JPH0248409B2 - - Google Patents

Info

Publication number
JPH0248409B2
JPH0248409B2 JP60231024A JP23102485A JPH0248409B2 JP H0248409 B2 JPH0248409 B2 JP H0248409B2 JP 60231024 A JP60231024 A JP 60231024A JP 23102485 A JP23102485 A JP 23102485A JP H0248409 B2 JPH0248409 B2 JP H0248409B2
Authority
JP
Japan
Prior art keywords
cement
water
kneader
kneading
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60231024A
Other languages
Japanese (ja)
Other versions
JPS6291455A (en
Inventor
Akio Tokuoka
Yoshihiko Bando
Tooru Segawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23102485A priority Critical patent/JPS6291455A/en
Publication of JPS6291455A publication Critical patent/JPS6291455A/en
Publication of JPH0248409B2 publication Critical patent/JPH0248409B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセメント製品の製造法、特に高緻密な
セメント製品の製造法に関する。 〔従来の技術〕 水硬性セメントから製造されるセメント製品は
高強度であり、かつ、耐久性に優れ、透水性が低
いことが要求される。このようなセメント硬化体
はその内部の組織が緻密でなければならず、大き
な空隙が存在したのでは、上記の如き物性は発現
出来ない。セメント硬化体の強度は孔径15μm以
上のマクロポアー或は孔径15μm〜0.0075μmの毛
細管空隙に関係しており、これらの空隙を少くす
ればする程、硬化体の強度は向上することが知ら
れている(実用コンクリート技術○下2頁、森編)。 そこで強度を上げる為、水セメント比を極端に
少なくし、高圧力下に圧縮成形する方法は公知で
ある。例えばロイ(Roy)、グーダ(Gouda)と
ボブソブスキイ(Bobsowsky)はセメントペー
ストを7000Kg/cm2で強圧プレスして圧縮強度3250
Kg/cm2の硬化体を得、150℃、3500Kg/cm2のホツ
トプレスによつて4200Kg/cm2の強度を得ている
(セラミツクス8、〔10〕、1973、101頁)。 他方、高強度セメント成形体を得る方法とし
て、セメント質原料に少量の水と、可塑性を賦与
する為の有機高分子系の増粘剤を加え、混練によ
り、可塑性の坏土となし、この坏土を圧縮或は押
出法により湿式成形する方法も公知である。例え
ば、特開昭52−53927号公報に、増粘剤を添加し
た低水比セメント質組成物を遊星運動型混練機、
プイ混練機、ホバート混練機等の回分式混練機で
大気圧下で高剪断混合し均質な坏土(ドウ)とし
た後、ラム式押出機に投入、脱気した後そのまま
13.8MN/cm2の高圧力下でゆつくり押出成形する
方法が提案されている。また、特開昭56−9256号
公報に、セメント原料の粒径を20μm以下にし、
少量の水と、増粘剤を加え、ツインロールミルの
ロール間を繰り返し通過させて均質に混合し坏土
(ドウ)となし、この坏土をプレス成形し、この
際、坏土が圧力の解放の際に弛緩しない程度迄硬
化が進行した後に圧力を解放する方法が提案され
ている。さらに、特開昭56−84349号公報に、上
記2つの方法でセメント原料の粒度分布を多モー
ドにする方法が提案されている。 〔発明が解決しようとする問題点〕 しかし、前記のごとく水セメント比を極端に小
さくし、超高圧力下に圧縮成形する方法はいずれ
も実用性がない。 また、特開昭52−53927号公報に記載の方法で
は、マクロポアーの存在しない緻密でかつ高強度
の成形体が得られない。その理由は低水セメント
比でかつ増粘剤を添加したセメント質組成物の混
練物は非常に粘性が高く、流動性が低い為に、回
分式混練機で混練すると、大気圧下では空気が混
入し、(この場合、たとえ真空下でも回分式混練
機を用いる限り空隙が生成する。)マクロポアー
が除去しきれないからである。 特開昭56−9256号および同56−84349号公報に
記載の方法では、ツインロールミルで繰返し混練
することが望ましいとされているが、大気圧下で
混練を行うと空気を巻き込み易いし、生産性も低
いという問題がある。さらに、成形するために硬
化する迄加圧を続ける方法は極めて非能率であ
る。またセメント原料として特殊な粒度のものを
用いる必要もあり、実用性に乏しい製造法といわ
ざるを得ない。 〔問題点を解決するための手段〕 我々は上記欠点を解消し、高強度かつ高緻密
で、耐久性、耐透水性に富むセメント硬化体及び
それを生産性良く製造する方法を鋭意研究した結
果、セメント硬化体中の気泡を無くし、毛細管量
を少なくするには、水セメント比を理論反応量以
下にすると共に、混練工程において、空隙のない
固相−液相のみから成る混練物を得ることが肝要
であること、この為には連続式スクリユー型混練
機を用いて真空脱気下で混練すべきことを発見し
た。ニーダー等のバツチ式混練機では、常圧下で
は気泡を巻き込むし、たとえ真空下にしても、該
混練機の場合は、原料が高粘性(上記の低水セメ
ント比に基づく)であり流動性が非常に低いため
混練機の回転している翼の背後に該原料が流入、
充填しきれず、そこに真空の空間が生じてしま
い、しかもそれらの空間翼の回転によつて該原料
内に細い真空の空隙を生ぜしめる結果となりやは
り空隙が形成される。(この空隙は、混練時は真
空状態にある)一方、本発明に用いられる連続式
スクリユー型混練機では原料が後から次々に送ら
れて混練物が加圧状態にあるために混練物中に上
記の如き空隙が形成されることがないものと考え
られる。 こうして、本発明により、新規なセメント製品
であつてその硬化体中のポアーが、孔径15μm以
上のマクロポアーが存在せず、15〜0.02μmの毛
細管空隙(ミクロポアー)が2.5容積%以下の極
めて緻密なセメント硬化体及び、水硬性セメント
粉末を主成分とする出発材料に増粘剤及び水を添
加した原料を混練して可塑性混練物を形成し、こ
れを所望の形に成形する方法において、水の量を
水硬性セメントに対する理論反応量の26〜100%
とした原料を260mmHg以上の絶対圧力に減圧処理
を行つてその状態で連続式スクリユー型混練機を
用いて可塑性混練物を得ることを特徴とするセメ
ント製品の製造法が提供される。 この高緻密セメント製品は、曲げ強度が600
Kg/cm2、圧縮強度が1700Kg/cm2にも達し、透水係
数は2×10-15m/sと通常のコンクリートの1/1
00と低く、さらに毛細管空隙が少い為、耐凍性に
も優れた性質を示す。 水硬性セメントには、普通ポルトランドセメン
ト、特殊ポルトランドセメントなどの単味セメン
ト、又はそれに高炉スラグ、フライアツシユ等を
混合した混合セメント、或はアルミナセメント、
石コウ、炭酸マグネシウム、ケイ酸カルシウム等
があり、これらを単独で或は混合して用いること
ができる。 また、水硬性セメントに、シリカ微粉、炭カ
ル、蛇紋岩粉等の充填材を必要に応じ添加しても
良い。 配合水は水硬性セメントの硬化に必須の成分で
あると共に混練組成物に可塑性を賦与する役目を
果している。配合水はセメントと反応し、セメン
ト水和物を生成するが、水硬性セメントが水和物
を生成するために必要かつ十分な水の配合量(理
論配合水量)を越える水セメント比では、余剰の
水が蒸発して、毛細管空隙となる。従つて毛細管
空隙のない緻密なセメント硬化体を得るには配合
水は理論反応水量以下であることが必要である。
普通ポルトランドセメントにおける理論反応水量
は水セメント比で0.38と考えられている(ネビル
著、コンクリートの特性、26頁)。水セメント比
が0.38以下の場合、水和反応が100%進んだセメ
ント硬化体は未水和セメントとセメント水和物と
ゲル空隙とからなる組織となり、事実上毛細管空
隙は存在しなくなる。しかしながら、水セメント
比を極端に少なくすると、混練物が固くなり過
ぎ、成形に必要な可塑性が得られなくなる。従つ
て、配合水量は理論配合水量の26〜100%である
ことが必要である。この配合水量は0.10〜0.38の
水セメント比に対応する。 上記の如く理論配合水量より低い水セメント比
ではセメント混練物は可塑性が不十分になり易い
ので増粘材を添加することが必要である。ここに
いう増粘剤はセメントの如き非可塑性粉体に可塑
性を賦与し、塑性変形による成形を可能ならしめ
るに必須の成分である。増粘剤は別名ハイドロ変
形剤(特願昭43−7134)或は成形助剤(セラミツ
ク製造プロセス、第一巻、素木洋一著、67頁)と
も称される。このような増粘剤としては、保水性
を有する水溶性の有機高分子例えばメチルセルロ
ース、ポリアクリルアミド、ポリエチレンオキシ
ド、ポリビニルアルコール等が用いられる。増粘
剤の添加量は、混練物に必要な可塑性を賦与する
べく決定されるが、セメント100部に対し0.5〜5
部程度が望ましい。 耐衝撃性を補強する為に、有機繊維、例えば、
ポリプロピレン繊維、ビニロン繊維、セルロース
繊維、ナイロン繊維或は無機繊維、例えば、アス
ベスト、ガラスフアイバー等を添加してもよい。 水硬性セメント、骨材、増粘剤、補強繊維等の
原料粉末はオムニミキサー、レーデイゲミキサー
等でドライブレンドした後所定量の水を添加し
て、顆粒状の混合物とする。この混合物を連続式
スクリユー型混練機のホツパに投入し、真空脱気
した後その状態で混練部へ送る。この操作によつ
てのみ、気泡或いは空隙を含まない即ち固相と液
相の二相のみからなる可塑性混練物(ドウ)が得
られる。真空脱気しながら練るスクリユー型混練
機として、真空押出機或は真空土練機があるが、
これらはいづれも、混練機の中央部に脱気ゾーン
を設けたものであり、本発明の如く予め原料を脱
気するものではない為、一旦形成された気泡等は
消滅し難く、その結果可塑性混練物に気泡を含む
ことは避け得ない。 一般に、粘稠な物質の混練或は捏和には回分式
のものと連続式のものがある。回分式混練機には
Z字型またはシグマ型の回転翼を有するニーダー
ミキサー、バンバリミキサー、マラー型ミキサ
ー、ロールミキサー等があるが、ニーダーミキサ
ー、バンバリーミキサーでは常圧下でも真空脱気
下でも、混練物中に気泡或は空隙を生成し、稠密
な組成物が得られない。マラー型ミキサー、ロー
ルミキサーでは真空脱気下で混練することはその
機構上困難を伴う。一方、連続式スクリユー型混
練機である土練機、オーガーマシン、パツグミ
ル、コニーダ、等のいずれを用いても前記の如き
真空脱気下で混練を行なえば、空気を取り込むこ
とがなく、また空隙も形成されない混練物が得ら
れる。 第1図に連続式スクリユー型混練機の一例を示
す。同図中、1はホツパー、2はシリンダー、3
はスクリユー、4は冷却ジヤケツト、5はダイで
ある。ホツパー1およびシリンダー2の内部は吸
気口6を介して真空脱気される。また、シリンダ
ー2内は冷却ジヤケツト4により冷却可能であ
る。こうしてホツパー1に供給されたセメント配
合物はシリンダー2内でスクリユー3により混練
されてからダイ5を通して押し出され、ミクロポ
アーのない緻密なセメント混練物を提供する。 混練の際、混練物を真空脱気して260mmHg以
下、特に60mmHg以下の低い圧力まで減圧するこ
とによつて、真空脱気(減圧)しない場合と比べ
て顕著な効果が達成される。 上記のような低い水セメント比でセメントと水
を混練すると発熱するので、混練機は冷却できる
構造であることが望ましい。例えば、混練時には
40℃程度に昇温するので20℃位に冷却することが
望ましい。 このように連続式スクリユー型混練機によれ
ば、回分式混練機による場合と比べて、混練の生
産性に関しても優れているという利点がある。 真空脱気しながら混練を連続操作するために、
例えばホツパーを2個以上設置し、それらを切り
換えながら運転して、真空を破ることなく連続操
作することは可能である。 こうして得られる可塑性混練物はプレス成形、
