JPS6291408A - Method for dioxidizing oxygen-containing gaseous nitrogen - Google Patents

Method for dioxidizing oxygen-containing gaseous nitrogen

Info

Publication number
JPS6291408A
JPS6291408A JP60228937A JP22893785A JPS6291408A JP S6291408 A JPS6291408 A JP S6291408A JP 60228937 A JP60228937 A JP 60228937A JP 22893785 A JP22893785 A JP 22893785A JP S6291408 A JPS6291408 A JP S6291408A
Authority
JP
Japan
Prior art keywords
gas
oxygen
moisture
dehumidification
catalytic combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60228937A
Other languages
Japanese (ja)
Inventor
Akira Okabe
明 岡部
Masanobu Yamamoto
山本 正伸
Yoshihiro Koyama
小山 義弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60228937A priority Critical patent/JPS6291408A/en
Publication of JPS6291408A publication Critical patent/JPS6291408A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0411Chemical processing only
    • C01B21/0422Chemical processing only by reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE:To obtain high-purity nitrogen with a simple device while conserving energy by mixing hydrogen into such low-purity nitrogen as obtained from air by a PSA method, burning the mixture in a catalytic combustor, cooling the combustion gas which is then passed through a dehumidification tower, and utilizing the heat retained by the combustion gas for the regeneration of the dehumidification tower. CONSTITUTION:Hydrogen is supplied as fuel into raw oxygen-contg. gaseous nitrogen (e.g., 90-98% purity) and the mixture is burned in the catalytic combustor. Then the outlet gas from the catalytic combustor is cooled to condense and separate water, then the gas contg. moisture remaining as saturated steam is passed through at least one of the two dehumidification towers and dehumidified, and gaseous nitrogen having an extremely low content of oxygen and moisture (e.g., 95-99% purity) is obtained. Meanwhile, raw oxygen-contg. gaseous nitrogen which is heated by the heat exchanger with the outlet gas from the catalytic combustor is supplied to the other dehumidification tower which is used in dehumidification and absorbs moisture to regenerate the dehumidification tower. The raw gas used in the regeneration and contg. oxygen is cooled to condense and separate water and used as raw gas.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は若干の酸素を含有する窒素ガスから酸素を除去
する方法に関し、特に空気からPsA(Pressur
e 8wing Adsorption )によって得
られるような低純度(90〜98%)窒素から高純度(
95〜99.9%)窒素を得る方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for removing oxygen from nitrogen gas containing some oxygen, and in particular to a method for removing oxygen from air.
e 8wing Adsorption) to high purity (90-98%) nitrogen, such as that obtained by
95-99.9%).

(従来の技術) 従来、例えば化学工場などで使用している装置内のパー
ジ用不活性ガスとしては窒素(Nz )ガスが多く使用
されている。
(Prior Art) Conventionally, nitrogen (Nz) gas has been widely used as an inert gas for purging in equipment used in, for example, chemical factories.

従来この不活性ガスとしての一ガスは、空気中のN:を
深冷分離法により高純度N、 (99,9%〜99.9
99%)として得ており、その技術は、十分確定された
もので工業実績も枚挙にいとまもないほどである。但し
、最大の欠点は設備費及びランニングコストが高い点で
ある。
Conventionally, one gas as this inert gas is high purity N (99.9% to 99.9
99%), the technology is well established, and the industrial results are too numerous to mention. However, the biggest drawback is the high equipment and running costs.

又、天然ガスやナフサ、灯軽油の如き炭化水素を空気で
はy完全燃焼させることにより空気中の酸素を消滅させ
燃焼排ガス中の炭酸ガス(Cow)を湿式吸収法でCO
,を除去し最後6に脱+21 湿してN、とAr  を残す法もある。この方法は深冷
法に比べ不活性ガスの製造コストは安いが、完全燃焼と
いう技術に問題が多くあまり使用されていない。
In addition, by completely burning hydrocarbons such as natural gas, naphtha, and kerosene in air, oxygen in the air is extinguished, and carbon dioxide gas (Cow) in the combustion exhaust gas is converted to CO using a wet absorption method.
There is also a method of removing , and finally removing +21 and leaving N and Ar. Although this method is cheaper to produce inert gas than the deep cooling method, it is not used much because of problems with the complete combustion technology.

