JPS6291529A - Synthesis of polyaniline - Google Patents

Synthesis of polyaniline

Info

Publication number
JPS6291529A
JPS6291529A JP61129167A JP12916786A JPS6291529A JP S6291529 A JPS6291529 A JP S6291529A JP 61129167 A JP61129167 A JP 61129167A JP 12916786 A JP12916786 A JP 12916786A JP S6291529 A JPS6291529 A JP S6291529A
Authority
JP
Japan
Prior art keywords
polyaniline
stainless steel
anode
electrode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61129167A
Other languages
Japanese (ja)
Inventor
Masao Ogawa
雅男 小川
Tadashi Fuse
布施 正
Yoshitomo Masuda
善友 増田
Eiji Ofuku
大福 英治
Ryota Fujio
藤尾 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61129167A priority Critical patent/JPS6291529A/en
Publication of JPS6291529A publication Critical patent/JPS6291529A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain polyaniline useful as an electrode material for secondary batteries at a low cost, by electrolytically polymerizing an aqueous aniline solution by using stainless steel as an anode for electrolysis. CONSTITUTION:A 0.01-5mol/l aqueous aniline solution, preferably, containing borofluoric acid, perchloric acid or the like is electrolyzed by using a 1-1,000mum-thick gauze or thin sheet-like electrode of stainless steel (e.g., austenitic stainless steel containing 1-10% Mo) as an anode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリアニリンの合成方法、特に二次電池の電極
材料として有用な、ポリアニリンの合成方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for synthesizing polyaniline, particularly a method for synthesizing polyaniline useful as an electrode material for secondary batteries.

(従来の技術) ポリアニリンを電解重合法により合成する場合、従来の
技術では電解重合液を強酸性とする必要があった。その
ため、電解重合に際して使用出来る陽極(ポリアニリン
が析出形成する側の電極)材料が制限されていた。即ち
、この陽極材料の代表的なものとしては、白金とカーボ
ンが使用されているにすぎない。ここで白金の場合には
高価であるという欠陥かあり、また一方、カーボンの場
合には、通常生成するポリアニリンが脆く、プレスなど
によりフィルム状にしたタイプのカーボンがあるが、こ
れは、フレキシブルの面は満たすものの、高抵抗で且高
価であるという別の欠点を有している。
(Prior Art) When polyaniline is synthesized by an electrolytic polymerization method, in the conventional technology, it is necessary to make the electrolytic polymerization solution strongly acidic. Therefore, the anode (electrode on the side where polyaniline is deposited and formed) material that can be used during electrolytic polymerization has been limited. That is, only platinum and carbon are used as typical anode materials. In the case of platinum, there is a drawback in that it is expensive, and on the other hand, in the case of carbon, the polyaniline that is normally produced is brittle, and there is a type of carbon that is made into a film by pressing etc., but this is a flexible material. Although it satisfies the surface requirements, it has other disadvantages of high resistance and high cost.

また、今まての、ポリアニリンを電極材料として二次電
池に用いる場合には、その製造面では、ポリアニリン膜
を電極から剥離し、集電体に取り付けるなどの手間を要
し、電池組立時の工程が煩雑化する。加えて、電池の性
情面では、ポリアニリン膜を別途、集電体に取り付ける
ので、その界面での抵抗増加等により、内部抵抗が高く
なるという1?!!題点を有していた。
In addition, when polyaniline is used as an electrode material in secondary batteries, it takes time and effort to peel the polyaniline film from the electrode and attach it to the current collector, and when assembling the battery. The process becomes complicated. In addition, in terms of battery characteristics, since a polyaniline film is separately attached to the current collector, internal resistance increases due to increased resistance at the interface. ! ! It had a problem.

(問題点を解決するための手段) 本発明者等は、この問題点を解決するため鋭意研究検討
を重ねた結果1本発明に到達したものである、即ち、本
発明はアニリン水溶液を用いて。
(Means for Solving the Problem) The present inventors have arrived at the present invention as a result of extensive research and consideration in order to solve this problem. That is, the present invention uses an aniline aqueous solution .

電解重合法により、ポリアニリンを合成するに当り、ス
テンレス鋼を陽極として用いることを特徴とする。ポリ
アニリンの合成方法に係るものである。
It is characterized by using stainless steel as an anode when synthesizing polyaniline by an electrolytic polymerization method. This relates to a method for synthesizing polyaniline.

以下1本発明の詳細に就いて逐次説明する。The details of the present invention will be sequentially explained below.