射出成形、押出成形等の処理を行なつて所望の形
状に成形する。このとき、成形圧力或は成形時間
は可塑性の混練物に可塑変形を与える最小の値で
良く、特に大きな圧力或は保持時間を要しない。
成形も真空脱気装置の付いた成形機で行なうこと
が望ましい。 最も望ましくは、連続式スクリユー型混練機と
成形機が一体となりかつ真空脱気される構造の装
置を用いて、真空脱気下において、混練および成
形を連続的に行なう。こうすれば可塑性混練物は
外気に触れることなく直接に成形されることがで
きる。 こうして得られる成形物は、常温湿空養生を行
つた後、常圧スチーム又は高圧スチーム養生を行
つて硬化体にし、最終製品とする。以下、実施例
により説明する。 〔実施例〕 混練時の真空脱気の効果 混練時の真空脱気度を変えた場合の混練物の密
度及び気泡量の変化、さらにはこの混練物を押出
成形した場合の押出成形未硬化物の密度及び気泡
量の変化を下記の如き条件で調べた。 原料配合: 普通ポルトランドセメント 100重量部 メチルセルロース 4重量部 (信越化学工業社製hi−メトローズ15000) 水 18重量部 混 練 連続式スクリユー混練機(宮崎鉄工社製MP−
100) 真空脱気度(圧力):760,460,260,30mmHg 成形: 真空押出機(本田鉄工社製PE−75) 成形圧:30〜35Kg/cm2 成形体:幅120mm、長さ2000mm、厚さ6mm 上記条件で得られた混練物と押出未硬化物につ
いて密度および気泡量を測定した。 その際、密度は、豆粒大の試料を切り取り、気
中の重量(W1)及び水中で浮力(W2)を測定
し、アルキメデスの原理を用いて式:ρo=W1
W2により算出した。気泡量は、試料の上記密度
ρoと配合原料組成から計算した理論密度ρcから、
式:(気泡量)=1−ρo/ρcにより算出した。この
配合原料の理論密度は、各原料の真密度を普通ポ
ルトランドセメント3.19g/cm3、メチルセルロー
ス1.3g/cm3、水1.0g/cm3として、配合比率より
計算した。 結果を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for manufacturing cement products, particularly a method for manufacturing highly dense cement products. [Prior Art] Cement products manufactured from hydraulic cement are required to have high strength, excellent durability, and low water permeability. Such a hardened cement body must have a dense internal structure, and if large voids are present, the above-mentioned physical properties cannot be exhibited. The strength of a hardened cement product is related to macropores with a pore diameter of 15 μm or more or capillary voids with a pore diameter of 15 μm to 0.0075 μm, and it is known that the smaller these voids are, the stronger the hardened product will be. (Practical Concrete Technology, page 2, edited by Mori). Therefore, in order to increase the strength, a method is known in which the water-cement ratio is extremely reduced and compression molding is performed under high pressure. For example, Roy, Gouda, and Bobsowsky pressed cement paste at 7000 kg/cm 2 with a compressive strength of 3250.
A hardened product of Kg/cm 2 was obtained, and a strength of 4200 Kg/cm 2 was obtained by hot pressing at 150° C. and 3500 Kg/cm 2 (Ceramics 8, [10], 1973, p. 101). On the other hand, as a method for obtaining a high-strength cement molded body, a small amount of water and an organic polymer thickener for imparting plasticity are added to the cementitious raw material, and the mixture is kneaded to form a plastic clay. Methods of wet compaction of soil by compaction or extrusion methods are also known. For example, in Japanese Patent Application Laid-Open No. 52-53927, a low water ratio cementitious composition to which a thickener has been added is mixed in a planetary kneader,
After making a homogeneous dough by high-shear mixing under atmospheric pressure using a batch-type kneader such as a Pui kneader or a Hobart kneader, the dough is fed into a ram-type extruder, deaerated, and left as is.
A method of slow extrusion molding under a high pressure of 13.8 MN/cm 2 has been proposed. In addition, Japanese Patent Application Laid-Open No. 56-9256 discloses that the particle size of the cement raw material is reduced to 20 μm or less,
Add a small amount of water and a thickener, and pass repeatedly between the rolls of a twin-roll mill to mix homogeneously to form a dough. This dough is press-formed, and at this time, the dough releases pressure. A method has been proposed in which the pressure is released after hardening has progressed to the extent that it does not relax during the process. Furthermore, Japanese Patent Application Laid-Open No. 56-84349 proposes a method of making the particle size distribution of cement raw materials multimodal using the above two methods. [Problems to be Solved by the Invention] However, as described above, none of the methods of extremely reducing the water-cement ratio and performing compression molding under ultra-high pressure are impractical. Furthermore, the method described in JP-A No. 52-53927 does not provide a dense and high-strength molded product free of macropores. The reason for this is that the kneaded product of a cementitious composition with a low water-to-cement ratio and a thickener added has very high viscosity and low fluidity. (In this case, as long as a batch kneader is used, even under vacuum, voids will be generated.) Macropores cannot be completely removed. In the methods described in JP-A-56-9256 and JP-A-56-84349, it is said that it is desirable to repeatedly knead in a twin roll mill, but if kneading is performed under atmospheric pressure, air is likely to be drawn in and production There is also the problem of low gender. Furthermore, the method of continuing to apply pressure until it hardens for molding is extremely inefficient. Furthermore, it is necessary to use a cement raw material with a special particle size, which makes the production method impractical. [Means for solving the problem] We have solved the above-mentioned drawbacks and have conducted extensive research into a hardened cement material that is high in strength, high density, durability, and water permeability, and a method for producing it with high productivity. In order to eliminate air bubbles and reduce the amount of capillary in the hardened cement, the water-cement ratio should be lower than the theoretical reaction amount, and in the kneading process, a kneaded product consisting only of solid and liquid phases without voids should be obtained. It was discovered that this is essential, and that for this purpose, kneading should be carried out under vacuum degassing using a continuous screw type kneader. Batch-type kneaders such as kneaders involve air bubbles under normal pressure, and even under vacuum, in the case of such kneaders, the raw material is highly viscous (based on the low water-cement ratio above) and has poor fluidity. Because the temperature is so low, the raw material flows behind the rotating blades of the kneader.