更に、最近、注目されてきたのが、PSA法(Pres
sure Swing Adsorption )で、
これも空気を原料として各メーカ特有の吸着剤例えば酸
素吸着型吸着剤を用いて、空気中の02と吸着すること
により残ったガスをN、とAr  にする法が開発され
つつあるが、まだ、装置的にも小型で実績も少い。型録
等に記載しである製品N2の純度は95〜99%が現状
のようである。但し、この方法は、不活性ガスとして技
術的には99%程度まで濃縮できるとは云うものの空気
中にあるN、 (約78%)とAr  (約1%)を濃
縮すればする程加速的に分離効率も悪くなり、且つ吸着
剤の使用量も多くなる。効率が悪いという意味は、同じ
量のN、を取る為に多量の空気が必要となることである
。例えばN2+Ar  1m3を分離するに必要な理論
空気量は であるが高濃にしようとするとηは5〜10位になる。
Furthermore, the PSA method (Pres
Sure Swing Adsorption)
A method is being developed that uses air as a raw material and adsorbents specific to each manufacturer, such as oxygen-adsorbing adsorbents, to adsorb 02 in the air and convert the remaining gas into N and Ar. , the device is small and has little experience. The purity of product N2, which is stated in the mold list, is currently 95-99%. However, although this method technically can be concentrated to about 99% as an inert gas, the rate of acceleration increases as N (approximately 78%) and Ar (approximately 1%) in the air are concentrated. Separation efficiency also deteriorates, and the amount of adsorbent used also increases. Inefficiency means that a large amount of air is required to absorb the same amount of N. For example, the theoretical amount of air required to separate 1 m3 of N2+Ar is , but if high concentration is attempted, η will be on the order of 5 to 10.

空気は無相であるが吸着剤を通す前に多量の空気を圧縮
し、除湿及び空気中の炭酸ガスを除去する必要が生じる
。従って現状のPSA法では小規模なものは深冷法(小
型には向がない)に競争できるが工業用規模(明確でな
いが500 N”/T(以上)になると、経済性に欠け
てくる。しかし、PSA法でのN、のf#製線純度95
〜98%程度で折れば、急速に製造コストは下る。但し
この場合残酸素が多くなる為使用先きが限定され汎用性
を狭くする。
Although air is phaseless, it is necessary to compress a large amount of air to dehumidify and remove carbon dioxide gas from the air before passing it through the adsorbent. Therefore, the current PSA method can compete with the cryogenic method (not suitable for small scales) for small-scale products, but when it comes to industrial scale (not clear, but 500 N"/T (or more)), it becomes uneconomical. However, the f# wire manufacturing purity of N in the PSA method is 95.
If it can be folded at ~98%, manufacturing costs will drop rapidly. However, in this case, there is a lot of residual oxygen, which limits the scope of use and reduces versatility.

(発明が解決しようとする問題点) 本発明はPSA法によって得られるN、ガス(含Ar 
 ガス)の純度が前述したように?5〜98%程度であ
れば製造コストが低いが、それ以上の純度にしよ、うと
すると製造コストが高くなるという欠点を解消すべく、
純度95〜98%N。
(Problems to be Solved by the Invention) The present invention deals with N, gas (including Ar) obtained by the PSA method.
Gas) purity as mentioned above? In order to eliminate the drawback that manufacturing costs are low if it is around 5 to 98%, but if you try to achieve higher purity, the manufacturing costs will increase.
Purity 95-98%N.

ガスに着目し、このN、ガスから低コストで脱酸素する
方法を提供しようとするものである。
Focusing on gas, the present invention aims to provide a method for deoxidizing N and gas at low cost.

