terminals during the entire sampling period. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は第1
図のスイッチの制御を示すタイミング図、第3図は従来
の回路図である。 1.2・・・信号端子、3,4,8,9・・・容量、5
,6・・・バッファ、7・・・オペアンプ、S3.S3
’、S4.S4’、S9.S9’・・・スイッチ、31
.32,4] 、42,91.92・・・スイッチ共通
可動片、 10.11・・・バッファ出力端子、12・
・・オペアンプ出力端子。 第1図 第3図
Fig. 1 is a circuit diagram showing one embodiment of the present invention, and Fig. 2 is a circuit diagram showing an embodiment of the present invention.
FIG. 3 is a timing diagram showing the control of the switch shown in FIG. 3, and FIG. 3 is a conventional circuit diagram. 1.2... Signal terminal, 3, 4, 8, 9... Capacity, 5
, 6... Buffer, 7... Operational amplifier, S3. S3
', S4. S4', S9. S9'...Switch, 31
.. 32,4], 42,91.92...Switch common movable piece, 10.11...Buffer output terminal, 12.
...Op-amp output terminal. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)2つの信号端子を有する2端子回路において、各
々の信号端子に接続された1組のバッファと、上記2つ
のバッファの出力を2つの入力とする正相積分回路とを
含み、第1の1組のスイッチにより両端が上記信号端子
の各々の端子と上記バッファの各々の出力端子とに交互
に接続される第1の容量と、第2の1組のスイッチによ
り両端が上記信号端子の各々と上記正相積分回路の出力
端子及び上記バッファのうち、該正相積分回路の出力と
同極性の出力を発生する方のバッファの出力端子とに交
互に接続される第2の容量とを具備し、これらの2つの
容量が同時には上記2つの信号端子に接続されないよう
に上記2つのスイッチを制御するようにしたことを特徴
とする非接地形スイッチドキャパシタインダクタ。
(1) A two-terminal circuit having two signal terminals, including a set of buffers connected to each signal terminal, and a positive-phase integrator circuit that uses the outputs of the two buffers as two inputs, and a first A first capacitor whose both ends are alternately connected to each of the signal terminals and each output terminal of the buffer by a set of switches, and a second capacitor whose both ends are connected to the signal terminal by a second set of switches. and a second capacitor alternately connected to the output terminal of the positive phase integrator circuit and the output terminal of the buffer that generates an output of the same polarity as the output of the positive phase integrator circuit. An ungrounded switched capacitor-inductor, characterized in that the two switches are controlled so that these two capacitors are not connected to the two signal terminals at the same time.
JP23185185A 1985-10-17 1985-10-17 Non-grounded type switched capacitor inductor Pending JPS6292513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23185185A JPS6292513A (en) 1985-10-17 1985-10-17 Non-grounded type switched capacitor inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23185185A JPS6292513A (en) 1985-10-17 1985-10-17 Non-grounded type switched capacitor inductor

Publications (1)

Publication Number Publication Date
JPS6292513A true JPS6292513A (en) 1987-04-28

Family

ID=16930005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23185185A Pending JPS6292513A (en) 1985-10-17 1985-10-17 Non-grounded type switched capacitor inductor

Country Status (1)

Country Link
JP (1) JPS6292513A (en)

Similar Documents

Publication Publication Date Title
US4862121A (en) Switched capacitor filter
JPH0793553B2 (en) Switched capacitor filter
CA1159910A (en) Switched-capacitor cosine filter
CA1149479A (en) Low sensitivity switched-capacitor ladder filter using monolithic mos chip
CA1233890A (en) Decimating filter
JP3465951B2 (en) Inverting delay circuit
US6727749B1 (en) Switched capacitor summing system and method
JPS6292513A (en) Non-grounded type switched capacitor inductor
CN109450402A (en) Ten quadravalence switched capacitor bandpass filters
JPH0322727B2 (en)
US4559498A (en) Symmetrical integrator and application of said integrator to an electric filter
US10483947B2 (en) Anti-aliasing filter
US4296392A (en) Switched capacitor bilinear resistors
JPS6276810A (en) Switched capacitor circuit
US4538113A (en) Switched capacitor filter
EP0437970A2 (en) Analog filter
JPS639683B2 (en)
JPS59122216A (en) Switched capacitor filter
Ono A new switched-capacitor inductance simulation circuit using unity gain buffers
JPS61274508A (en) Switched capacitor filter
JPS63138810A (en) Switched capacitor filter
Reekie et al. Realization of switched-capacitor voltage-wave filters containing zeros of transmission
JPH0446007B2 (en)
JPH01303913A (en) Switched capacitor filter circuit
JPS6148222A (en) Switched capacitor filter