If the filling is not completed, a vacuum space is created there, and furthermore, the rotation of these space vanes creates a narrow vacuum space within the raw material, resulting in the formation of a space as well. (These voids are in a vacuum state during kneading.) On the other hand, in the continuous screw type kneader used in the present invention, the raw materials are sent one after another and the kneaded material is under pressure, so It is considered that the above-mentioned voids are not formed. Thus, the present invention provides a novel cement product in which the pores in the hardened product are extremely dense, with no macropores with a pore diameter of 15 μm or more, and with capillary voids (micropores) of 15 to 0.02 μm being less than 2.5% by volume. A method of kneading a raw material obtained by adding a thickener and water to a hardened cement body and a starting material mainly composed of hydraulic cement powder to form a plastic kneaded product, and molding this into a desired shape. 26-100% of the theoretical reaction amount for hydraulic cement
Provided is a method for producing a cement product, which comprises subjecting a raw material to a vacuum treatment to an absolute pressure of 260 mmHg or more and obtaining a plastic kneaded product using a continuous screw type kneader in that state. This high density cement product has a bending strength of 600
Kg/cm 2 , the compressive strength reaches 1700Kg/cm 2 , and the permeability coefficient is 2×10 -15 m/s, 1/1 that of regular concrete.
00, and because there are few capillary voids, it also exhibits excellent freeze resistance. Hydraulic cement includes plain cement such as ordinary Portland cement and special Portland cement, mixed cement with blast furnace slag, fly ash, etc., or alumina cement,
Examples include gypsum, magnesium carbonate, calcium silicate, etc., and these can be used alone or in combination. Furthermore, fillers such as fine silica powder, charcoal, and serpentine powder may be added to the hydraulic cement as necessary. Blended water is an essential component for curing hydraulic cement, and also plays the role of imparting plasticity to the kneaded composition. Mixed water reacts with cement and produces cement hydrate, but if the water-cement ratio exceeds the necessary and sufficient water content (theoretical water content) for hydraulic cement to produce hydrates, excess water will be generated. water evaporates and forms a capillary void. Therefore, in order to obtain a dense cement hardened body without capillary voids, it is necessary that the blended water be less than the theoretical reaction water amount.
The theoretical amount of reaction water in ordinary Portland cement is thought to be 0.38 in water-cement ratio (Neville, Characteristics of Concrete, p. 26). When the water-cement ratio is 0.38 or less, the hardened cement body in which the hydration reaction has progressed to 100% has a structure consisting of unhydrated cement, cement hydrate, and gel voids, and there are virtually no capillary voids. However, if the water-cement ratio is extremely reduced, the kneaded material becomes too hard and the plasticity necessary for molding cannot be obtained. Therefore, it is necessary that the amount of water blended is 26 to 100% of the theoretical amount of water blended. This blended water amount corresponds to a water-cement ratio of 0.10 to 0.38. As mentioned above, if the water-cement ratio is lower than the theoretical water content, the cement mixture tends to have insufficient plasticity, so it is necessary to add a thickener. The thickener mentioned here is an essential component that imparts plasticity to a non-plastic powder such as cement and enables it to be molded by plastic deformation. The thickener is also called a hydro-deforming agent (Japanese Patent Application No. 7134/1989) or a forming aid (Ceramic Manufacturing Process, Vol. 1, Yoichi Motoki, p. 67). As such a thickener, a water-soluble organic polymer having water-retentive properties such as methyl cellulose, polyacrylamide, polyethylene oxide, polyvinyl alcohol, etc. is used. The amount of thickener added is determined in order to impart the necessary plasticity to the kneaded material, but it is 0.5 to 5 parts per 100 parts of cement.
It is desirable that the To enhance impact resistance, organic fibers, e.g.
Polypropylene fibers, vinylon fibers, cellulose fibers, nylon fibers or inorganic fibers such as asbestos, glass fibers, etc. may be added. Raw material powders such as hydraulic cement, aggregates, thickeners, reinforcing fibers, etc. are dry blended using an omni mixer, a Lodeige mixer, etc., and then a predetermined amount of water is added to form a granular mixture. This mixture is charged into a hopper of a continuous screw type kneader, vacuum degassed, and then sent in that state to a kneading section. Only by this operation can a plastic kneaded material (dough) containing no bubbles or voids, that is, consisting only of two phases, a solid phase and a liquid phase, be obtained. There are vacuum extruders and vacuum kneaders as screw-type kneaders that knead while vacuum degassing.