(問題点を解決するだめの手段) 本発明は酸素を含む原料窒素ガス中に燃料としての水素
を混合し、触媒燃焼器で燃焼させ、触媒燃焼器出口ガス
を冷却して水分を凝縮分離した後、飽和水蒸気として残
存する水分を含有するガスを少なくとも2個の脱湿塔の
一方に通して脱湿して酸素と水分の極めて少ないガスを
得る一方、脱湿に使用され湿分を吸着している他方の脱
湿塔には、前記触媒燃焼器出口ガスとの熱交換により加
熱された酸素を含む原料窒素ガスを供給して該脱湿塔を
再生し、該再生に使用された該酸素を含む原料ガスは冷
却され水分を凝縮分離した後、原料窒素ガスとして使用
するようにしたことを特徴とする酸素含有窒素ガスの脱
酸素方法である。
(Another means to solve the problem) The present invention mixes hydrogen as a fuel into raw nitrogen gas containing oxygen, burns it in a catalytic combustor, cools the exit gas of the catalytic combustor, and condenses and separates moisture. After that, the gas containing moisture remaining as saturated steam is dehumidified by passing it through one of at least two dehumidification towers to obtain a gas with extremely low oxygen and moisture content. The other dehumidification tower is regenerated by supplying raw nitrogen gas containing oxygen heated by heat exchange with the catalytic combustor outlet gas, and the oxygen used for the regeneration is regenerated. This is a method for deoxidizing an oxygen-containing nitrogen gas, characterized in that the raw material gas containing is cooled and water is condensed and separated, and then used as a raw nitrogen gas.

以下、本発明の一実施態様を第1図に従って詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

第1図において、空気から窒素を分離する装置(例えば
、合成ゼオライトや活性炭のような脱湿剤を使用したP
SA法による窒素分離装置)1において得られた窒素ガ
スは若干の酸素を含む。
In Figure 1, an apparatus for separating nitrogen from air (e.g., a P
Nitrogen separation device by SA method) The nitrogen gas obtained in 1 contains some oxygen.

酸素を含む原料N2ガスは圧力を有し、これは弁2,3
.4を開くことにょシ燃旧混合器7を経て触媒燃焼器5
に導入されるここで外部よシ酸素を燃焼させるために水
素を弁6を経て燃料混合器7で原料N、ガスと混合させ
た上、触媒燃焼器5に導入する。燃料たる水素の量は原
料Ntガス中の酸素を燃焼させるに必要な邪゛のみでよ
い。即ち、フィードガス中の酸素+d水素と触媒上で反
応し燃焼することによって水となり、酸素は消滅する。
The raw material N2 gas containing oxygen has a pressure, which is caused by the valves 2 and 3.
.. When opening 4, the catalytic combustor 5 passes through the combustion mixer 7.
In order to combust the externally introduced oxygen, hydrogen passes through a valve 6 and is mixed with raw material N and gas in a fuel mixer 7, and then introduced into a catalytic combustor 5. The amount of hydrogen used as fuel is only required to combust the oxygen in the raw material Nt gas. That is, water is produced by reacting with oxygen+dhydrogen in the feed gas on the catalyst and burning, and the oxygen disappears.

この触媒燃焼器5の触媒は、一般的にはパラジウム系触
媒が用いられる。触媒燃焼器5における触媒層では燃焼
熱が生じる。この発熱量は原料N、ガス中の酸素含有量
1%につき約150〜170℃の温度上昇に相当する。
As the catalyst of this catalytic combustor 5, a palladium-based catalyst is generally used. Combustion heat is generated in the catalyst layer in the catalytic combustor 5. This calorific value corresponds to a temperature rise of approximately 150 to 170° C. per 1% oxygen content in the raw material N and gas.

即ち当該触媒の耐熱温度をT℃とし、触媒燃焼器5の入
口温度をt℃とすれば原料N2ガス中の酸素含有率T−
t よる当該燃焼の限界となる。
That is, if the allowable temperature limit of the catalyst is T°C, and the inlet temperature of the catalytic combustor 5 is t°C, then the oxygen content in the raw material N2 gas is T-
The limit of combustion is determined by t.

ただし原料N2ガス中の酸素が燃焼することにより触媒
の耐熱温度を越えるような酸素含有率の場合には、触媒
燃焼器5の触好充填層中に多数の冷却管を挿入し、熱を
除去するようにすればよい。
However, if the oxygen content exceeds the heat resistance temperature of the catalyst due to combustion of oxygen in the raw material N2 gas, a large number of cooling pipes are inserted into the catalytic packed bed of the catalytic combustor 5 to remove heat. Just do it.

触媒燃焼器5を出た、酸素を含まない高温のガスは第1
熱交換器8において酸素を含む原料N、ガスによって冷
却され、続いて第2熱交換器9により常温(10〜45
℃)に冷却される。
The high temperature gas that does not contain oxygen leaving the catalytic combustor 5 is the first
In the heat exchanger 8, the raw material N containing oxygen is cooled by gas, and then in the second heat exchanger 9, it is brought to room temperature (10 to 45
℃).

