JPS6291455A - Cement product and manufacture - Google Patents

Cement product and manufacture

Info

Publication number
JPS6291455A
JPS6291455A JP23102485A JP23102485A JPS6291455A JP S6291455 A JPS6291455 A JP S6291455A JP 23102485 A JP23102485 A JP 23102485A JP 23102485 A JP23102485 A JP 23102485A JP S6291455 A JPS6291455 A JP S6291455A
Authority
JP
Japan
Prior art keywords
cement
water
kneading
product
kneader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23102485A
Other languages
Japanese (ja)
Other versions
JPH0248409B2 (en
Inventor
昭夫 徳岡
板東 嘉彦
徹 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23102485A priority Critical patent/JPS6291455A/en
Publication of JPS6291455A publication Critical patent/JPS6291455A/en
Publication of JPH0248409B2 publication Critical patent/JPH0248409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセメント製品及びその製造法、特に高緻密なセ
メント製品およびその製造法りこ関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a cement product and a method for producing the same, particularly a highly dense cement product and a method for producing the same.

〔従来の技術〕[Conventional technology]

水硬性セメントから製造されるセメント製品は高強度で
あり、かつ、耐久性に優れ、透水性が低いことが要求さ
れる。このようなセメント硬化体はその内部の組織が緻
密でなければならず、大きな空隙が存在したのでは、上
記の如き物性は発現出来ない。セメント硬化体の強度は
孔径1.5μm以上のマクロボアー或は孔径15μm 
70.0075μmの毛細管空隙に関係しており、これ
らの空隙を少くすればする程、硬化、体の強度は向上す
ることが知られている(実用、コンクリート技術02頁
、査線)。
Cement products manufactured from hydraulic cement are required to have high strength, excellent durability, and low water permeability. Such a hardened cement body must have a dense internal structure, and if large voids are present, the above-mentioned physical properties cannot be exhibited. The strength of hardened cement is determined by macrobore with a pore diameter of 1.5 μm or more or with a pore diameter of 15 μm.
It is related to capillary voids of 70.0075 μm, and it is known that the smaller these voids are, the better the hardening and strength of the body will be (Practical, Concrete Technology, page 02, scan line).

そこで強度を上げる為、水セメント比を極端に少なくし
、高圧力下に圧縮成形する方法は公知である。例えばロ
イ (Roy) 、グーダ(Gouda)とボブソブス
キイ (Bobsowsky)はセメントペーストを7
000 kg / ctで強圧プレスして圧縮強度32
50 kg / ctの硬化体を得、150°C135
00kg/己のホットプレスによって4200 kg 
/ cJの強度を得ている(セラミックス8 、  (
]0’l  、 1973.1旧頁)。
Therefore, in order to increase the strength, a method is known in which the water-cement ratio is extremely reduced and compression molding is performed under high pressure. For example, Roy, Gouda and Bobsowsky used cement paste for 7
Compressive strength 32 by strong pressing at 000 kg/ct
A cured product of 50 kg/ct was obtained at 150°C135
00kg/4200kg by own hot press
/ cJ strength (ceramics 8, (
]0'l, 1973.1 old page).

他方、高強度セメント成形体を得る方法として、セメン
ト質原料に少量の水と、可塑性を賦与する為の有機高分
子系の増粘剤を加え、混純により、可塑性の坏土となし
、この坏土を圧縮或は押出法により湿式成形する方法も
公知である。例えば、特開昭52−53927号公報に
、増粘剤を添加した低水比セメント質組成物を遊星運動
型混練機、ブイ混練機、ホバート混練機等の回分式混練
機で大気圧下で高剪断混合し均質な坏土(Fつ)とした
後、ラム式押出機に投入、脱気した後そのまま13.8
MN/−の高圧力下でゆっくり押出成形する方法か提案
されている。また、特開昭56−9256号公報に、セ
メント原料の粒径を20μm以下にし、少量の水と、増
粘剤を加え、ツインロールミルのロール間を繰り返し通
過させて均質に混合し坏土(ドウ)となし、この坏土を
プレス成形し、この際、坏土が圧力の解放の際に弛緩し
ない程度迄硬化が進行した後に圧力を解放する方法が提
案されている。
On the other hand, as a method for obtaining a high-strength cement molded body, a small amount of water and an organic polymer thickener to impart plasticity are added to the cementitious raw material, and the mixture is mixed to form a plastic clay. A method of wet molding clay by compression or extrusion is also known. For example, in JP-A-52-53927, a low water ratio cementitious composition to which a thickener has been added is mixed under atmospheric pressure with a batch kneader such as a planetary kneader, a buoy kneader, or a Hobart kneader. After high shear mixing to make a homogeneous clay (F), put it into a ram extruder, deaerate it and leave it at 13.8
A method of slow extrusion molding under high pressure of MN/- has been proposed. In addition, JP-A No. 56-9256 discloses that the particle size of the cement raw material is set to 20 μm or less, a small amount of water and a thickener are added, and the mixture is homogeneously mixed by repeatedly passing between the rolls of a twin roll mill. A method has been proposed in which the clay is press-molded and the pressure is released after the clay has hardened to such an extent that it does not loosen when the pressure is released.

さらに、特開昭56−84349号公報に、上記2つの
方法でセメント原料の粒度分布を多モードにする方法が
提案されている。
Furthermore, Japanese Patent Application Laid-Open No. 56-84349 proposes a method of making the particle size distribution of cement raw materials multimodal using the above two methods.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記のごとく水セメント比を極端に小さくし、
超高圧力下に圧縮成形する方法はいずれも実用性がない
However, as mentioned above, by making the water-cement ratio extremely small,
Any method of compression molding under ultra-high pressure is impractical.