In all of these, a deaeration zone is provided in the center of the kneader, and the raw materials are not deaerated in advance as in the present invention, so air bubbles, etc., once formed are difficult to disappear, resulting in plasticity. It is unavoidable that the kneaded material contains air bubbles. In general, there are two types of kneading or kneading of viscous substances: batch type and continuous type. Batch-type kneading machines include kneader mixers with Z-shaped or sigma-type rotary blades, Banbury mixers, Muller-type mixers, roll mixers, etc., but kneader mixers and Banbury mixers can mix under normal pressure or vacuum degassing. Bubbles or voids are formed in the product, making it impossible to obtain a dense composition. With a Muller type mixer or a roll mixer, kneading under vacuum degassing is difficult due to its mechanism. On the other hand, no matter which continuous screw type kneader is used, such as a clay kneader, auger machine, pack mill, or co-kneader, if the kneading is carried out under vacuum degassing as described above, no air will be taken in, and no voids will be present. A kneaded product is obtained in which no particles are formed. Figure 1 shows an example of a continuous screw type kneader. In the figure, 1 is the hopper, 2 is the cylinder, and 3 is the hopper.
4 is a cooling jacket, and 5 is a die. The interior of the hopper 1 and the cylinder 2 is vacuum degassed through the intake port 6. Furthermore, the inside of the cylinder 2 can be cooled by a cooling jacket 4. The cement mixture thus supplied to the hopper 1 is kneaded in the cylinder 2 by the screw 3 and then extruded through the die 5 to provide a dense cement mixture free of micropores. During kneading, by vacuum degassing the kneaded material and reducing the pressure to a low pressure of 260 mmHg or less, particularly 60 mmHg or less, a remarkable effect can be achieved compared to the case where vacuum degassing (pressure reduction) is not performed. Since heat is generated when cement and water are kneaded at such a low water-cement ratio as described above, it is desirable that the kneader has a structure that allows cooling. For example, when kneading
Since the temperature rises to about 40℃, it is desirable to cool it to about 20℃. As described above, the continuous screw type kneader has the advantage of being superior in kneading productivity compared to the batch type kneader. In order to continuously operate kneading while vacuum degassing,
For example, it is possible to install two or more hoppers and operate them while switching between them for continuous operation without breaking the vacuum. The plastic kneaded material obtained in this way is press-molded,
It is molded into a desired shape by processing such as injection molding or extrusion molding. At this time, the molding pressure or molding time may be the minimum value that gives plastic deformation to the plastic kneaded material, and a particularly large pressure or holding time is not required.
It is also desirable to perform the molding using a molding machine equipped with a vacuum degassing device. Most preferably, kneading and molding are carried out continuously under vacuum degassing using an apparatus having a structure in which a continuous screw kneading machine and a molding machine are integrated and vacuum degassing is performed. In this way, the plastic kneaded material can be directly molded without being exposed to outside air. The molded product thus obtained is cured at room temperature and in a humid air, and then cured with normal pressure steam or high pressure steam to form a hardened product, thereby producing a final product. Examples will be explained below. [Example] Effect of vacuum degassing during kneading Changes in the density and bubble amount of the kneaded product when the degree of vacuum deaeration during kneading is changed, and furthermore, the extrusion-molded uncured product when this kneaded product is extruded Changes in the density and amount of bubbles were investigated under the following conditions. Raw material composition: Ordinary Portland cement 100 parts by weight Methyl cellulose 4 parts by weight (Hi-Metrose 15000 manufactured by Shin-Etsu Chemical Co., Ltd.) Water 18 parts by weight Kneading Continuous screw kneader (MP- manufactured by Miyazaki Iron Works Co., Ltd.)
100) Vacuum deaeration degree (pressure): 760, 460, 260, 30mmHg Molding: Vacuum extruder (PE-75 manufactured by Honda Iron Works) Molding pressure: 30-35Kg/cm 2 Molded objects: Width 120mm, length 2000mm, Thickness: 6 mm The density and the amount of bubbles were measured for the kneaded product and the extruded uncured product obtained under the above conditions. At that time, the density was determined by cutting a pea-sized sample, measuring its weight in air (W 1 ) and its buoyancy (W 2 ) in water, and using Archimedes' principle to calculate the density using the formula: ρ o = W 1 /
Calculated using W 2 . The amount of bubbles is calculated from the above density ρ o of the sample and the theoretical density ρ c calculated from the composition of the raw materials.
Calculated using the formula: (bubble amount)=1- ρo / ρc . The theoretical density of this blended raw material was calculated from the blending ratio, assuming that the true density of each raw material was 3.19 g/cm 3 of ordinary Portland cement, 1.3 g/cm 3 of methyl cellulose, and 1.0 g/cm 3 of water. The results are shown in Table 1.