先ず第一に電解に用いるステンレス鋼は、特に制限はな
いが、電解重合液に対する耐腐蝕性、生成するポリアニ
リンとの密着性や二次電池に用いた際の内部抵抗の低減
化等の面からオーステナイト系ステンレス鋼か好ましく
、その中でも、モリブデンを1〜10%含有するものか
より、好ましい。具体的な例としては、鉄にCr;16
〜18%、Ni;10〜14%、 No;2〜3%等を
含有している5LISH6や、鉄にCr;18〜20%
、 Ni;11〜15%、舖o;3〜4%等を含有して
いる3118317などが挙げられる。
First of all, there are no particular restrictions on the stainless steel used for electrolysis, but it is selected in terms of corrosion resistance to the electrolytic polymerization solution, adhesion to the polyaniline produced, and reduction of internal resistance when used in secondary batteries. Austenitic stainless steel is preferred, and among these, those containing 1 to 10% molybdenum are more preferred. A specific example is Cr;16 for iron.
5LISH6 containing ~18%, Ni: 10~14%, No: 2~3%, etc., and Cr: 18~20% in iron.
, 3118317 containing 11 to 15% Ni, 3 to 4% Ni, and the like.

なお、ステンレス鋼基体基体の形態は、その使用1的や
、狙いとする電池の種類等により適宜選択されるもので
あるが、本発明の狙いの一つか基体を電池の集′市体又
は容器として、使用しようとするものてる。そのため、
厚さ1〜lOflOgm 、好ましくは1()〜511
04bmの網状或いは薄板状とすることか好ましい。こ
れにより、電池の小型化や薄型化の達成かiq廃となる
The form of the stainless steel substrate is selected depending on its intended use and the type of battery intended, but one of the purposes of the present invention is to use the substrate as a battery assembly or container That's what I'm trying to use. Therefore,
Thickness 1~1OflOgm, preferably 1()~511
04bm net shape or thin plate shape is preferable. This results in the achievement of miniaturization and thinning of batteries, or the iq is obsolete.

次に1.し解重合条件も、特に制限かない。ただ、生成
するポリアニリンとステンレス鋼基体との密着性をより
向上するために、電解重合液としては、ホウフッ化水素
酸または過ji!素酸等を含有する溶液か好ましい。そ
の溶液のMl成としては、通常アニリン2度か、0.0
1〜5肛λ /交、好ましくは0.5〜3so交/l及
び酸C度は、0.02〜lO重O文/見、好ましくは1
〜6so交/lである。また、電解液の温度は、ポリア
ニリンの生成速度及びステンレス鋼の腐蝕を抑えるとい
う観点から、0〜30℃の範囲か好ましく、また、0〜
20℃の温度とすることにより、生成するポリアニリン
の成膜性をより良好とできるので、より好ましい範囲で
ある。
Next 1. The depolymerization conditions are also not particularly limited. However, in order to further improve the adhesion between the produced polyaniline and the stainless steel substrate, fluoroboric acid or perji! is used as the electrolytic polymerization liquid. A solution containing elementary acid or the like is preferred. The Ml composition of the solution is usually 2 degrees aniline or 0.0
1 to 5 anal λ/l, preferably 0.5 to 3 so/l and acid C degree from 0.02 to 10/l, preferably 1
~6so/l. In addition, the temperature of the electrolytic solution is preferably in the range of 0 to 30°C, from the viewpoint of suppressing the production rate of polyaniline and corrosion of stainless steel.
By setting the temperature to 20° C., the film forming properties of the polyaniline produced can be improved, so this is a more preferable range.

(実施例) 以下、実施例と参考例により、木発11をより具体的に
説明する。
(Example) The Kibatsu 11 will be described in more detail below using Examples and Reference Examples.

[実施例1] モリブデン含有のオーステナイト系ステンレス鋼(SO
3316)製の長方形金網基体(4c+sx 2 c+
sx 90gm厚み)を陽極に、鉛板を陰極に用い、ア
ニリン1朧0交/l、ホウフッ化水素酸2■on /l
の水溶液を電解重合液として、100■Aの定電流で1
時間通電して、電解重合を行い、金網基体上にポリアニ
リンを電気化学的に合成1次いでこれを水洗、乾燥し、
23〜25膳g/c腸2のポリアニリン膜の形成された
金網基体を得た。このポリアニリンは、金網基体との密
着性が良好であった。
[Example 1] Molybdenum-containing austenitic stainless steel (SO
3316) rectangular wire mesh base (4c+sx 2 c+
sx 90gm thick) as an anode and a lead plate as a cathode, aniline 1 oboro/l, borofluoric acid 2 on/l
An aqueous solution of 1 is used as an electrolytic polymerization solution at a constant current of 100
Electricity is applied for a certain period of time to perform electrolytic polymerization, and polyaniline is electrochemically synthesized on a wire mesh substrate.
A wire mesh substrate on which a polyaniline film of 23 to 25 g/cm2 was formed was obtained. This polyaniline had good adhesion to the wire mesh substrate.

