JPS6291432A - Production of porous quartz glass base material - Google Patents
Production of porous quartz glass base materialInfo
- Publication number
- JPS6291432A JPS6291432A JP22787385A JP22787385A JPS6291432A JP S6291432 A JPS6291432 A JP S6291432A JP 22787385 A JP22787385 A JP 22787385A JP 22787385 A JP22787385 A JP 22787385A JP S6291432 A JPS6291432 A JP S6291432A
- Authority
- JP
- Japan
- Prior art keywords
- base material
- burner
- quartz glass
- flow rate
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/36—Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/64—Angle
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、気相反応法による大[」径な多孔質6芙ガラ
ス母材の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a large diameter porous glass base material using a gas phase reaction method.
[従来の技術]
従来より、合成石英ガラスを製造する方法の−・つとし
て、気相反応法(気相反応合成反応法とも云う)により
多孔質石英ガラス母材を形成し、このは材を加熱しガラ
ス化する方法が採用されている。すなわち、バーナから
四塩化珪素等の珪素化合物、水素、醇未笠の原ネ゛1ガ
スを鉛直に懸下され回転する6莢製等の出発部材(以下
出発部材あるいは種棒と書<)lに向けて供給し、四塩
化珪素等の珪素化合物を耐水素炎中で加水分解させ、生
成したシリカ微粒子を前記種棒の下端部に付着Φ111
枯させて多孔質石英ガラス母材を形成する。そして、こ
の多孔質6莢ガラスI4材を加熱炉に入れ、ヒータで加
熱して母材を焼結することによりガラス化する方法であ
る。−1−配力法により形成される多孔質石英ガラス母
材はほぼ円柱状の形状を呈する。[Prior Art] Conventionally, as one of the methods for manufacturing synthetic quartz glass, a porous quartz glass base material is formed by a gas phase reaction method (also referred to as a gas phase reaction synthesis reaction method), and this material is then The method used is heating and vitrification. That is, a starting member (hereinafter referred to as "starting member" or "seed rod") made of six shells, etc., which rotates from a burner with a silicon compound such as silicon tetrachloride, hydrogen, and a raw gas of unrefined gas suspended vertically. The silicon compound such as silicon tetrachloride is hydrolyzed in a hydrogen-resistant flame, and the generated silica fine particles are attached to the lower end of the seed rod Φ111
It is dried to form a porous quartz glass matrix. Then, this porous hexapod glass I4 material is placed in a heating furnace, heated with a heater, and vitrified by sintering the base material. -1- The porous quartz glass base material formed by the force distribution method has a substantially cylindrical shape.
[発明の解決しようとする間顕点1
前記気相反応法により出発して製造した石英ガラスを例
えばフォトマスク用のス(板材料として利用する場合、
石英ガラス素材はかなり大型のものが要求され、これを
気相反応合成反応法による多孔質石英ガラス母材(以下
単に母材と書くことがある)から製造する場合には、該
母材としては径が28〜30cmφ、長さloocm以
トのも0が必要となってくる。こういう大型のものを合
成する場合大型のバーナを用いかつj+I材の強度を高
めるために強い火炎中でシリカ微粒子を刺着させること
が必要である。しかし、従来採用されている方法、即ち
種棒から出発し形成途中のI’、7材底部番こシリカ微
粒子を含む酸水素炎を吹き伺けて多孔質石英ガラスは材
を形成する方法において、バーナの位置、水素の流−Y
等を−・定条件下に固定したままで大型のものを合成し
ようとすると、強い火炎により第2図(a)に示すよう
に中央部分がくぼんだり、第2図(b)に示すように角
ばった形状になってしまい、これによりL1材近傍のガ
ラス微粒子の流れが変化し、ついには母材外周部の形状
も乱れてしまい安定な合成が出来なかった。[Point to be solved by the invention 1 When using the quartz glass produced starting from the above-mentioned gas phase reaction method as a plate material for a photomask, for example,
The quartz glass material is required to be quite large, and when it is manufactured from a porous quartz glass base material (hereinafter simply referred to as base material) using the gas phase reaction synthesis reaction method, the base material is A diameter of 28 to 30 cmφ and a length of less than 10 cm are also required. When synthesizing such a large material, it is necessary to use a large burner and to stick silica particles in a strong flame in order to increase the strength of the j+I material. However, in the conventionally adopted method, that is, starting from a seed rod and blowing an oxyhydrogen flame containing silica fine particles at the bottom of the I' and 7 materials in the middle of formation, porous quartz glass is formed. Burner position, hydrogen flow - Y
If you try to synthesize a large one under fixed conditions, the strong flame will cause the central part to become depressed as shown in Figure 2 (a), or as shown in Figure 2 (b). This resulted in an angular shape, which changed the flow of glass particles near the L1 material, and finally the shape of the outer periphery of the base material was disturbed, making stable synthesis impossible.