【表】 第1表の結果から、真空脱気度が−500mmHg以
上では真空脱気しない場合と比べて、混練機物及
び押出未硬化物の密度が大巾に大きくなり、含有
する気泡量も大巾に減少することが見られる。特
に、真空脱気度を−730mmHgとすることにより、
気泡を全く含まない固体−液体のみからなる密な
成形体が得られる。 次に、前記押出未硬化物を60℃、24時間の蒸気
養生により硬化させ、硬化物の空隙容積量の分布
を調べた。硬化物の細孔径分布としては孔径が15
〜100μmのマクロポアーと0.02〜15μmのミクロ
ポアーに区分して測定した。孔径15〜100μmのマ
クロポアーはASTM C−457に従い、顕微鏡法
で測定した。孔径0.02〜15μmのミクロポアーに
ついては水銀圧入法により測定した。水銀圧入法
とは、試料を水銀に浸し、水銀における圧力を次
第に増してゆくと、水銀はその圧力に応じて次第
に小さな細孔へ浸入してゆくので、水銀の浸入量
と圧力の関係から細孔径分布を算出するものであ
る。第2図は水銀圧入法により比較例1と実施例
1の押出成形硬化物の細孔径分布を測定したもの
であるが、曲線は、水銀に圧力を加えない状態で
水銀が浸入できる最小孔径である15μmの細孔か
ら出発して圧力を次第に増加して孔径0.02μmの
細孔に水銀が侵入するまでの水銀の侵入量、すな
わち、孔径15μmから0.02μmまでの細孔容積の累
積値を表わしている。 結果を第2表に示す。
[Table] From the results in Table 1, it can be seen that when the degree of vacuum deaeration is -500 mmHg or higher, the density of the kneading machine material and extruded uncured material increases significantly, and the amount of bubbles contained also increases, compared to the case without vacuum deaeration. A drastic decrease can be seen. In particular, by setting the degree of vacuum deaeration to -730mmHg,
A dense molded body consisting only of solid-liquid and containing no air bubbles is obtained. Next, the extruded uncured product was cured by steam curing at 60° C. for 24 hours, and the void volume distribution of the cured product was examined. The pore size distribution of the cured product has a pore size of 15
Measurement was performed by dividing macropores of ~100 μm and micropores of 0.02-15 μm. Macropores with a pore size of 15 to 100 μm were measured by microscopy according to ASTM C-457. Micropores with a pore diameter of 0.02 to 15 μm were measured by mercury intrusion method. In the mercury intrusion method, when a sample is immersed in mercury and the pressure in the mercury is gradually increased, the mercury gradually infiltrates into smaller pores according to the pressure. This is to calculate the pore size distribution. Figure 2 shows the pore size distribution of the extrusion-molded cured products of Comparative Example 1 and Example 1 measured by the mercury intrusion method, and the curve shows the minimum pore size that allows mercury to penetrate without applying pressure to the mercury. Starting from a certain 15 μm pore, the pressure is gradually increased until mercury enters a 0.02 μm pore. In other words, it represents the cumulative value of the pore volume from 15 μm to 0.02 μm. ing. The results are shown in Table 2.