[実施例2] 実施例1の電解重合液中のホウフッ化水素酸の代りに、
過塩素fi2肛1/J1水溶液を用いたほかは、実施例
1と同様にして、23〜25■g /crn’のポリア
ニリン膜の形成された5IIS3][i製金網基体を得
た。その性状は実施例1のものと同様であった。
[Example 2] Instead of fluoroboric acid in the electrolytic polymerization solution of Example 1,
A wire mesh substrate made of 5IIS3 on which a polyaniline film of 23 to 25 g/crn' was formed was obtained in the same manner as in Example 1, except that a perchlorine fi2/J1 aqueous solution was used. Its properties were similar to those of Example 1.

[実施例3] 体(5c+wX5c皇×5ト1厚み)の裏面及び外周を
マスキングした。電極面!Xi4 cmX 4 c+*
の陽極を使用したほかは、実施例1と同様の防極、電解
屯合液を用い、 200IIAの定電流て1時間通電し
て電解!に合を行い、薄板ノ^体上にポリアニリンを′
電気化学的に合成、次いて、水洗、乾燥し、マスキンク
を除去して23〜25■g/c@”のポリアニリン膜の
形成された薄板基体を得た。このポリアニリンも、薄板
25体との密着性か良好てあった。
[Example 3] The back surface and outer periphery of the body (5c+w x 5c x 5t 1 thickness) were masked. Electrode surface! Xi4 cmX 4 c+*
Except for using the anode, we used the same electrode protection and electrolytic solution as in Example 1, and electrolyzed by applying a constant current of 200 IIA for 1 hour! Then, polyaniline was applied on the thin plate body.
It was synthesized electrochemically, then washed with water, dried, and the maskink was removed to obtain a thin plate substrate on which a polyaniline film of 23 to 25 g/c@'' was formed. This polyaniline was also synthesized with 25 thin plates. Adhesion was good.

[実施例4] 実施例3の1電解重合液中のホウフッ化水素酸の代りに
、過11!素i%72moJ1/立木溶液を用いたほか
は、実施例3と同様にして23〜25 mg /crn
’のポリアニリン膜の形成された薄板基体を11)だ。
[Example 4] In place of the fluoroboric acid in the electrolytic polymerization solution of Example 3, 11! 23 to 25 mg/crn in the same manner as in Example 3, except that the base i%72moJ1/standing tree solution was used.
11) is a thin plate substrate on which a polyaniline film is formed.

その性状は実施例3のものと同様であった。Its properties were similar to those of Example 3.

(参考例) 実施例1て得られたポリアニリン膜を有する金網ノフ体
を所定の大きさに裁断し、ポリアニリン膜を正極、金網
基体を正極集電体として正極及び集電体を一体化した状
態で厚さ1.6■■の電池を構成した。負極はリチウム
、電解液はLiBF41 sou/文のプロピレンカー
ボネート溶液、セパレーターはポリプロピレン不織布を
使用し、このセパレータに電解液を含侵させて用いた。
(Reference example) A state in which the wire mesh nof body having the polyaniline film obtained in Example 1 is cut into a predetermined size, the polyaniline film is used as a positive electrode, the wire mesh base is used as a positive electrode current collector, and the positive electrode and the current collector are integrated. A battery with a thickness of 1.6■■ was constructed. The negative electrode was lithium, the electrolyte was a propylene carbonate solution of LiBF41, and the separator was a polypropylene nonwoven fabric, which was impregnated with the electrolyte.

このポリアニリン正極と5US316製金網集電体とか
一体化された二次電池を用いて、2〜4vの範囲で1m
Aにおいて充放電試験を行ない、以下の結果を得た。
Using this polyaniline positive electrode and a secondary battery integrated with a 5US316 wire mesh current collector, the
A charge/discharge test was conducted on A, and the following results were obtained.