この冷却の鍋程で触婬燵焼器5の出口ガス中に含まれて
いた水分は、飽和水蒸気の形で残っている水分を除き、
液滴として凝縮する。ここで生じた凝縮水は第1分離器
10で系外に排出する。
During this cooling process, the moisture contained in the outlet gas of the heating pot 5 is removed, except for the moisture remaining in the form of saturated steam.
Condenses as droplets. The condensed water generated here is discharged to the outside of the system by the first separator 10.

第1分離器10を出た飽和水蒸気を含むガスは次に吸着
工程にある脱湿器(A’)11に導きガス中の水分をt
lソ完全に吸着除去する。脱湿を連続的におこなうため
、脱湿器を複数基設け、酸素を含まないガスから水分を
除去し脱湿器の水分が飽和したあと脱湿器(A)11を
他の脱湿器(B)12に切替える。
The gas containing saturated water vapor that has exited the first separator 10 is then led to a dehumidifier (A') 11 in the adsorption process to remove moisture from the gas.
Completely remove by adsorption. In order to perform dehumidification continuously, multiple dehumidifiers are installed, and after moisture is removed from the oxygen-free gas and the moisture in the dehumidifier becomes saturated, the dehumidifier (A) 11 is connected to another dehumidifier ( B) Switch to 12.

脱湿剤には、例えば合成ゼオライトや活性アルミナ、又
はシリカアルミナゲル等のような水をよく吸着する物質
を充填しておく。
The desiccant is filled with a substance that adsorbs water well, such as synthetic zeolite, activated alumina, or silica alumina gel.

いま脱湿器を2基とすると2基の脱湿器のうち、一方の
脱湿器(A)11はガス中の水分を吸着させる吸着操作
にあて、その間に他方の脱湿器(B)12は既に水分を
吸着している脱湿剤の再生操作を行なう。
Now, assuming that there are two dehumidifiers, one of the two dehumidifiers (A) is used for adsorption operation to adsorb moisture in the gas, while the other dehumidifier (B) 12 performs an operation to regenerate the desiccant that has already adsorbed moisture.

脱湿剤の再生には、(a)圧力を変えず猛度を変化させ
る温度スウィング吸着(、TeJnpe・rature
Swing Adsorption )  法と、(b
)温度を変えず圧力を変イ、ヒさせる圧力スウィング吸
着法とがあるが、本発明では、触媒燃焼器5による燃焼
熱を吸着剤の再生熱源として有効利用するため、前者を
採用している。
To regenerate the desiccant, (a) temperature swing adsorption (temperature swing adsorption that changes the intensity without changing the pressure) is used.
Swing Adsorption) law and (b
) There is a pressure swing adsorption method that changes the pressure without changing the temperature, but in the present invention, the former is adopted in order to effectively use the combustion heat from the catalytic combustor 5 as a regeneration heat source for the adsorbent. .

温度スイング法では脱湿剤の再生に高温ガスを必要とす
る。このガス源に酸素を含む原料N!ガス自体を用い、
これを触媒燃焼器5から出た高温ガスとの間で第1熱交
換器8を介して熱交換することにより再生に必要な温度
迄加熱する。
The temperature swing method requires hot gas to regenerate the desiccant. Raw material N containing oxygen in this gas source! using the gas itself,
This is heated to the temperature required for regeneration by exchanging heat with the high temperature gas discharged from the catalytic combustor 5 via the first heat exchanger 8.

加熱された酸素含有の原料N2ガスは吸着工程における
流れ方向とは逆の流れとなるように弁3を経て脱湿器(
B)12に導入し脱湿剤に吸着されていた水分を放出さ
せる。
The heated oxygen-containing raw material N2 gas passes through the valve 3 and enters the dehumidifier (
B) 12 to release moisture adsorbed by the desiccant.

脱湿器−(B)12から出た水分を含む高温の原料N2
ガスは、弁4を通υ第3熱交換器13によって常@(1
0〜45℃)に冷却される。
Dehumidifier - (B) High temperature raw material N2 containing moisture coming out of 12
The gas is passed through the valve 4 by the third heat exchanger 13
0-45°C).

この冷却によりガス中の一部の水分が凝縮するため、凝
縮水を第2分離器14により分離して系外に排出する。
This cooling causes some moisture in the gas to condense, so the condensed water is separated by the second separator 14 and discharged to the outside of the system.

脱湿器(B)12の再生工程が終了したならば次の吸着
工程に備え、高温状態にある脱湿器−(B)12を冷却
する必要がある。この冷却は弁15を開き弁2を閉じる
ことにより、酸素を含む原料N2ガスが第1熱交換器8
を経由せず直接脱湿器(B)1.2に流れることにより
脱湿器(B)12が冷却される。
After the regeneration process of the dehumidifier (B) 12 is completed, it is necessary to cool the dehumidifier (B) 12 which is in a high temperature state in preparation for the next adsorption process. This cooling is performed by opening the valve 15 and closing the valve 2, so that the raw material N2 gas containing oxygen is transferred to the first heat exchanger 8.
The dehumidifier (B) 12 is cooled by flowing directly to the dehumidifier (B) 1.2 without passing through the dehumidifier (B) 1.2.

脱湿器(B)12が冷却されたならば弁17゜18はす
でに閉じており弁16を開き続いて弁3.4を閉めるこ
とにより酸素を含む原料N2ガスは脱湿器(B)12経
由せず、弁15.弁16及び燃料混合器7を経て直接触
媒燃焼器5へ流れ、脱湿器(B)12は系から隔絶され
る。
Once the dehumidifier (B) 12 has been cooled, the valves 17 and 18 are already closed, and by opening the valve 16 and then closing the valve 3.4, the raw material N2 gas containing oxygen is transferred to the dehumidifier (B) 12. Without passing through, valve 15. It flows directly to the catalytic combustor 5 via the valve 16 and the fuel mixer 7, and the dehumidifier (B) 12 is isolated from the system.

第1図においては、この酸素を含む原料N、ガスは、第
2分離器14を経由して燃料混合器7に至る経路が実線
で示されているが、点線で示すように第2分離器14を
経由する必要はなく、要は弁15.弁16を経て系に入
って来る原料N2ガスが燃料混合器7を通るようにすれ
ばよい。
In FIG. 1, the route of the raw material N and gas containing oxygen to the fuel mixer 7 via the second separator 14 is shown by a solid line, but as shown by the dotted line, There is no need to go through valve 14; the point is to go through valve 15. The raw material N2 gas entering the system via the valve 16 may pass through the fuel mixer 7.

このとき脱湿器(B)12は酸素を含むガスで満たされ
ているので次に弁19により大気圧まで減圧することに
より脱湿器12内の酸素を含むガスを放出する。このあ
と弁19を閉じる。
At this time, since the dehumidifier (B) 12 is filled with gas containing oxygen, the pressure is then reduced to atmospheric pressure by the valve 19, thereby releasing the gas containing oxygen in the dehumidifier 12. After this, valve 19 is closed.

この操作を繰返すことにより、脱湿器(B)12内に残
った酸素濃度を下げることができる。
By repeating this operation, the oxygen concentration remaining in the dehumidifier (B) 12 can be lowered.

次に弁17を開き酸素と水分とを含まないガス、すなわ
ち製品ガス、を脱湿器(B)12内に導入し操作圧壕で
加圧したのち弁17を閉じる。続いて弁19により再び
脱湿器(B)12内にあるガスを大気圧まで放出し、弁
19を閉じる。この操作を加圧パージと称する。
Next, the valve 17 is opened, and a gas containing neither oxygen nor moisture, ie, product gas, is introduced into the dehumidifier (B) 12 and pressurized in the operating pressure trench, and then the valve 17 is closed. Subsequently, the gas in the dehumidifier (B) 12 is released to atmospheric pressure again by the valve 19, and the valve 19 is closed. This operation is called pressurized purge.

この加圧パージの回数は製品ガス中に許容される酸素の
濃度によって決められる。脱湿器(ト))12内の酸素
が十分少くなったところで次に弁18を開き脱湿器(B
)12を均圧させる。
The number of pressurized purges is determined by the allowable oxygen concentration in the product gas. When the oxygen in the dehumidifier (B) 12 becomes sufficiently low, open the valve 18 and turn off the dehumidifier (B).
) 12 to equalize the pressure.

このとき加圧パージの回数を増すほど脱湿器(B)12
内の酸素濃度は減少する。
At this time, the more the number of pressurized purges increases, the more the dehumidifier (B) 12
The oxygen concentration within will decrease.

再生が完了したならば、次にこの脱湿器(B)12を吸
着操作に切替える。操作は弁17を開き、続いて、弁2
0.21を閉じることにより今捷でガスの脱湿工程にあ
った脱湿器(八)11は流れから切離され続いて再生工
程に切替えられる。脱湿器(A)11の再生は前述した
脱湿器(B)12と同一の手順でおこなわれる。
Once the regeneration is completed, the dehumidifier (B) 12 is then switched to adsorption operation. The operation is to open valve 17 and then open valve 2.
By closing 0.21, the dehumidifier (8) 11, which was currently in the process of dehumidifying the gas, is disconnected from the flow and subsequently switched to the regeneration process. The dehumidifier (A) 11 is regenerated in the same manner as the dehumidifier (B) 12 described above.

脱湿器(B)12を出たガスは、十分脱湿されており又
酸素もほとんど無い窒素ガスとなっている。
The gas exiting the dehumidifier (B) 12 has been sufficiently dehumidified and is nitrogen gas with almost no oxygen.

第1図の各ラインには、窒素分離装置1からの圧力、1
0 kg/ csa” 、温度30℃の酸素含有原料ガ
スの温度を示す。但し、脱湿器(A)11が脱湿工程、
脱湿器(B)12が再生工程を行っている場合である。
Each line in FIG.
0 kg/csa", which indicates the temperature of the oxygen-containing raw material gas at a temperature of 30°C. However, if the dehumidifier (A) 11 is in the dehumidification process,
This is a case where the dehumidifier (B) 12 is performing a regeneration process.

〔発明の効果〕〔Effect of the invention〕

1、  PSA法により空気から分離した窒素ガスにお
いて、この中に含まれる不純物である少届二の酸素を簡
易な装置で除去できる。
1. A small amount of oxygen, an impurity contained in nitrogen gas separated from air by the PSA method, can be removed with a simple device.

2、本発明の脱酸素方法において脱湿装置と組合せてい
るが、再生用のガス源として他から特別なガスを導入す
ることなく自らの酸素を含む原料穐ガスを用い、再生用
熱源として酸素を燃焼した際の燃焼熱を利用することに
より省エネルギープロセスとなっている。
2. In the deoxidation method of the present invention, it is combined with a dehumidifier, but the raw material gas containing oxygen is used as the regeneration gas source without introducing any special gas from another, and oxygen is used as the regeneration heat source. This is an energy-saving process by using the combustion heat from combustion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例としての酸素含有窒素ガスの
脱酸方法のフローを示す。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 昭和60年11月72日
FIG. 1 shows the flow of a method for deoxidizing oxygen-containing nitrogen gas as an embodiment of the present invention. Sub-Agents 1) Meifuku Agent Ryo Hagiwara - Sub-Agent Atsushi Anzai November 72, 1985

Claims (1)

【特許請求の範囲】[Claims] 酸素を含む原料窒素ガス中に燃料としての水素を混合し
、触媒燃焼器で燃焼させ、触媒燃焼器出口ガスを冷却し
て水分を凝縮分離した後、飽和水蒸気として残存する水
分を含有するガスを少なくとも2個の脱湿塔の一方に通
して脱湿して酸素と水分の極めて少ないガスを得る一方
、脱湿に使用され湿分を吸着している他方の脱湿塔には
、前記触媒燃焼器出口ガスとの熱交換により加熱された
酸素を含む原料窒素ガスを供給して該脱湿塔を再生し、
該再生に使用された該酸素を含む原料ガスは冷却され水
分を凝縮分離した後、原料窒素ガスとして使用するよう
にしたことを特徴とする酸素含有窒素ガスの脱酸素方法
Hydrogen as a fuel is mixed into raw material nitrogen gas containing oxygen, combusted in a catalytic combustor, and the gas at the outlet of the catalytic combustor is cooled to condense and separate moisture, and then the remaining moisture-containing gas is converted into saturated steam. The gas is dehumidified through one of the at least two dehumidification towers to obtain a gas with extremely low oxygen and moisture content, while the other dehumidification tower used for dehumidification and adsorbing moisture contains the catalytic combustion regenerating the dehumidification tower by supplying raw material nitrogen gas containing oxygen heated by heat exchange with the outlet gas;
A method for deoxidizing an oxygen-containing nitrogen gas, characterized in that the oxygen-containing raw material gas used for the regeneration is cooled and moisture is condensed and separated, and then used as a raw nitrogen gas.
JP60228937A 1985-10-16 1985-10-16 Method for dioxidizing oxygen-containing gaseous nitrogen Pending JPS6291408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60228937A JPS6291408A (en) 1985-10-16 1985-10-16 Method for dioxidizing oxygen-containing gaseous nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60228937A JPS6291408A (en) 1985-10-16 1985-10-16 Method for dioxidizing oxygen-containing gaseous nitrogen