【表】 第2表から、押出成形硬化物の細孔径分布は、
混練時の真空脱気度の影響を大きく受け、真空脱
気度を−500mmHg以上にすると、真空脱気をしな
い場合と比べてマクロポアー、ミクロポアーが大
巾に減少することが見られる。特に、圧力30mm
Hgでは、15μm以上のマクロポアーはゼロであ
り、15〜0.02μmのミクロポアーも1.5容積%存在
するにすぎない稠密な組織となつている。 前記押出成形硬化物の物性を測定した。 気乾吸水率はJIS A5403の方法に準じて測定し
た。曲げ強度は、6厚×50巾×200長さ(mm)の
試料をスパン150mm、荷重速度1mm/分の条件で
三点曲げ破壊試験して測定した。透水係数は米国
開拓局型透水減験機を用いてダルシーの式より算
出した。耐凍性はASTM C666−71に従い、300
サイクルまで調べた。 結果を第3表に示す。
[Table] From Table 2, the pore size distribution of the extrusion-molded cured product is
It is greatly influenced by the degree of vacuum deaeration during kneading, and when the degree of vacuum deaeration is -500 mmHg or higher, it can be seen that the macropores and micropores are significantly reduced compared to the case without vacuum deaeration. In particular, pressure 30mm
Hg has a dense structure in which there are no macropores of 15 μm or more, and micropores of 15 to 0.02 μm exist at only 1.5% by volume. The physical properties of the extrusion-molded cured product were measured. The air-dry water absorption rate was measured according to the method of JIS A5403. The bending strength was measured by performing a three-point bending fracture test on a sample of 6 thickness x 50 width x 200 length (mm) under conditions of a span of 150 mm and a loading rate of 1 mm/min. The hydraulic conductivity was calculated using Darcy's equation using a U.S. Bureau of Reclamation hydraulic conductivity subtractor. Freeze resistance is 300 according to ASTM C666-71.
I checked the cycle. The results are shown in Table 3.