また、特開昭5253927−υ公報に記載の方法では
、マクロポア−の存在しない緻密でかつ高強度の成形体
が得られない。その理由は低水セメント比でかつ増粘剤
を添加したセメン1−質組酸物の混練物は非常に粘性が
高く、流動性が低い為に、回分式混練機で混練すると、
大気圧下では空気が混入し、(この場合、たとえ真空下
でも回分式混練機を用いる限り空隙が生成する。)マク
ロポア−が除去しきれないからである。
Furthermore, the method described in Japanese Patent Application Laid-Open No. 5253927-υ cannot produce a dense and high-strength molded article free of macropores. The reason for this is that the kneaded product of cementitious monolithic acid with a low water-to-cement ratio and a thickener added has very high viscosity and low fluidity, so when kneaded with a batch kneader,
This is because air is mixed in under atmospheric pressure and macropores cannot be completely removed (in this case, as long as a batch kneader is used even under vacuum, voids will be formed).

特開昭56−9256号および同56−84349号公
報に記載の方法では、ツインロールミルで繰返し混練す
ることが望ましいとされているが、大気圧下で混練を行
うと空気を巻き込み易いし、生産性も低いという問題が
ある。さらに、成形するために硬化する迄加圧を続ける
方法は極めて非能率である。
In the methods described in JP-A-56-9256 and JP-A-56-84349, it is said that it is desirable to repeatedly knead in a twin roll mill, but if kneading is performed under atmospheric pressure, air is likely to be drawn in and production There is also the problem of low gender. Furthermore, the method of continuing to apply pressure until it hardens for molding is extremely inefficient.

またセメント原料として特殊な粒度のものを用いる必要
もあり、実用性に乏しい製造法といわざるを得ない。
Furthermore, it is necessary to use a cement raw material with a special particle size, which makes the production method impractical.

〔問題点を解決するための手段〕[Means for solving problems]

我々は上記欠点を解消し、高強度かつ高緻密で、耐久性
、耐透水性に冨むセメント硬化体及びそれを生産性良く
製造する方法を鋭意研究した結果、セメント硬化体中の
気泡を無くし、毛細管量を少なくするには、水セメント
比を理論反応量以下にすると共に、混練工程において、
空隙のない固相一液相のみから成る混練物を得ることが
肝要であること、この為には連続式スクリュー型混練機
を用いて真空脱気下で混練ずべきことを発見した。
As a result of intensive research into a hardened cement material that eliminates the above drawbacks, has high strength, high density, durability, and water permeability, and a method for manufacturing it with high productivity, we have eliminated air bubbles in the hardened cement material. In order to reduce the amount of capillary, the water-cement ratio should be lower than the theoretical reaction amount, and in the kneading process,
It was discovered that it is important to obtain a kneaded product consisting of only a solid phase and a liquid phase without voids, and that for this purpose, kneading should be carried out using a continuous screw kneader under vacuum degassing.

ニーダ−等のハツチ式混練機では、常圧下では気泡を巻
き込むし、たとえ真空下にしても、該混練機の場合は、
原料が高粘性(上記の低水セメント比に基づく)であり
流動性が非常に低いため混練機の回転している翼の背後
に該原料が流入、充填しきれず、そこに真空の空間が生
じてしまい、しかもそれらの空間質の回転によって該原
料内に細い真空の空隙を生せしめる結果となりやはり空
隙が形成される。(この空隙は、混練時は真空状態にあ
る)一方、本発明に用いられる連続式スクリュー型温′
a、機では原料が後から次々に送られて混練物が加圧状
態にあるために混練物中に上記の如き空隙が形成される
ことがないものと考えられる。
Hatch-type kneaders such as kneaders involve air bubbles under normal pressure, and even under vacuum, in the case of such kneaders,
Because the raw material has high viscosity (based on the low water-cement ratio mentioned above) and very low fluidity, the raw material flows behind the rotating blades of the kneader and cannot be completely filled, creating a vacuum space. Moreover, the rotation of these spaces results in the creation of narrow vacuum voids within the raw material, which also results in the formation of voids. (This void is in a vacuum state during kneading) On the other hand, the continuous screw type temperature
a. It is thought that the above-mentioned voids are not formed in the kneaded material because the raw materials are sent one after another in the machine and the kneaded material is under pressure.

こうして、本発明により、新規なセメント製品であって
その硬化体中のポアーが、孔径15μm以上のマクロポ
ア−が存在せず、15〜0.02μmの毛細管空隙(ミ
クロポアー)が2.5容積%以下の極めて緻密なセメン
ト硬化体及び、水硬性セメント粉末を主成分とする出発
材料に増粘剤及び水を添加した原料を混練して可塑性混
練物を形成し、これを所望の形に成形する方法において
、水の量を水硬性セメントに対する理論反応量の26〜
100%とした原料を一500mmHg以下の減圧処理
を行ってその状態で連続式スクリュー型混練機を用いて
可塑性混練物を得ることを特徴とするセメント製品の製
造法が提供される。
Thus, the present invention provides a novel cement product in which the pores in the hardened product are free of macropores with a pore diameter of 15 μm or more and contain capillary voids (micropores) with a diameter of 15 to 0.02 μm at 2.5% by volume or less. A method of kneading an extremely dense hardened cement product and a raw material obtained by adding a thickener and water to a starting material mainly composed of hydraulic cement powder to form a plastic kneaded material, and molding this into a desired shape. In this case, the amount of water is 26 to 26, which is the theoretical reaction amount for hydraulic cement.
A method for producing a cement product is provided, which comprises subjecting a raw material made to 100% to a reduced pressure of -500 mmHg or less and obtaining a plastic kneaded product using a continuous screw kneader in that state.