・充電時の開回路電位       4v・ポリアニリ
ン正極当りの 充電容量   100 All/kg ・内部抵抗          iooΩ・充放電時に
おけるクーロン効率 98%なお、この電池は、上述し
たように生成したポリアニリン膜と〆5IIS]16 
@金網との密着性が極めて良いので、そのまま、正極−
正極集電体として一体化して用いることができるので、
電池作成時の工程数低減、電池の内部抵抗低減が可能に
なつた。
・Open circuit potential during charging 4V ・Charging capacity per polyaniline positive electrode 100 All/kg ・Internal resistance ioo Ω ・Coulombic efficiency during charging and discharging 98% This battery has a polyaniline film produced as described above and 5IIS] 16
@Since the adhesion to the wire mesh is extremely good, the positive electrode can be directly connected to the wire mesh.
Since it can be integrated and used as a positive electrode current collector,
It has become possible to reduce the number of steps during battery production and reduce the battery's internal resistance.

(発明の効果) 本発明の完成により。(Effect of the invention) With the completion of this invention.

(1)アニリン電解重合時の陽極がステンレス鋼であり
、今までの白金等に比べて、コスト面でのメリットが大
きい。
(1) The anode used in aniline electropolymerization is made of stainless steel, which has a significant cost advantage compared to conventional platinum.

(2)生成するポリアニリンと陽極として用いたステン
レス鋼との密着性が良く、これまでのポリアニリンに比
べてそのまま二次電池の電極として使用できる。
(2) The produced polyaniline has good adhesion to the stainless steel used as the anode, and compared to conventional polyaniline, it can be used as is as an electrode for secondary batteries.

(3)そのため、内部抵抗が小で小型化や薄型化という
電池のニーズにマツチしたポリアニリンを提供すること
が出来る。
(3) Therefore, it is possible to provide polyaniline that has a low internal resistance and meets the needs for smaller and thinner batteries.

Claims (1)

【特許請求の範囲】[Claims] アニリン水溶液を用いて、電解重合法によりポリアニリ
ンを合成するに当り、ステンレス鋼を電解の陽極として
用いることを特徴とするポリアニリンの合成方法。
A method for synthesizing polyaniline using stainless steel as an anode for electrolysis in synthesizing polyaniline by an electrolytic polymerization method using an aqueous aniline solution.
JP61129167A 1986-06-05 1986-06-05 Synthesis of polyaniline Pending JPS6291529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61129167A JPS6291529A (en) 1986-06-05 1986-06-05 Synthesis of polyaniline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61129167A JPS6291529A (en) 1986-06-05 1986-06-05 Synthesis of polyaniline

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60232046A Division JPS6293868A (en) 1985-10-17 1985-10-17 Secondary battery

Publications (1)

Publication Number Publication Date
JPS6291529A true JPS6291529A (en) 1987-04-27

Family

ID=15002797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61129167A Pending JPS6291529A (en) 1986-06-05 1986-06-05 Synthesis of polyaniline

Country Status (1)

Country Link
JP (1) JPS6291529A (en)

Similar Documents

Publication Publication Date Title
US3877983A (en) Thin film polymer-bonded cathode
JP4467926B2 (en) Electrochemical element
JP2003510768A (en) Lithium secondary battery having individual cells connected to each other, and a clock, a computer, and a communication device equipped with such a battery
CN111916761B (en) Flexible stretchable zinc-air battery based on foam-based metal electrode and preparation
JPS5918578A (en) Organic battery
CN106129461B (en) A kind of sodium Mg secondary cell and preparation method thereof
KR100684508B1 (en) The electrode of ultra thin manganese battery and manufacturing method therefor
JP2003523043A5 (en)
CN201478380U (en) Nickel-metal hydride battery pole piece and battery using same
JPS6291529A (en) Synthesis of polyaniline
JPS6319760A (en) Nonaqueous electrolyte battery and manufacture of its positive active material
JPS636752A (en) Conductive polymer electrode
US4131515A (en) Method for making positive electrode for lead-sulfuric acid storage battery
US3531325A (en) Process of preparing silver oxide electrode
JPH01132045A (en) Battery
US2859268A (en) Zinc electrode for primary batteries
JPH0240867A (en) Entirely solid secondary battery
CN1076040C (en) Adhesive for cell and its preparation method and use
JPH0324162A (en) Solid polyelectrolyte
KR100217786B1 (en) Manufacturing method of lead storage battery
JPH11345612A (en) Manufacture of positive electrode material for lithium battery
JPH06283175A (en) Reversible electrode
JPH041466B2 (en)
CN109390582A (en) Lithium-sulfur battery containing polycarboxylate
JPH01206570A (en) Nickel-cadmium storage battery