【表】 第3表から、混練時の圧力が260mmHg以上では
押出成形硬化物の物性は真空脱気されない場合に
比べて大巾に向上することが見られる。特に、混
練時の圧力が30mmHgでは、押出成形硬化物は、
例えば、吸水率は1%以下に、曲げ強度は600
Kg/cm2以上に、圧縮強度は1700Kg/cm2以上に、透
水係数は2×10-15以下に、耐凍性は300サイクル
で良好と、従来のセメント製品に比し格段に優れ
た物性を有する。 真空混練を連続式スクリユー型混練機と回分式混
練機で行つた場合の比較 真空脱気混練操作を連続式スクリユー型混練機
で行つた場合と回分式混練機で行つた場合の混練
物の密度及び気泡量の変化、この混練物を押出成
形した場合の押出成形未硬化物の密度及び気泡量
の相異を下記の如き条件で調べた。 原料配分: 白色ポルトランドセメント 100重量部 ポリアクリルアミド 3重量部 (昭和電工社製) ビニロン繊維 1重量部 (ユニチカ化成社製2.4d×6m/m) 水 25重量部 混 練: (1) 連続式スクリユー型混練機(実施例2と同
じ) 真空脱気度(圧力):30mmHg その他:実施例2と同じ (2) 回分式双腕型ニーダー(森山製作所製D3−
5型) 真空脱気度(圧力):30mmHg 混練時間:3分 成形: 実施例2と同じ 養生: 実施例2と同じ 物性等の試験あるいは測定: 実施例2と同じ 結果を第4表〜第6表に示す。
[Table] From Table 3, it can be seen that when the pressure during kneading is 260 mmHg or more, the physical properties of the extrusion-molded cured product are significantly improved compared to the case where vacuum degassing is not performed. In particular, when the pressure during kneading is 30 mmHg, the extrusion molded cured product
For example, the water absorption rate is 1% or less, and the bending strength is 600.
Kg/cm 2 or more, compressive strength is 1700Kg/cm 2 or more, hydraulic conductivity is 2×10 -15 or less, and freeze resistance is good for 300 cycles, making it far superior to conventional cement products. have Comparison of vacuum kneading performed using a continuous screw type kneader and a batch type kneader Density of kneaded materials when vacuum degassing and kneading operations were performed using a continuous screw type kneader and a batch type kneader The changes in the amount of air bubbles and the density and amount of air bubbles of the extruded uncured product when this kneaded product was extruded were investigated under the following conditions. Raw material distribution: White Portland cement 100 parts by weight Polyacrylamide 3 parts by weight (manufactured by Showa Denko) Vinylon fiber 1 part by weight (manufactured by Unitika Kasei Co., Ltd. 2.4 d x 6 m/m) Water 25 parts by weight Kneading: (1) Continuous screw Type kneader (same as Example 2) Vacuum deaeration degree (pressure): 30 mmHg Others: Same as Example 2 (2) Batch type double-arm type kneader (D3- manufactured by Moriyama Seisakusho)
Type 5) Degree of vacuum deaeration (pressure): 30 mmHg Kneading time: 3 minutes Molding: Same as Example 2 Curing: Same as Example 2 Tests or measurements of physical properties: Same as Example 2 The results are shown in Tables 4 to 5. It is shown in Table 6.