この高緻密セメント製品は、曲げ強度が600kg /
 cJ 、圧縮強度が1700 kg / antにも
達し、透水係数は2XIO′□” In / Sと通常
のコンクリートの1/100と低く、さらに毛細管空隙
が少い為、耐凍性にも優れた性質を示す。
This high-density cement product has a bending strength of 600 kg/
cJ, the compressive strength reaches 1700 kg/ant, and the hydraulic conductivity is 2 show.

水硬性セメントには、普通ポル1〜ランドセメント、特
殊ポルトランドセメントなどの単味セメント、又はそれ
に高炉スラグ、フライアッシュ等を混合した混合セメン
ト、或はアルミナセメント、石コウ、炭酸マグネシウム
、ケイ酸カルシウム等があり、これらを単独で或は混合
して用いることができる。
Hydraulic cements include plain cements such as ordinary port 1 to land cement, special portland cement, mixed cements mixed with blast furnace slag, fly ash, etc., or alumina cement, gypsum, magnesium carbonate, calcium silicate. These can be used alone or in combination.

また、水硬性セメントに、シリカ微粉、炭カル、蛇紋岩
粉等の充填材を必要に応じ添加しても良い。
Furthermore, fillers such as fine silica powder, charcoal, and serpentine powder may be added to the hydraulic cement as necessary.

配合水は水硬性セメントの硬化に必須の成分であると共
に混練組成物に可塑性を賦与する役目を果している。配
合水はセメントと反応し、セメント水和物を生成するが
、水硬性セメントが水和物を生成するために必要かつ十
分な水の配合量(理論配合水量)を越える水セメント比
では、余剰の水が蒸発して、毛細管空隙となる。従って
毛細管空隙のない緻密なセメント硬化体を得るには配合
水は理論反応水量以下であることが必要である。
Blended water is an essential component for curing hydraulic cement, and also plays the role of imparting plasticity to the kneaded composition. Mixed water reacts with cement and produces cement hydrate, but if the water-cement ratio exceeds the necessary and sufficient water content (theoretical water content) for hydraulic cement to produce hydrates, excess water will be generated. water evaporates and forms a capillary void. Therefore, in order to obtain a dense cement hardened body without capillary voids, it is necessary that the blended water be less than the theoretical reaction water amount.

普通ポルトランドセメントにおける理論反応水量は水セ
メント比で0.38と考えられている(ネビル著、コン
クリートの特性、26頁)。水セメント比が0.38以
下の場合、水和反応が100%進んだセメント硬化体は
未水和セメントとセメント水和物とゲル空隙とからなる
組織となり、事実上毛細管空隙は存在しなくなる。しか
しながら、水セメント比を極端に少なくすると、混練物
が固くなり過ぎ、成形に必要な可塑性が得られなくなる
。従って、配合水量は理論配合水量の26〜100%で
あることが必要である。この配合水量は0.10〜0.
38の水セメント比に対応する。
The theoretical amount of reaction water in ordinary Portland cement is considered to be 0.38 in water-cement ratio (Neville, Characteristics of Concrete, p. 26). When the water-cement ratio is 0.38 or less, the hardened cement body in which the hydration reaction has progressed to 100% has a structure consisting of unhydrated cement, cement hydrate, and gel voids, and there are virtually no capillary voids. However, if the water-cement ratio is extremely reduced, the kneaded material becomes too hard and the plasticity necessary for molding cannot be obtained. Therefore, it is necessary that the amount of water to be blended is 26 to 100% of the theoretical amount of water to be blended. The amount of water mixed is 0.10 to 0.
Corresponds to a water-cement ratio of 38.

上記の如く理論配合水量より低い水セメント比ではセメ
ント混練物は可塑性が不十分になり易いので増粘材を添
加することが必要である。ここにいう増粘剤はセメント
の如き非可苧性粉体に可塑性を賦与し、塑性変形による
成形を可能ならしめるに必須の成分である。増粘剤は別
名ハイドロ変形剤(特願昭43−7134)或は成形助
剤(セラミック製造プロセス、第−巻、素木洋−著、6
7頁)とも称される。このような増粘剤としては、保水
性を有する水溶性の有機高分子例えばメチルセルロース
、ポリアクリルアミド、ポリエチレンオキシド、ポリビ
ニルアルコール等が用いられる。増粘剤の添加量は、混
練物に必要な可塑性を賦与するべく決定されるが、セメ
ント100部に対し0.5〜5部程度が望ましい。、 耐衝撃性を補強する為に、有機繊維、例えば、ポリプロ
ピレン繊維、ビニロン繊維、セルロース繊維、ナイロン
繊維或は無機繊維、例えば、アスベスト、ガラスファイ
バー等を添加してもよい。
As mentioned above, if the water-cement ratio is lower than the theoretical water content, the cement mixture tends to have insufficient plasticity, so it is necessary to add a thickener. The thickener mentioned here is an essential component that imparts plasticity to a non-plastic powder such as cement and enables it to be molded by plastic deformation. Thickeners are also known as hydro-deforming agents (Japanese Patent Application No. 7134-1983) or forming aids (Ceramic Manufacturing Process, Vol. 1, written by Hiroshi Motoki, 6).
(page 7). As such a thickener, a water-soluble organic polymer having water-retentive properties such as methyl cellulose, polyacrylamide, polyethylene oxide, polyvinyl alcohol, etc. is used. The amount of the thickener added is determined in order to impart the necessary plasticity to the kneaded material, and is preferably about 0.5 to 5 parts per 100 parts of cement. In order to reinforce impact resistance, organic fibers such as polypropylene fibers, vinylon fibers, cellulose fibers, nylon fibers or inorganic fibers such as asbestos, glass fibers, etc. may be added.

水硬性セメント、骨材、増粘剤、補強繊維等の原料粉末
はオムニミキサー、レーディゲミキサー等でトライブレ
ンドした後所定量の水を添加して、顆粒状の混合物とす
る。この混合物を連続式スクリュー型混練機のホッパに
投入し、真空脱気した後その状態で混練部へ送る。この
操作によってのみ、気泡或いは空隙を含まない即ち同相
と液相の二相のみからなる可塑性混練物(ドウ)が得ら
れる。真空脱気しながら練るスクリュー型混練機として
、真空押出機或は真空土練機があるが、これらはいづれ
も、混練機の中央部に脱気ゾーンを設けたものであり、
本発明の如く予め原料を脱気するものではない為、一旦
形成された気泡等は消滅し難く、その結果可塑性混練爽
に気泡を含むことは避は得ない。
Raw material powders such as hydraulic cement, aggregates, thickeners, and reinforcing fibers are tri-blended using an omni mixer, Loedige mixer, etc., and then a predetermined amount of water is added to form a granular mixture. This mixture is put into a hopper of a continuous screw kneader, vacuum degassed, and then sent in that state to a kneading section. Only by this operation can a plastic kneaded material (dough) containing no bubbles or voids, that is, consisting only of two phases, the same phase and the liquid phase, be obtained. There are vacuum extruders and vacuum clay kneaders as screw-type kneaders that knead while vacuum degassing, but both of these have a degassing zone in the center of the kneader.
Since the raw material is not degassed in advance as in the present invention, air bubbles, etc. once formed are difficult to disappear, and as a result, it is inevitable that the plastic kneading mixture contains air bubbles.

一般に、粘稠な物質の混練部は捏和には回分式のものと
連続式のものがある。。回分式混練機には2字型または
シグマ型の回転翼を有するニーダ−ミキサー、ハンハリ
ミキサー、マラー型ミキサー、ロールミキザー等がある
が、ニーダ−ミキサー、ハンハリーミキザーでは常圧下
でも真空脱気ドでも、混練物中に気泡或は空隙を生成し
、稠密な組成物が得られない。マラー型ミキサー、ロー
ルミキザーでは真空脱気下で混練することはその機構上
困難を伴う。一方、連続式スクリュー型温iaである土
練機、オーガーマシン、バッグミル、コニーダ、等のい
ずれを用いても前記の如き真空脱気下で混練を行なえば
、空気を取り込むことがなく、また空隙も形成されない
混練物が得られる。
Generally, there are two types of kneading sections for viscous substances: batch-type kneading units and continuous-type kneading units. . Batch-type kneading machines include kneader mixers, Hanhari mixers, Muller type mixers, roll mixers, etc. that have two-figure or sigma-type rotary blades, but kneader mixers and Hanhari mixers can be used for vacuum degassing even under normal pressure. Even if the kneaded mixture is mixed, bubbles or voids are generated in the kneaded material, and a dense composition cannot be obtained. With a Muller type mixer or a roll mixer, kneading under vacuum degassing is difficult due to its mechanism. On the other hand, no matter which one of the continuous screw type warm-up machines such as a clay kneader, auger machine, bag mill, or co-kneader is used, if the kneading is carried out under vacuum degassing as described above, no air will be taken in, and no voids will be formed. A kneaded product is obtained in which no particles are formed.

第1図に連続式スクリュー型混練機の一例を示す。同図
中、■はホッパー、2ばシリンダー、3はスクリュー、
4は冷却ジャケット、5はダイである。ホッパー1およ
びシリンダー2の内部は吸気口6を介して真空脱気され
る。また、シリンダー2内は冷却ジャケノ)・4により
冷却可能である。
Figure 1 shows an example of a continuous screw kneader. In the same figure, ■ is a hopper, 2 is a cylinder, 3 is a screw,
4 is a cooling jacket, and 5 is a die. The inside of the hopper 1 and the cylinder 2 are vacuum degassed through the intake port 6. In addition, the inside of the cylinder 2 can be cooled by a cooling jacket 4.

こうしてホッパー1に供給されたセメント配合物はシリ
ンダー2内でスクリュー3により混練されてからダイ5
を通して押し出され、ミクロポアーのない緻密なセメン
ト混練物を提供する。
The cement mixture thus supplied to the hopper 1 is kneaded in the cylinder 2 by the screw 3 and then by the die 5.
to provide a dense cement mixture with no micropores.

混純の際、混練物を真空脱気度−500m m Hg以
−ト、特に−700mmHg以上にするこ吉によって、
真空脱気しない場合と比べて顕著な効果が達成される。
During kneading, the kneaded material is brought to a vacuum deaeration level of -500 mm Hg or higher, especially -700 mm Hg or higher, by Kokichi.
A significant effect is achieved compared to the case without vacuum degassing.