[問題点を解決するだめの手段]
本発明は、上記の問題を解決し、大「I径な長尺1(上
材を安定して製造する方法を提案するものであり、その
要旨は珪素化合物を酸水素炎中で加水分解し、て生成し
たシリカ微粒子を回転する出発部材トに堆積させて多孔
質石英ガラスLζI材を合成する方法において、合成用
バーナに供給する水素の流1.X、珪素化合物の流Jl
)、および出発部旧に対するバーナの角度を紅時的に変
化させることにより、形成するII材の形状を整えるこ
とを特徴とする多孔質石英ガラス微粒子の製造方法であ
る。[Means for Solving the Problems] The present invention solves the above problems and proposes a method for stably manufacturing a large I-diameter long material. In a method for synthesizing a porous quartz glass LζI material by hydrolyzing a compound in an oxyhydrogen flame and depositing the generated silica fine particles on a rotating starting member, the flow of hydrogen supplied to the synthesis burner 1. , silicon compound flow Jl
), and a method for producing porous silica glass particles, characterized in that the shape of the material II to be formed is adjusted by changing the angle of the burner with respect to the starting part over time.
本発明は、鉛直に懸下した種棒を回転させつつ引上げな
がら、トリクロロシラン、四1!シ化珪素、四臭化珪素
痔の珪素化合物を酸水素炎中で加水分解して生成したシ
リカ微粒子−を前記種棒七に堆積させ、さらに堆積面の
定められた部位の位置を検出して、1該検出部位のス(
型面からの高さを一定に保つよう多孔質石英ガラスLz
I材の引」−げ速度を制御する大口径で長尺なI+J材
の製造方法において、Ifj材の径の成長に合せて八−
すの角度を鉛直上刃から徐々に傾け、かつ珪素化合物、
水素の流量を徐々に増加させて行く多孔質石英ガラス微
粒子の製造方法である。前記した位置を検出する1寸材
の堆積面の部位としては、例えば後記する母材底部の突
起部が適当である。In the present invention, while rotating and pulling up a vertically suspended seed rod, trichlorosilane, 41! Silica fine particles produced by hydrolyzing silicon compounds of silicon silicide and silicon tetrabromide in an oxyhydrogen flame are deposited on the seed rod 7, and the position of a determined portion of the deposition surface is detected. , 1 S( of the detection site)
Porous quartz glass Lz to keep the height from the mold surface constant
In the method for manufacturing large-diameter and long I+J materials, which controls the drawing speed of I materials, 8-
Gradually tilt the angle of the blade from the vertical upper blade, and
This is a method for producing porous quartz glass particles in which the flow rate of hydrogen is gradually increased. For example, a protrusion on the bottom of the base material, which will be described later, is suitable as the part on the stacking surface of the one-size material for detecting the above-mentioned position.
ここでバーナの角度とは多重管バーナの中心軸と鉛直線
のなす角をいい、多重管バーナが鉛直」一方を向いたと
き、バーナ角度0°とする。Here, the burner angle refers to the angle between the central axis of the multi-tube burner and the vertical line, and when the multi-tube burner is oriented vertically, the burner angle is 0°.
本発明の好ましい形IEによれば、成長面である1mJ
材の底部形状は第1図(b)、(C)に示すよ)に中央
部に8〜15mm高さの突起が常に形成されており、シ
リカを含む火炎の−・端がこの突起部20の先端を越え
ないで母材の半径方向をカバーする範囲内でバーナ角度
、水素、珪素化合物の流量を徐々に変化させる。このよ
うにすれば、シリカを含む火炎流は多孔質石英ガラス母
材底部の突起部20で整流され、母材外周にそってに昇
していくので形状の整った均一な母材11が形成される
。According to a preferred form IE of the invention, the growth surface is 1 mJ
The shape of the bottom of the material is shown in Figures 1 (b) and (C). A protrusion with a height of 8 to 15 mm is always formed in the center, and the end of the flame containing silica is the protrusion 20. The burner angle and the flow rate of hydrogen and silicon compound are gradually changed within a range that covers the radial direction of the base metal without exceeding the tip of the burner. In this way, the flame flow containing silica is rectified by the protrusion 20 at the bottom of the porous quartz glass base material and rises along the outer periphery of the base material, so that a uniform base material 11 with a uniform shape is formed. be done.