【表】 第4表の結果より、回分式混練機を用いた場合
には、たちえ真空脱気下であつても混練物は多く
の気泡を含有していること、しかし、連続式スク
リユー型混練機を用いた場合には気泡を実質的に
含有していないことが見れる。またこの混練物を
用いて成形した押出成形硬化物についても同様の
傾向が観察される。
[Table] From the results in Table 4, it is clear that when a batch kneader is used, the kneaded product contains many bubbles even under vacuum degassing. It can be seen that substantially no air bubbles were contained when a kneader was used. A similar tendency is also observed for extrusion-molded cured products formed using this kneaded product.

【表】 %とした値である。
第5表の結果によれば、押出成形硬化物の細孔
径分布は混練機種の影響を大きく受け、回分式混
練機ではたとえ真空脱気下のもとに混練したとし
ても、15μm以上のマクロポアー、0.02〜15μmの
ミクロポアーを多く含んでしまい、脱気不完全な
状態になること、しかし連続式スクリユー型混練
機によれば、15μm以上のマクロポアーは存在せ
ず、0.02〜15μmのミクロポアーも回分式混練機
の場合よりも大巾に減少することが見られる。
[Table] Values expressed as %.
According to the results in Table 5, the pore size distribution of the extrusion-molded cured product is greatly affected by the type of kneading machine, and in a batch kneader, even if kneaded under vacuum degassing, macropores of 15 μm or more, However, according to the continuous screw kneader, there are no macropores larger than 15μm, and micropores of 0.02 to 15μm can also be kneaded in batches. It can be seen that the decrease is much greater than in the case of airplanes.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、高圧力下に圧縮成形することなく、極めて緻
密かつ高強度で、耐久性、透水性等に富むセメン
ト製品を高い生産性で製造する方法が提供され
る。また、その結果、そのような特性を有する新
規なセメント製品が提供される。
As is clear from the above description, according to the present invention, there is a method for manufacturing cement products with high productivity that is extremely dense, has high strength, is highly durable, has high water permeability, etc., without compression molding under high pressure. is provided. Also, as a result, new cement products having such properties are provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続式スクリユー型押出機の縦断面
図、第2図は実施例における細孔径分布曲線を示
すグラフ図である。
FIG. 1 is a longitudinal sectional view of a continuous screw extruder, and FIG. 2 is a graph showing pore size distribution curves in Examples.

Claims (1)

【特許請求の範囲】 1 水硬性セメント粉末を主成分とする出発材料
に増粘剤及び水を添加した原料を混練して可塑性
混練物を形成し、これを所望の形に成形する方法
において、 水の量を水硬性セメントに対する理論反応量の
26〜100%とした原料を260mmHg以下の圧力に減
圧処理を行つてその状態で連続式スクリユー型混
練機を用いて可塑性混練物を得ることを特徴とす
るセメント製品の製造法。 2 混練機を冷却する特許請求の範囲第1項記載
の方法。 3 成形を射出成形機、押出成形機またはプレス
成形機で行う特許請求の範囲第1項または第2項
記載の方法。
[Claims] 1. A method of kneading a raw material obtained by adding a thickener and water to a starting material mainly composed of hydraulic cement powder to form a plastic kneaded material, and molding this into a desired shape, The amount of water is calculated based on the theoretical reaction amount for hydraulic cement.
A method for producing a cement product, which comprises subjecting raw materials having a concentration of 26 to 100% to a pressure of 260 mmHg or less and obtaining a plastic kneaded product using a continuous screw type kneader in that state. 2. The method according to claim 1 for cooling a kneader. 3. The method according to claim 1 or 2, wherein the molding is performed using an injection molding machine, an extrusion molding machine, or a press molding machine.
JP23102485A 1985-10-18 1985-10-18 Cement product and manufacture Granted JPS6291455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23102485A JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23102485A JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Publications (2)

Publication Number Publication Date
JPS6291455A JPS6291455A (en) 1987-04-25
JPH0248409B2 true JPH0248409B2 (en) 1990-10-25

Family

ID=16917066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23102485A Granted JPS6291455A (en) 1985-10-18 1985-10-18 Cement product and manufacture

Country Status (1)

Country Link
JP (1) JPS6291455A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139209A (en) * 1987-11-26 1989-05-31 Masahiro Abe Manufacture of coagulating molded product
JP6211762B2 (en) * 2012-12-21 2017-10-11 株式会社エスイー Method for producing concrete molded body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199561A (en) * 1983-04-27 1984-11-12 積水化学工業株式会社 Manufacture of cement formed body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199561A (en) * 1983-04-27 1984-11-12 積水化学工業株式会社 Manufacture of cement formed body

Also Published As

Publication number Publication date
JPS6291455A (en) 1987-04-25

Similar Documents

Publication Publication Date Title
JP4173566B2 (en) Lightweight and porous mineral insulation
TR201708039T4 (en) Formation of ceramic materials made with inorganic polymers.
Liu et al. Preparation and characterization of gypsum-based materials used for 3D robocasting
JPH0225876B2 (en)
CN107188610A (en) A kind of preparation method of porous silicon carbide ceramic
JP2000203964A (en) Cement hardened material
JPH0248409B2 (en)
JP2007217208A (en) Method of manufacturing xonotlite based calcium silicate hydrate porous formed body
JPS6124358B2 (en)
JP4285675B2 (en) Aggregate for hardened cement and hardened cement
CN111592340A (en) Preparation method of magnesium oxide light heat-insulation brick
JP2657204B2 (en) Manufacturing method of non-asbestos extruded products
JP3290171B2 (en) Manufacturing method of porous concrete
JP2724618B2 (en) High strength composite material and method for producing the same
JPH11226549A (en) Production of sewage sludge incineration ash lightweight solidified material
JP4434388B2 (en) Coal ash plate manufacturing method
JPS6335595B2 (en)
JP2007269591A (en) Method of producing concrete product, and concrete product
JP3266333B2 (en) Method for producing silica molded cured product
JPH026360A (en) Lightweight cement composition and production of lightweight cement form therefrom
JPH0421634B2 (en)
JPH07126057A (en) Extrusion molded article of hydraulic composition and production thereof
JP2022168938A (en) Ceramic-blended cement, hardening water admixture, and cement-hardened product
RU2615007C1 (en) Composition for lightweight refractory production
KR100503742B1 (en) Construction material composition without using asbestos for pressure extrusion type and its production