−1−記のような低い水セメント比でセメントと水を混
練すると発熱するので、混練機は冷却できる構造である
ことが望ましい。例えば、混練時には40°C程度に昇
温するので20 ”C位に冷却することが望ましい。
Since heat is generated when cement and water are kneaded at a low water-cement ratio as described in -1-, it is desirable that the kneader has a structure that allows cooling. For example, during kneading, the temperature rises to about 40°C, so it is desirable to cool it to about 20"C.

このように連続式スクリュー型混練機によれば、回分式
混練機による場合と比べて、混練の):L産性に関して
も優れているという利点がある。
As described above, the continuous screw type kneader has the advantage of being superior in kneading ():L productivity compared to the batch type kneader.

真空脱気しなから混練を連続操作するために、例えばホ
ッパーを2個以−に設置し、それらを切り換えながら運
転して、真空を破ることなく連続操作することは可能で
ある。
In order to perform continuous kneading without vacuum degassing, it is possible, for example, to install two or more hoppers and operate them while switching between them to perform continuous operation without breaking the vacuum.

こうして得られろ可塑性混練物はプレス成形、射出成形
、押出成形等の処理を行なって所望の形状に成形する。
The plastic kneaded material thus obtained is molded into a desired shape by processing such as press molding, injection molding, and extrusion molding.

このとき、成形圧力或は成形時間は可塑性の混練物に可
塑変形を与える最小の値で良く、特に大きな圧力或は保
持時間を要しない。
At this time, the molding pressure or molding time may be the minimum value that gives plastic deformation to the plastic kneaded material, and a particularly large pressure or holding time is not required.

成形も真空脱気装置の付いた成形機で行なうことが望ま
しい。
It is also desirable to perform the molding using a molding machine equipped with a vacuum degassing device.

最も望ましくは、連続式スクリュー型混練機と成形機が
一体となりかつ真空脱気される構造の装置を用いて、真
空脱気下において、混練および成形を連続的に行なう。
Most preferably, kneading and molding are carried out continuously under vacuum degassing using an apparatus having a structure in which a continuous screw kneading machine and a molding machine are integrated and vacuum degassing is performed.

こうずれば可塑性混練物は外気に触れることなく直接に
成形されることができる。
In this way, the plastic kneaded material can be directly molded without being exposed to outside air.

こうして得られる成形物は、常温湿空養生を行った後、
常圧スチーム又は高圧スチーム養生を行って硬化体にし
、最終製品とする。以下、実施例により説明する。
After the molded product thus obtained is cured at room temperature and in a humid air,
Curing with normal pressure steam or high pressure steam is performed to harden the product and make it into a final product. Examples will be explained below.

〔実施例〕〔Example〕

肩〕1Y」空臘−思−q炊逮 混練時の真空脱気度を変えた場合の混練物の密度及び気
泡量の変化、さらにはこの混練物を押出成形した場合の
押出成形未硬化物の密度及び気泡量の変化を下記の如き
条件で調べた。
[Shoulder] 1Y'' Soaking - Changes in the density and bubble volume of the kneaded product when the degree of vacuum deaeration during kneading is changed, and also the extrusion-molded uncured product when this kneaded product is extruded. Changes in the density and amount of bubbles were investigated under the following conditions.

原料配合: 普通ポルトランドセメンl−100重量部メチルセルロ
ース       4重量部(信越化学工業社製hiJ
)叶215000)水              1
8重量部混練: 連続式スクリュー混練機(宮崎鉄工社I!!!肝−10
0)真空脱気度:0、−300、−500、−730+
+m11g成形: 真空押出機(本田鉄工社製I’E−75)成形圧: 3
0〜35 kg / cJ成形体:幅120曹1、長さ
2000璽麺、厚さ6mm上記条件で得られた混練物と
押出未硬化物について密度および気泡量を測定した。
Raw material composition: Ordinary Portland cement l-100 parts by weight Methyl cellulose 4 parts by weight (HiJ manufactured by Shin-Etsu Chemical Co., Ltd.
) Kano 215000) Water 1
8 parts by weight Kneading: Continuous screw kneader (Miyazaki Iron Works I!!! Liver-10
0) Vacuum deaeration degree: 0, -300, -500, -730+
+m11g Molding: Vacuum extruder (I'E-75 manufactured by Honda Iron Works) Molding pressure: 3
0 to 35 kg/cJ molded product: Width: 120 mm, length: 2000 mm, thickness: 6 mm The density and the amount of bubbles were measured for the kneaded product and the extruded uncured product obtained under the above conditions.

その際、密度は、豆粒大の試料を切り取り、気中の重量
(Wl)及び水中で浮力(W2)を測定し、アルキメデ
スの原理を用いて式:ρ’ =W、/W2により算出し
た。気泡量は、試料の上記密度ρ0と配合原料組成から
計算した理論密度ρ0から、式: (気泡量)−1−ρ
0/ρ0により算出した。この配合原料の理論密度は、
各原料の真密度を普通ポルトランドセメント3.19g
/cJ、メチルセルロース1.3g/c+d、水り、O
g/cnとして、配合比率より計算した。
At that time, the density was calculated by cutting a pea-sized sample, measuring its weight in air (Wl) and its buoyancy (W2) in water, and using Archimedes' principle using the formula: ρ' = W, /W2. The amount of bubbles is calculated from the above density ρ0 of the sample and the theoretical density ρ0 calculated from the composition of the raw materials, using the formula: (Bubble amount) - 1 - ρ
Calculated using 0/ρ0. The theoretical density of this blended raw material is
The true density of each raw material is 3.19g of ordinary Portland cement.
/cJ, methylcellulose 1.3g/c+d, water, O
It was calculated from the blending ratio as g/cn.

結果を第1表に示す。The results are shown in Table 1.

第1表の結果から、真空脱気度が−500mmt1g以
」二では真空脱気しない場合と比べて、混練物及び押出
未硬化物の密度が大巾に大きくなり、含有する気泡量も
大巾に減少することが見られる。特に、真空脱気度を一
730mmHgとすることにより、気泡を全く含まない
固体−液体のみからなる密な成形体が得られる。
From the results in Table 1, it can be seen that when the degree of vacuum deaeration is -500mmt1g or less, the density of the kneaded material and the extruded uncured material becomes significantly larger, and the amount of air bubbles contained also becomes significantly larger than when no vacuum deaeration is performed. This is seen to decrease. In particular, by setting the degree of vacuum degassing to -730 mmHg, a dense molded body consisting only of solid-liquid and containing no air bubbles can be obtained.

次に、前記押出未硬化物を60°C124時間の藤気養
生により硬化させ、硬化物の空隙容積量の分布を調べた
。硬化物の細孔径分布としては孔径が15〜100μm
のマクロポア−と0.02〜15μmのミクロボアーに
区分して測定した。孔径15〜100μmのマクロポア
ーは^STM C−457に従い、顕微鏡法で測定した
。孔径0.02〜15μmのミクロボアーについては水
銀圧入法により測定した。水銀圧入法とは、試料を水銀
に浸し、水銀における圧力を次第に増してゆくと、水銀
はその圧力に応じて次第に小さな細孔へ浸入してゆくの
で、水銀の浸入量と圧力の関係から細孔径分布を算出す
るものである。第2図は水銀圧入法により比較例1と実
施例1の押出成形硬化物の細孔径分布を測定したもので
あるが、曲線は、水銀に圧力を加えない状態で水銀が浸
入できる最小孔径である15μmの細孔から出発して圧
力を次第に増加して孔径0.02μmの細孔に水銀が侵
入するまでの水銀の侵入量、すなわち、孔径15μmか
ら0.02μmまでの細孔容積の累積値を表わしている
Next, the extruded uncured product was cured at 60° C. for 124 hours with Fuji air curing, and the distribution of void volume of the cured product was examined. The pore size distribution of the cured product is 15 to 100 μm.
The measurement was carried out by dividing into macropores of 0.02 to 15 μm and micropores of 0.02 to 15 μm. Macropores with a pore size of 15-100 μm were measured by microscopy according to STM C-457. Microbore diameters of 0.02 to 15 μm were measured by mercury intrusion method. In the mercury intrusion method, when a sample is immersed in mercury and the pressure in the mercury is gradually increased, the mercury gradually infiltrates into smaller pores according to the pressure. This is to calculate the pore size distribution. Figure 2 shows the pore size distribution of the extrusion-molded cured products of Comparative Example 1 and Example 1 measured by the mercury intrusion method, and the curve shows the minimum pore size that allows mercury to penetrate without applying pressure to the mercury. The amount of mercury that enters a pore with a pore size of 0.02 μm by starting from a certain 15 μm pore and gradually increasing the pressure, that is, the cumulative value of the pore volume from a pore size of 15 μm to 0.02 μm. It represents.

結果を第2表に示す。The results are shown in Table 2.

第  2 表 注)ボアーの容積%は硬化体の容積を100%とした値
である。
Table 2 Note) The volume percentage of the bore is the value with the volume of the cured body as 100%.

第2表から、押出成形硬化物の細孔径分布は、混練時の
真空脱気度の影響を大きく受け、真空脱気度を一500
mmHg以上にすると、真空脱気をしない場合と比べて
マクロポア−、ミクロポアーが大巾に減少することが見
られる。特に、脱気度−730IIIIHgでは、15
μm以上のマクロポアーはゼロであり、15〜0.02
μmのミクロボアーも1.5容積%存在するにすぎない
稠密なMi織となっている。
From Table 2, the pore size distribution of the extrusion-molded cured product is greatly influenced by the degree of vacuum deaeration during kneading.
When the temperature exceeds mmHg, it can be seen that the macropores and micropores are greatly reduced compared to the case without vacuum degassing. In particular, at a deaeration degree of -730IIIHg, 15
Macropores larger than μm are zero, and 15 to 0.02
It is a dense Mi weave with only 1.5% by volume of μm microbore.

前記押出成形硬化物の物性を測定した。The physical properties of the extrusion-molded cured product were measured.

気乾吸水率はJIS A 5403の方法に準じて測定
した。曲げ強度は、6厚×50中×200長さく−の試
料をスパン1501、荷重速度1+n/分の条件で三点
曲げ破壊試験して測定した。透水係数は米国開拓局型透
水滅験機を用いてダルシーの式より算出した。耐凍性は
八STM C666−71に従い、300サイクルまで
調べた。
The air-dry water absorption rate was measured according to the method of JIS A 5403. The bending strength was measured by performing a three-point bending fracture test on a sample of 6 thickness x 50 medium x 200 length under conditions of a span of 1501 and a loading rate of 1+n/min. The permeability coefficient was calculated from Darcy's equation using a U.S. Bureau of Reclamation hydraulic permeability tester. Freeze resistance was tested up to 300 cycles according to 8STM C666-71.

結果を第3表に示す。The results are shown in Table 3.

以下余白 策づ−」 (1つ) 第3表から、混練時の真空脱気度が−500m m 1
1 g以上では押出成形硬化物の物性は真空脱気されな
い場合に比べて大巾に向上することが見られる。
Below is a list of blank spaces. (1) From Table 3, the degree of vacuum deaeration during kneading is -500m m 1
At 1 g or more, it can be seen that the physical properties of the extrusion-molded cured product are significantly improved compared to the case without vacuum degassing.

特に、混練時の真空脱気度が一730mm11gでは、
押出成形硬化物は、例えば、吸水率は1%以下に、曲げ
強度は600 kg / CIl+以−ヒに、圧縮強度
は1700kg/d以上に、透水係数は2X10−15
以下に、耐凍性は300サイクルで良好と、従来のセメ
ント製品に比し格段に優れた物性を有する。
In particular, when the degree of vacuum deaeration during kneading is 1730mm11g,
For example, the extrusion molded cured product has a water absorption rate of 1% or less, a bending strength of 600 kg/Cl+ or more, a compressive strength of 1700 kg/d or more, and a water permeability coefficient of 2X10-15.
As shown below, it has good freeze resistance after 300 cycles, and has much superior physical properties compared to conventional cement products.

真空脱気混練操作を連続式スクリュー型混練機で行った
場合と回分式混練機で行った場合の混練物の密度及び気
泡量の変化、この混練物を押出成形した場合の押出成形
未硬化物の密度及び気泡量の相異を下記の如き条件で調
べた。
Changes in the density and air bubbles of the kneaded product when the vacuum degassing and kneading operation was performed with a continuous screw kneader and a batch kneader, and the extruded uncured product when this kneaded product was extruded. Differences in density and amount of bubbles were investigated under the following conditions.

原料配分: 白色ポルトランドセメント  100重量部ポリアクリ
ルアミド      3重量部(昭和電工社製) ビニロン繊維         1重量部(ユニチカ化
成社製2.4 d X 6 m/m)水       
      25重量部混練: (1)連続式スクリュー型混練機 (実施例2と同じ) 真空脱気度: −730mmHg その他:実施例2と同じ (2)回分式双腕型ニーダ− (森山製作所製D3−5型) 真空脱気度: −730mmHg 混練時間:3分 成 形: 実施例2と同じ 養生: 実施例2と同し 物性等の試験あるいは測定: 実施例2と同し 結果を第4表〜第6表に示す。
Raw material distribution: White Portland cement 100 parts by weight Polyacrylamide 3 parts by weight (manufactured by Showa Denko) Vinylon fiber 1 part by weight (manufactured by Unitika Kasei Co., Ltd. 2.4 d x 6 m/m) Water
25 parts by weight Kneading: (1) Continuous screw kneader (same as Example 2) Degree of vacuum deaeration: -730 mmHg Others: Same as Example 2 (2) Batch type double-arm kneader (D3 manufactured by Moriyama Seisakusho) -5 type) Degree of vacuum deaeration: -730 mmHg Kneading time: 3 minutes Molding: Same as Example 2 Curing: Same as Example 2 Tests or measurements of physical properties: Same as Example 2 The results are shown in Table 4~ Shown in Table 6.

第  4 表 第4表の結果より、回分式混練機を用いた場合には、た
とえ真空脱気下であっても混練物は多くの気泡を含有し
ていること、しかし、連続式スクリュー型混練機を用い
た場合には気泡を実質的に含有していないことが見れる
。またこの混練物を用いて成形した押出成形硬化物につ
いても同様の傾向が観察される。
Table 4 The results in Table 4 show that when a batch kneader is used, the kneaded product contains many bubbles even under vacuum degassing; however, when a continuous screw kneader is used It can be seen that substantially no air bubbles are contained when using a machine. A similar tendency is also observed for extrusion-molded cured products formed using this kneaded product.

以下余白 第5表 注)ポアーの容積%は硬化体の容積を100%とした値
である。
Table 5 (margin below) Note) The volume percentage of pores is the value based on the volume of the cured body as 100%.

第5表の結果によれば、押出成形硬化物の細孔径分布は
混練機種の影響を大きく受け、回分式混練機ではたとえ
真空脱気下のもとに混練したとしても、15μm以」二
のマクロポア−10,02〜15μmのミクロポアーを
多く含んでしまい、脱気不完全な状態になること、しか
し連続式スクリュー型混練機によれば、15μm以上の
マクロポアーは存在せず、0.02〜15μmのミクロ
ポアーも回分式混練機の場合よりも大巾に減少すること
が見られる。
According to the results in Table 5, the pore size distribution of the extrusion-molded cured product is greatly affected by the type of kneading machine, and in a batch kneader, even if kneaded under vacuum degassing, the pore size distribution of the extrusion-molded cured product is 15 μm or less. Macropores - Contains many micropores of 10.02 to 15 μm, resulting in incomplete degassing. However, according to a continuous screw kneader, there are no macropores of 15 μm or more, and 0.02 to 15 μm. It can be seen that the micropores in the kneader are also significantly reduced compared to the case of the batch kneader.

第一」し−表 第6表には、真空脱気下で混練しても、回分式混練機を
用いると、連続式スクリュー型混練機を用いた場合に比
し、物性値が劣ることが見られる。
Table 6 shows that even when kneading is performed under vacuum deaeration, when a batch kneader is used, the physical properties are inferior to when a continuous screw kneader is used. Can be seen.

この物性値の相異は第4表及び第5表に示した未硬化物
の気泡含有量、硬化物の細孔径分布からもうなずける値
である。
This difference in physical property values can be seen from the bubble content of the uncured products and the pore size distribution of the cured products shown in Tables 4 and 5.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、高圧
力下に圧縮成形することなく、極めて緻密かつ高強度で
、耐久性、透水性等に冨むセメント製品を高い生産性で
製造する方法が提供される。
As is clear from the above description, according to the present invention, cement products that are extremely dense, have high strength, and are rich in durability, water permeability, etc. can be manufactured with high productivity without compression molding under high pressure. A method is provided.

また、その結果、そのような特性を有する新規なセメン
ト製品が提供される。
Also, as a result, new cement products having such properties are provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は連続式スクリュー型押出機の縦断面図、第2図
は実施例における細孔径分布曲線を示すグ   −ラフ
図である。
FIG. 1 is a longitudinal sectional view of a continuous screw extruder, and FIG. 2 is a graph showing pore size distribution curves in Examples.

Claims (1)

【特許請求の範囲】 1、空孔の孔径が15μm以上のものは実質的に存在せ
ず、0.02μm以上で15μm未満のものは2.5容
積%以下であることを特徴とするセメント製品。 2、水硬性セメント粉末を主成分とする出発材料に増粘
剤及び水を添加した原料を混練して可塑性混練物を形成
し、これを所望の形に成形する方法において、 水の量を水硬性セメントに対する理論反応量の26〜1
00%とした原料を−500mmHg以下の減圧処理を
行なってその状態で連続式スクリュー型混練機を用いて
可塑性混練物を得ることを特徴とするセメント製品の製
造法。 3、混練機を冷却する特許請求の範囲第1項記載の方法
。 4、成形を射出成形機、押出成形機またはプレス成形機
で行なう特許請求の範囲第2項または第3項記載の方法
[Claims] 1. A cement product characterized in that substantially no pores have a pore diameter of 15 μm or more, and 2.5% by volume or less of pores have a pore diameter of 0.02 μm or more and less than 15 μm. . 2. In a method of kneading a starting material mainly composed of hydraulic cement powder with a thickener and water added to form a plastic kneaded material and molding it into a desired shape, the amount of water is 26-1 of the theoretical reaction amount for hard cement
1. A method for producing a cement product, which comprises subjecting a raw material made to 0.00% to a reduced pressure of -500 mmHg or less and obtaining a plastic kneaded product in that state using a continuous screw kneader. 3. The method according to claim 1, in which the kneading machine is cooled. 4. The method according to claim 2 or 3, wherein the molding is performed using an injection molding machine, an extrusion molding machine, or a press molding machine.
JP23102485A 1985-10-18 1985-10-18 Cement product and manufacture Granted JPS6291455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23102485A JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23102485A JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Publications (2)

Publication Number Publication Date
JPS6291455A true JPS6291455A (en) 1987-04-25
JPH0248409B2 JPH0248409B2 (en) 1990-10-25

Family

ID=16917066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23102485A Granted JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Country Status (1)

Country Link
JP (1) JPS6291455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139209A (en) * 1987-11-26 1989-05-31 Masahiro Abe Manufacture of coagulating molded product
JP2014121851A (en) * 2012-12-21 2014-07-03 Se Corp Method of producing concrete molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199561A (en) * 1983-04-27 1984-11-12 積水化学工業株式会社 Manufacture of cement formed body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199561A (en) * 1983-04-27 1984-11-12 積水化学工業株式会社 Manufacture of cement formed body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139209A (en) * 1987-11-26 1989-05-31 Masahiro Abe Manufacture of coagulating molded product
JP2014121851A (en) * 2012-12-21 2014-07-03 Se Corp Method of producing concrete molding

Also Published As

Publication number Publication date
JPH0248409B2 (en) 1990-10-25

Similar Documents

Publication Publication Date Title
JPH0243696B2 (en)
JPH04193748A (en) Fiber-reinforced cement composition
KR102237816B1 (en) SBR Latex Modified Polymer Cement Mixtures for 3D Concrete Printing and Its Manufacturing Method
JP2000203964A (en) Cement hardened material
JPS6291455A (en) Cement product and manufacture
JP3550341B2 (en) Plastic injection material
JPS6124358B2 (en)
JPH11226549A (en) Production of sewage sludge incineration ash lightweight solidified material
JP4434388B2 (en) Coal ash plate manufacturing method
KR20050067115A (en) Polymer concrete binder and mortar using complex waste plastic
JP3526639B2 (en) Cement composition for dewatering press molding and method for producing cement molding using the same
JP2511437B2 (en) Lightweight cement products
KR100503742B1 (en) Construction material composition without using asbestos for pressure extrusion type and its production
JPH01320244A (en) Cement composition and production of cement molded product using the same composition
JPS60141685A (en) Raw material composition for lightweight foamed concrete
JPH0421634B2 (en)
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JP2022168938A (en) Ceramic-blended cement, hardening water admixture, and cement-hardened product
JPS62253407A (en) Manufacture of carbon fiber-reinforced cement board
JPH1143361A (en) Production of dehydrating press molding composition and dehydrating press-molded form
JPH09235152A (en) Production of extrusion molded block having water retention
JP2704925B2 (en) Cementitious composition and product thereof
JP3266333B2 (en) Method for producing silica molded cured product
JPH09123134A (en) Composition for dehydrating press molding and manufacture of dehydrating-pressed molded body
JPH01141857A (en) Cement composition