バーナ角度、珪素化合物、水素の1&1許を最初から固
定した状態で大口径な母材を合成しようとすると、母材
の径の成長に伴なって火炎がrat材底部にとりこまれ
第2図(a)のように中央伺近の温度が集中的に高くな
り中央部がへこんでしまったり、あるいは第2図(b)
に示すように角ばった形状のものが出来てしまう。If you try to synthesize a large-diameter base material with the burner angle, silicon compound, and hydrogen ratios fixed from the beginning, the flame will be trapped in the bottom of the rat material as the diameter of the base material grows, as shown in Figure 2 ( As shown in a), the temperature near the center becomes concentrated and the center becomes depressed, or as shown in Fig. 2(b).
This results in an angular shape as shown in the figure.
本発明では、多孔質ガラスtNI材の径の成長に合せて
、原料カスの流量を徐々に高めながら、バーナ5を外側
に傾むけていくのでシリカ付着面の形状、温度分布が常
に一定に保たれ、底部形状の乱れが生じない。In the present invention, the burner 5 is tilted outward while gradually increasing the flow rate of the raw material waste in accordance with the growth of the diameter of the porous glass TNI material, so that the shape and temperature distribution of the silica adhesion surface are always kept constant. No sag or disturbance of the bottom shape.
[実施例]
第3図に示す装置を使用し、径85mmの多重管バーナ
5の中心部(第1層)に四塩化珪素と水素ガスを、第2
層、第7層、第9層に水素を、第3層、6層、8層、1
0層にシールガスとして窒素ガスを、第4層、5層、1
1層に酸素ガスを導入し、石英製の径75mmφの鉛直
に懸ドした種棒lOの先端部のド方80mmの位置にバ
ーナ5を設置し種棒10を回転させながらfl上材成反
応を開始した。[Example] Using the apparatus shown in FIG.
layer, 7th layer, 9th layer, 3rd layer, 6th layer, 8th layer, 1st layer
Nitrogen gas is applied as a seal gas to the 0th layer, 4th layer, 5th layer, 1st layer.
Oxygen gas was introduced into one layer, and a burner 5 was installed at a position 80 mm away from the tip of a vertically suspended quartz seed rod 10 with a diameter of 75 mm, and while the seed rod 10 was rotated, the fl upper material formation reaction was carried out. started.
スタート開始後第1表に示す条件ドで四塩化珪素の流量
、水素の流量およびバーナの角度を変化させながら、母
材底部の突起部20の位置を一定に保ちなからLJ材1
1を上方に引りげ母材11を該母材11の径方向、軸方
向に成長させていき母材11の径が30cmφになった
時点で四塩化珪素、水素の流量、バーナの角度を固定し
、母材底部の突起部20の位置が一定に保たれるよう制
御しながら引」−げ成長させ約28時間かけて径30c
m、長さ100cmの多孔質ガラス母材を形成させた。After the start, while changing the flow rate of silicon tetrachloride, the flow rate of hydrogen, and the angle of the burner under the conditions shown in Table 1, the position of the protrusion 20 on the bottom of the base material was kept constant.
1 upward, and the base material 11 is grown in the radial and axial directions of the base material 11. When the diameter of the base material 11 reaches 30 cmφ, the flow rate of silicon tetrachloride, hydrogen, and the angle of the burner are adjusted. The base material was fixed, and the protrusion 20 at the bottom of the base material was controlled to maintain a constant position while being pulled and grown to a diameter of 30cm over about 28 hours.
A porous glass preform having a length of 100 cm and a length of 100 cm was formed.
母材合成反応スタート後約60分後に多孔質ガラス母材
の底部に約8mm高さの突起が形成され、母材の径の増
大とともに経詩的にこの突起部20も成長してきたが最
終的には12mm高さで一定に保持された。シリカを含
む火炎流は整流された状態で円柱状の母材11における
バーナを傾けた側の半径方向にわたって均一に広がりこ
れにより形状の整った母材が合成出来た。Approximately 60 minutes after the start of the base material synthesis reaction, a protrusion 20 with a height of approximately 8 mm was formed at the bottom of the porous glass base material, and as the diameter of the base material increased, this protrusion 20 gradually grew, but eventually The height was held constant at 12 mm. The silica-containing flame flow was rectified and spread uniformly over the radial direction of the cylindrical base material 11 on the side where the burner was tilted, thereby making it possible to synthesize a well-shaped base material.