Publications (1)

Publication Number Publication Date
JPS6291408A true JPS6291408A (en) 1987-04-25

Family

ID=16884191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60228937A Pending JPS6291408A (en) 1985-10-16 1985-10-16 Method for dioxidizing oxygen-containing gaseous nitrogen

Country Status (1)

Country Link
JP (1) JPS6291408A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225303A (en) * 1988-11-24 1990-09-07 L'air Liquide Preparation of thermal treatment atmosphere by separating air through permeation
JPH02227133A (en) * 1988-11-24 1990-09-10 L'air Liquide Producing method of heat-treatment atmosphere by air separation due to adsorption
JP2005529730A (en) * 2002-06-14 2005-10-06 マイクロリス・コーポレイシヨン Method for rapid activation or preconditioning of porous gas purification substrates
JP2013128087A (en) * 2011-12-19 2013-06-27 Young Tech Co Ltd Electro-pneumatic converter with low hysteresis characteristics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225303A (en) * 1988-11-24 1990-09-07 L'air Liquide Preparation of thermal treatment atmosphere by separating air through permeation
JPH02227133A (en) * 1988-11-24 1990-09-10 L'air Liquide Producing method of heat-treatment atmosphere by air separation due to adsorption
JP2005529730A (en) * 2002-06-14 2005-10-06 マイクロリス・コーポレイシヨン Method for rapid activation or preconditioning of porous gas purification substrates
JP2013128087A (en) * 2011-12-19 2013-06-27 Young Tech Co Ltd Electro-pneumatic converter with low hysteresis characteristics

Similar Documents

Publication Publication Date Title
US6048509A (en) Gas purifying process and gas purifying apparatus
EP0489555B1 (en) Hydrogen and carbon monoxide production by pressure swing adsorption purification
US3594983A (en) Gas-treating process and system
TWI521056B (en) Methane recovery method and methane recovery unit
KR100227060B1 (en) Process and apparatus for gas purification
US5415682A (en) Process for the removal of volatile organic compounds from a fluid stream
JPH10114508A (en) Method for purifying flow of inert gas
JPH01172204A (en) Recovery of gaseous co2 from gaseous mixture by adsorption
JP2012503593A (en) Multi-stage process for purifying carbon dioxide to produce sulfuric acid and nitric acid
JPH01104325A (en) Adsorption molecular sieve for pressure swing of auxiliary bed
JP2000317244A (en) Method and device for purifying gas
JPS62136222A (en) Method for adsorbing and separating specific gas from gaseous mixture
CA2731185C (en) Method for the removal of moisture in a gas stream
CN108554150A (en) A kind of pre-heated catalytic combustion system of purifying volatile organic exhaust gas
JPS6272504A (en) Production of nitrogen having high purity
RU2016146996A (en) UREA PRODUCTION METHOD
JP4031238B2 (en) Helium purification equipment
US5512082A (en) Process for the removal of volatile organic compounds from a fluid stream
JP5683390B2 (en) Helium gas purification method and purification apparatus
US20100115994A1 (en) Adsorbent for carbon monoxide, gas purification method, and gas purification apparatus
JP5748272B2 (en) Helium gas purification method and purification apparatus
CN107847850B (en) Combined rapid cycle temperature and pressure swing adsorption process and related apparatus and system
JPS6291408A (en) Method for dioxidizing oxygen-containing gaseous nitrogen
KR101720799B1 (en) Purifying method and purifying apparatus for argon gas
JP5403685B2 (en) Argon gas purification method and purification apparatus