母材底部の突起部20の位置即ち基準面からの高さを適
切な一定値に保つためにこの実施例では水平に走るレー
ザー光14を用いた。レーザー光14は、図示されてい
ない装置により前記突起部20の位置を保つべき基準面
からの高さにおいて水平に走っており、突起部2oがレ
ーザー光14を横切ると回転している母材11が上方に
引」二げられるよう母材用1−装置(図示せず)と連動
させた。In order to maintain the position of the protrusion 20 on the bottom of the base material, that is, the height from the reference plane, at an appropriate constant value, a horizontally running laser beam 14 was used in this embodiment. The laser beam 14 runs horizontally at a height from the reference plane where the position of the protrusion 20 is to be maintained by a device not shown, and when the protrusion 2o crosses the laser beam 14, the base material 11 is rotated. It was linked with a base material 1-device (not shown) so that the base material could be pulled upward.
第1表 バーナ角度、H2流量、5iC14流量の変化
量=
□□■
[発明の効果]
以上説明したように本発明によれば、母材底部に凹所等
の不規則な形状部分が生じることなく、底部、外周部そ
の他全体として形状の整った大口径な母材を製造するこ
とが可能になった。また、形状の再現性も優れている。Table 1 Changes in burner angle, H2 flow rate, and 5iC14 flow rate = □□■ [Effects of the invention] As explained above, according to the present invention, irregularly shaped portions such as recesses are formed at the bottom of the base material. This makes it possible to manufacture a large-diameter base material with a well-shaped bottom, outer periphery, and other parts. Furthermore, the shape reproducibility is also excellent.
第1図は本発明の説明図であって、(a)はスタート時
、(b)は定常時、(C)は母材底部の突起部の説明図
である。第2図(a)、(b)は本発明以外の方法によ
る母材形状の例を示す説明図である。第3図は多孔質石
英ガラス母材を得るための装置の一例を示す説明図であ
る。
1・・・・・・・・・H2ガスボンベ
2・・・・・・・・・02ガスボンベ
3.4・・・・・・・・・流量制御器
5・・・・・・・・・多重管バーナ
6・・・・・・・・・5iGIa貯槽
7・・・・・・・・・5iGI4供給ポンプ8・・・・
・・・・・5iG14気化器9・・・・・・・・・反応
器
10・・・・・・・・・種 杯
11・・・・・・・・・多孔質ガラスffJ材12・・
・・・・・・・NaOH貯槽
13・・・・・・・・・HCI吸収塔
14・・・・・・・・・母材位置検知用レーザー光20
・・・・・・・・・母材底部の突起部茅 1 図
<o、、) (b)
(C)X 2 図
(α)()))FIG. 1 is an explanatory diagram of the present invention, in which (a) is a starting time, (b) is a steady state, and (c) is an explanatory diagram of a protrusion on the bottom of the base material. FIGS. 2(a) and 2(b) are explanatory diagrams showing examples of base material shapes obtained by methods other than the present invention. FIG. 3 is an explanatory diagram showing an example of an apparatus for obtaining a porous quartz glass base material. 1...H2 gas cylinder 2...02 gas cylinder 3.4...Flow rate controller 5...Multiple Pipe burner 6...5iGIa storage tank 7...5iGI4 supply pump 8...
・・・・・・5iG14 Vaporizer 9・・・・・・Reactor 10・・・・・・Seed cup 11・・・・・・Porous glass ffJ material 12・・・・
......NaOH storage tank 13...HCI absorption tower 14...Laser beam 20 for base material position detection
・・・・・・Protrusion grass on the bottom of the base material 1 Figure <o,,) (b)
(C)X 2 Figure (α) ()))
Claims (1)
リカ微粒子を回転する出発部材上に堆積させて多孔質石
英ガラス母材を合成する方法において、合成用バーナに
供給する水素の流量、珪素化合物の流量および出発部材
に対する合成用バーナの角度を経時的に変化させること
により母材の形状を整えることを特徴とする多孔質石英
ガラス母材の製造方法。(1) In a method of synthesizing a porous quartz glass base material by depositing silica fine particles produced by hydrolyzing a silicon compound in an oxygen flame on a rotating starting member, the flow rate of hydrogen supplied to a synthesis burner, A method for producing a porous quartz glass base material, which comprises adjusting the shape of the base material by changing the flow rate of a silicon compound and the angle of a synthesis burner relative to a starting member over time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60227873A JPH07100614B2 (en) | 1985-10-15 | 1985-10-15 | Method for producing porous quartz glass base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60227873A JPH07100614B2 (en) | 1985-10-15 | 1985-10-15 | Method for producing porous quartz glass base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6291432A true JPS6291432A (en) | 1987-04-25 |
JPH07100614B2 JPH07100614B2 (en) | 1995-11-01 |
Family
ID=16867682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60227873A Expired - Fee Related JPH07100614B2 (en) | 1985-10-15 | 1985-10-15 | Method for producing porous quartz glass base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100614B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0976690A2 (en) * | 1998-07-29 | 2000-02-02 | Shin-Etsu Chemical Co., Ltd. | Porous or vitrified preforms for optical fibres and methods for producing them |
US7810356B2 (en) * | 2005-02-08 | 2010-10-12 | Asahi Glass Company, Limited | Process and apparatus for producing porous quartz glass base |
EP2311781A1 (en) * | 2009-10-15 | 2011-04-20 | Asahi Glass Company Limited | Method for producing quartz glass preform |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5738329A (en) * | 1980-07-09 | 1982-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Controlling method for deposition of oxide powder in axial vapor deposition method |
JPS6081035A (en) * | 1983-10-12 | 1985-05-09 | Sumitomo Electric Ind Ltd | Manufacture of base material for optical fiber |
-
1985
- 1985-10-15 JP JP60227873A patent/JPH07100614B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5738329A (en) * | 1980-07-09 | 1982-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Controlling method for deposition of oxide powder in axial vapor deposition method |
JPS6081035A (en) * | 1983-10-12 | 1985-05-09 | Sumitomo Electric Ind Ltd | Manufacture of base material for optical fiber |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0976690A2 (en) * | 1998-07-29 | 2000-02-02 | Shin-Etsu Chemical Co., Ltd. | Porous or vitrified preforms for optical fibres and methods for producing them |
EP0976690A3 (en) * | 1998-07-29 | 2000-12-06 | Shin-Etsu Chemical Co., Ltd. | Porous or vitrified preforms for optical fibres and methods for producing them |
US6306500B1 (en) | 1998-07-29 | 2001-10-23 | Shin-Etsu Chemical Co., Ltd. | Porous optical fiber base materials, optical fiber base materials and methods for producing them |
US7810356B2 (en) * | 2005-02-08 | 2010-10-12 | Asahi Glass Company, Limited | Process and apparatus for producing porous quartz glass base |
EP2311781A1 (en) * | 2009-10-15 | 2011-04-20 | Asahi Glass Company Limited | Method for producing quartz glass preform |
Also Published As
Publication number | Publication date |
---|---|
JPH07100614B2 (en) | 1995-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3521681B2 (en) | Manufacturing method of optical fiber preform | |
US10287705B2 (en) | Pulling a semiconductor single crystal according to the Czochralski method and silica glass crucible suitable therefor | |
WO2000023385A1 (en) | Porous glass base material production device and method | |
JPS6291432A (en) | Production of porous quartz glass base material | |
EP0163752A1 (en) | A method for the preparation of a synthetic quartz glass tube | |
JPS6126532A (en) | Production of base material for optical fiber | |
JPS6232139B2 (en) | ||
JP3137517B2 (en) | Method for producing synthetic quartz glass member and burner for producing synthetic quartz glass | |
US4781740A (en) | Method for producing glass preform for optical fiber | |
JP2534059B2 (en) | Method for producing porous quartz glass base material | |
JPH01239033A (en) | Production of optical fiber preform | |
JP3197528B2 (en) | Manufacturing container for porous glass base material | |
JPS6197140A (en) | Improved seed rod for preparing parent material for porous quartz glass | |
JP2542514B2 (en) | Manufacturing method of synthetic quartz glass | |
KR102077174B1 (en) | Apparatus for fabricating optical fiber preform | |
JP3758598B2 (en) | Method and apparatus for manufacturing porous glass base material | |
JPS63107825A (en) | Production of synthetic quartz tube | |
JP2603472B2 (en) | Manufacturing method of porous quartz glass base material | |
US5785757A (en) | Apparatus for fabricating a single-crystal | |
JP3992970B2 (en) | Manufacturing method and apparatus for manufacturing glass preform for optical fiber | |
JP3706499B2 (en) | Production equipment for porous glass preform for optical fiber | |
JPH07300321A (en) | Production of porous glass material | |
JPS5925742B2 (en) | Method and device for manufacturing porous base material for optical fiber | |
JPS6159252B2 (en) | ||
JPS62265141A (en) | Production of base material for optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |