JPS6291246A - Catalyst for reducing nitrogen oxide and its preparation - Google Patents

Catalyst for reducing nitrogen oxide and its preparation

Info

Publication number
JPS6291246A
JPS6291246A JP60229523A JP22952385A JPS6291246A JP S6291246 A JPS6291246 A JP S6291246A JP 60229523 A JP60229523 A JP 60229523A JP 22952385 A JP22952385 A JP 22952385A JP S6291246 A JPS6291246 A JP S6291246A
Authority
JP
Japan
Prior art keywords
amorphous alloy
catalyst
surface area
alloy powder
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60229523A
Other languages
Japanese (ja)
Inventor
Satoshi Kadoya
聡 角屋
Kiyohide Yoshida
吉田 清英
Hiroshi Komiyama
宏 小宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP60229523A priority Critical patent/JPS6291246A/en
Publication of JPS6291246A publication Critical patent/JPS6291246A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst showing high activity in the reducing reaction of NO by CO, by applying heat-treatment to an amorphous alloy powder containing a specific amount of a nickel and a specific element such as yttrium in a hydrogen atmosphere to increase the specific surface area of the powder. CONSTITUTION:An amorphous alloy powder containing 35-70atom% of nickel and 30-60atom% in total of one of or two or more of yttrium, titanium, zirconium, hafnium, niobium and lanthanum is prepared by a known method. Subsequently, the powder is treated in a hydrogen-containing atmosphere in a temp. range of 250 deg.C- below crystallization temp. to increase the specific surface area of the powder to 5m<2>/g or more. Partial crystallization accompanies this treatment but the specific surface area increases from 0.8<2>/g to 20m<2>/g. The obtained catalyst shows high activity and high selectivity for a long time at low temp. of 300 deg.C or less and is extremely suitable for the reducing reaction of NO by CO.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は窒素酸化物還元用触媒に関する。[Detailed description of the invention] B. Industrial application fields The present invention relates to a catalyst for reducing nitrogen oxides.

口、従来技術 公害防止のため、廃ガス中に含まれる窒素酸化物は、大
気中への排出に先立って窒素に還元し、無害化する必要
がある。そのためには、上記還元反応に適当な触媒の使
用が不可欠であり、従来からこの目的に使用する各種の
触媒が提案されている。還元剤としては、実用上の観点
から主として一酸化炭素を使用する場合が多く、これに
適した触媒としては、例えば白金、パラジウム、ロジウ
ム、ルテニウム等の貴金属や酸化銅(CuO1Cu20
)等が用いられている。
BACKGROUND OF THE INVENTION To prevent pollution, nitrogen oxides contained in waste gas must be reduced to nitrogen and rendered harmless before being discharged into the atmosphere. For this purpose, it is essential to use a suitable catalyst for the above-mentioned reduction reaction, and various catalysts have been proposed for this purpose. Carbon monoxide is often used as the reducing agent from a practical standpoint, and suitable catalysts include noble metals such as platinum, palladium, rhodium, and ruthenium, and copper oxide (CuO1Cu20).
) etc. are used.

上記の貴金属触媒は高価であるので経済上の問題があり
、酸化物触媒では300℃以下の温度での一酸化窒素(
NO)の還元反応に於ける窒素(N2)への転化率が低
下し、また、生成物に酸化二窒素(N20)が生ずると
いう問題がある。また、非品質合金を触媒に通用するこ
とは、熱的不安定が懸念され、結晶化を起こす温度領域
での使用が疑問視されていた。
The above-mentioned noble metal catalysts are expensive and therefore pose an economic problem, while oxide catalysts have nitrogen monoxide (nitrogen monoxide) at temperatures below 300°C.
There is a problem that the conversion rate of NO) to nitrogen (N2) in the reduction reaction decreases, and dinitrogen oxide (N20) is produced as a product. Furthermore, there are concerns about thermal instability in using non-quality alloys as catalysts, and there have been doubts about their use in temperature ranges where crystallization occurs.

ハ0発明の目的 本発明は、上記のような従来の触媒が有する問題を解消
し、300℃以下の温度領域でも酸化窒素の還元反応に
高活性、高選択性を示す酸化窒素還元用触媒及びその製
造方法を提供することを目的としている。
Object of the Invention The present invention solves the problems of conventional catalysts as described above, and provides a nitrogen oxide reduction catalyst and a nitrogen oxide reduction catalyst that exhibits high activity and selectivity in the nitrogen oxide reduction reaction even in a temperature range of 300°C or lower. The purpose of this invention is to provide a manufacturing method for the same.

二6発明の構成 本発明の第一の発明は、ニッケルを35〜70原子%、
イツトリウム、チタン、ジルコニウム、ハフニウム、ニ
オブ及びランタンの1種又は2種以上を合計で30〜6
5原子%含有する非晶質合金粉末の表面層が部分的に結
晶化されていて、比表面積が5rrr/g以上とされて
いる窒素酸化物還元用触媒に係る。
26 Constitution of the Invention The first invention of the present invention is to contain 35 to 70 atomic % of nickel.
30 to 6 in total of one or more of yttrium, titanium, zirconium, hafnium, niobium, and lanthanum
The present invention relates to a catalyst for reducing nitrogen oxides, in which the surface layer of amorphous alloy powder containing 5 atomic % is partially crystallized and has a specific surface area of 5 rrr/g or more.

本発明の第二の発明は、ニッケルを35〜70原子%、
イツトリウム、チタン、ジルコニウム、ハフニウム、ニ
オブ及びランタンの1種又は2種以上を合計で30〜6
5原子%含有する非晶質合金粉末を製造する工程と、前
記非晶質合金粉末を250℃以上結晶化温度未満の範囲
内の温度で水素を含む雰囲気中で処理して表面積を増加
させる工程とを有する、非晶質合金粉末の表面が部分的
に結晶化されていて、比表面積が5n?/g以上とされ
ている窒素酸化物還元用触媒の製造方法に係る。
The second invention of the present invention includes 35 to 70 at% of nickel,
30 to 6 in total of one or more of yttrium, titanium, zirconium, hafnium, niobium, and lanthanum
A step of producing an amorphous alloy powder containing 5 at%, and a step of increasing the surface area by treating the amorphous alloy powder in an atmosphere containing hydrogen at a temperature within a range of 250° C. or higher and lower than the crystallization temperature. The surface of the amorphous alloy powder is partially crystallized and has a specific surface area of 5n? /g or more.

ホ9発明の作用効果 最初に、窒素酸化物の一酸化炭素による還元反応につい
て、−酸化窒素(No)の還元反応を例に挙げて説明す
る。−酸化窒素以外の窒素酸化物、N2O3、NO2、
N2O5,NO3等の還元反応についても原理的には同
様である。
E9 Functions and Effects of the Invention First, the reduction reaction of nitrogen oxides with carbon monoxide will be explained by taking the reduction reaction of -nitrogen oxide (No) as an example. - Nitrogen oxides other than nitrogen oxides, N2O3, NO2,
The same principle applies to the reduction reactions of N2O5, NO3, etc.

−酸化窒素(NO)の−酸化炭素(C○)による還元反
応(以下、No/Co反応と呼ぶ。)は、次の反応式に
より表わされる。
The reduction reaction of -nitrogen oxide (NO) with -carbon oxide (CO) (hereinafter referred to as No/Co reaction) is represented by the following reaction formula.

2NO+2CO−N2+CO2 従来の還元反応は、N2への選択率が高い500℃近辺
の高温域で行われていた。
2NO+2CO-N2+CO2 Conventional reduction reactions have been carried out in a high temperature range around 500° C. where the selectivity to N2 is high.

本発明者は、非晶質合金触媒の調整やその触媒特性に関
する研究の過程で、ニッケルのほかに特定の1種又は2
種以上の元素を含む非晶質合金粉末を出発物質として調
整された触媒は、部分的に結晶化した状態において30
0℃以下でのNo/C0反応に対して高活性を示し、か
つ、高選択性を示すことを見出した。
In the course of research on the preparation of amorphous alloy catalysts and their catalytic properties, the present inventor discovered that in addition to nickel, one or more specific
A catalyst prepared using an amorphous alloy powder containing more than one element as a starting material has a crystallization temperature of 30
It has been found that it exhibits high activity and high selectivity for the No/C0 reaction at temperatures below 0°C.

上記特定の元素とは、イツトリウム、チタン、ジルコニ
ウム、ハフニウム、ニオブ及ヒランタンからなる群から
選ばれた1種又は2種以上であり、それらの量について
は、ニッケルは35〜70原子%、上記特定の元素(2
種以上の場合は合計量)は30〜65原子%である。
The specific element mentioned above is one or more selected from the group consisting of yttrium, titanium, zirconium, hafnium, niobium, and hylanthane, and the amount of these elements is 35 to 70 at% for nickel, element (2
In the case of more than one species, the total amount) is 30 to 65 atomic %.

ニッケルが35原子%未満及び70原子%を越えると触
媒としての活性が低くなる。
If the content of nickel is less than 35 atom % or more than 70 atom %, the activity as a catalyst will be low.

上記他の成分元素の合計量が30原子%未満では、後述
する比表面積増大が顕著ではなく、また、これが65原
子%を越えると、触媒自身の活性が低下する。
If the total amount of the other component elements is less than 30 at %, the specific surface area increase described below will not be significant, and if it exceeds 65 at %, the activity of the catalyst itself will decrease.

上記の非晶質合金粉末は、微粉末である程望ましく、比
表面積が略1 rd、/ g以上であることが特に好ま
しい。
The finer the amorphous alloy powder is, the more desirable it is, and it is particularly preferable that the specific surface area is approximately 1 rd,/g or more.

本発明にあっては、ニッケルに添加する成分として、イ
ツトリウム、ジルコニウム、ハフニウム、ニオブ及びラ
ンタンを用いる。これらを含有する非晶質ニッケル合金
は水素吸蔵能力を有する。従って、上記非晶質ニッケル
合金は、250°C以上で水素の吸蔵、放出に伴い、微
粉化して新たに活性な表面を作り出し、比表面積が5m
/g以上に増大して一層活性化する。この処理で部分的
な結晶化が起こるが、安定な高活性を示し、触媒として
頗る好都合である。
In the present invention, yttrium, zirconium, hafnium, niobium, and lanthanum are used as components added to nickel. Amorphous nickel alloys containing these have hydrogen storage ability. Therefore, the above-mentioned amorphous nickel alloy absorbs and releases hydrogen at temperatures above 250°C, becomes fine powder, creates a new active surface, and has a specific surface area of 5 m2.
/g or more and becomes even more active. Although partial crystallization occurs during this treatment, it exhibits stable and high activity, making it extremely useful as a catalyst.

先に本出願人の一人は、広い化学組成範囲に亘って熔融
金属から容易に非晶質金属粉を製造する方法を提供する
ことを目的とし、熔融金属に対して濡れ性の小さな表面
層を有し2m/秒以上の周速度で回転しているロール表
面に熔融金属をノズルを経由して供給し、該熔融金属を
微細な溶融金属滴に分断したのち、引き続いて該溶融金
属滴を10m/秒以上の周速度で回転している金属回転
体に衝突させて急冷凝固させる非晶質金属粉の製造方法
(特開昭58−6907号公報)を提示した。本発明に
基づく触媒を構成する非晶質全屈粉末は、上記の方法に
よって容易に製造することができる。
Previously, one of the applicants of the present invention aimed to provide a method for easily producing amorphous metal powder from molten metal over a wide chemical composition range. The molten metal is supplied via a nozzle to the surface of a roll rotating at a circumferential speed of 2 m/sec or more, and the molten metal is divided into fine molten metal droplets. A method for producing amorphous metal powder (JP-A-58-6907) was proposed in which the metal powder is rapidly solidified by colliding with a metal rotating body rotating at a circumferential speed of 1/2 or more. The amorphous powder constituting the catalyst according to the present invention can be easily produced by the method described above.

本発明に基づ(触媒は、前記化学組成を有する非晶質合
金粉末を水素を含む250℃以上の雰囲気中で処理する
ことにより、前述のように表面積が著しく増大され、活
性化が促進される。この結果として部分的に結晶化を伴
うが、触媒活性は安定化する。然し、この処理は非晶質
合金粉末の結晶化温度よりも低い温度で行うのが良い。
Based on the present invention, the catalyst is produced by treating an amorphous alloy powder having the above chemical composition in an atmosphere containing hydrogen at a temperature of 250°C or higher, thereby significantly increasing the surface area and promoting activation. Although this results in partial crystallization, the catalytic activity is stabilized.However, this treatment is preferably carried out at a temperature lower than the crystallization temperature of the amorphous alloy powder.

結晶化温度以上の処理では、高活性な触媒調整は困難に
なる。
If the temperature is higher than the crystallization temperature, it becomes difficult to prepare a highly active catalyst.

本発明に基づく窒素酸化物還元用触媒は、前記のように
構成されていることにより、300℃以下で使用して活
性と選択性に優れ、長期間使用しても安定である。
The catalyst for reducing nitrogen oxides according to the present invention is configured as described above, and therefore has excellent activity and selectivity when used at temperatures below 300° C., and is stable even when used for a long period of time.

へ、実施例 以下、実施例を挙げて本発明を具体的に説明する。To, Example The present invention will be specifically described below with reference to Examples.

ス]直糺よ 前記特開昭58−6907号公報に記載の方法によって
比表面積0.8rrf/gのN 1aJZ rjt (
元素記号に付した数字は、当該元素成分の原子%を表わ
す。
N 1aJZ rjt (
The number attached to the element symbol represents the atomic percent of the element component.

以下、同様。)非晶質合金粉末を製造した。この非晶質
合金粉末0.3 gをステンレス鋼管製反応管に充虜し
、水素ガス50cc/win s温度263℃で7時間
の処理を施した。この処理によって粉末の表面層部分の
結晶化が進み、比表面積は0.8rrf/gから17.
0rrr/gに著しく増大した。(BET法による測定
) 以下、引き続きNo/Co反応を遂行した。
Same below. ) An amorphous alloy powder was produced. A stainless steel reaction tube was filled with 0.3 g of this amorphous alloy powder, and treated with 50 cc/wins of hydrogen gas at a temperature of 263° C. for 7 hours. This treatment promotes crystallization of the surface layer portion of the powder, and the specific surface area increases from 0.8rrf/g to 17.
It increased significantly to 0 rrr/g. (Measurement by BET method) Subsequently, the No/Co reaction was carried out.

No/Co反応は流通方式で行い、反応ガス組成は、N
 02500ppn+ 、 C02000〜2500p
pm 、残部はヘリウムガスで、流速12cc/win
 、反応温度250℃とした。定常状態での物質収支は
下記表に示す通りである。
The No/Co reaction is carried out in a flow system, and the reaction gas composition is N.
02500ppn+, C02000~2500p
pm, the remainder is helium gas, flow rate 12cc/win
, the reaction temperature was 250°C. The steady state material balance is shown in the table below.

表        (ppm ) 上記の結果から、反応中N z Oの生成はなく、略当
量のNo及びCOが消費され、略当量のCO2及び1/
2当量のN2が生成している。即ち、この触媒は250
℃でのNo/Co反応に使用し高活性、かつ高選択性を
示している。
Table (ppm) From the above results, there was no generation of NzO during the reaction, approximately equivalent amounts of No and CO were consumed, and approximately equivalent amounts of CO2 and 1/2 were consumed.
2 equivalents of N2 are produced. That is, this catalyst has 250
It has been used in No/Co reactions at ℃ and shows high activity and selectivity.

上記のNo/Co反応を50時間実施し、反応生成物中
4N2及びCO2の量を測定した。その結果は図面に示
す通りであって、空間速度S、V。
The above No/Co reaction was carried out for 50 hours, and the amounts of 4N2 and CO2 in the reaction product were measured. The results are as shown in the drawing, with space velocities S and V.

高活性、高選択性を示すことが確認された。It was confirmed that it exhibits high activity and high selectivity.

災籐皿l工主 N1IzTi#非晶質合金粉末(実施例2)及びN1u
HfJz非晶質合金粉末(実施例3)について前記実施
例1に於けると同様の水素ガスによる前処理を施した。
Disaster rattan dish l builder N1IzTi# amorphous alloy powder (Example 2) and N1u
The HfJz amorphous alloy powder (Example 3) was pretreated with hydrogen gas in the same manner as in Example 1 above.

その結果、比表面積はいずれも0.8rrr/gから1
0rrr/gへと増大した。これら粉末について前記実
施例1に於けると同様のNo/CO反応試験を10時間
行った。上記反応は定常的に進み、250℃で両者共前
記Ni1JZrJ7非晶質合金触媒と同様の高選択性を
示し、NoのN2への転化率はいずれも90%であった
As a result, the specific surface area ranged from 0.8 rrr/g to 1
It increased to 0rrr/g. These powders were subjected to the same No/CO reaction test as in Example 1 for 10 hours. The above reaction proceeded steadily, and at 250° C., both exhibited high selectivity similar to that of the Ni1JZrJ7 amorphous alloy catalyst, and the conversion rate of No to N2 was 90% in both cases.

尖上遡土エエ Ni−Zr系非晶質合金触媒のNi(!:Zrとの原子
比が触媒活性に及ぼす影響を調べた。
The effect of the atomic ratio of Ni(!:Zr) on the catalytic activity of the Ni-Zr amorphous alloy catalyst was investigated.

N i り11 Z r J6非晶質合金粉末(実施例
4)及びN i e# Z r t−非晶質合金粉末(
実施例5)について前記実施例1に於けると同様の水素
ガスによる前処理を施した。その結果、比表面積はいず
れも0.8rrf/gから2Or+?/gへと増大した
。これら粉末について前記実施例1に於けると同様のN
O/CO反応試験を10時間行った。NOのN2への転
化率は、実施例4では100%、実施例5では90%で
あった。Ntの含有量70原子%迄Ni−Zr系触媒で
はNiの増加に伴ってNOのN2への転化率は上昇する
。また、反応前後に於ける物質収支の測定から、両触媒
共、略100%の選択性を示すことが確認された。
N i 11 Z r J6 amorphous alloy powder (Example 4) and N i e# Z r t-amorphous alloy powder (
Regarding Example 5), the same pretreatment with hydrogen gas as in Example 1 was performed. As a result, the specific surface area ranged from 0.8rrf/g to 2Or+? /g. For these powders, the same N
The O/CO reaction test was conducted for 10 hours. The conversion rate of NO to N2 was 100% in Example 4 and 90% in Example 5. In a Ni--Zr catalyst with an Nt content of 70 at %, the conversion rate of NO to N2 increases as the Ni content increases. Furthermore, it was confirmed from measurements of mass balance before and after the reaction that both catalysts exhibited approximately 100% selectivity.

以上の各実施例から、部分的に結晶化された本発明に基
づく触媒は、300℃以下の低い温度でも長時間高活性
と高選択性を示し、−酸化炭素による窒素酸化物還元反
応用に使用して頗る好適であることが解る。
From the above examples, it can be seen that the partially crystallized catalyst according to the present invention exhibits high activity and high selectivity for a long time even at low temperatures below 300°C, and is suitable for the nitrogen oxide reduction reaction with -carbon oxide. It turns out that it is very suitable for use.

以上の例は、Ni−Zr系、Nt−Ti系及びNi−H
f系非晶質合金触媒についての例であるが、N1−Y系
、Ni−Nb系及びNi −La系非晶質合金触媒につ
いての実験でも略同様の結果が得られた。なお、Laに
替えて又はその一部を置換してセリウムその他のランク
ニドの1種又は2種を用いても同様の結果が得られるの
は言う迄もない。また、前記成分に加えて、非晶質化を
促進する硼素、珪素、燐、砒素、テルルの1種又は2種
以上を含有させることも可能である。
The above examples include Ni-Zr system, Nt-Ti system and Ni-H
This is an example of an f-based amorphous alloy catalyst, but substantially similar results were obtained in experiments using N1-Y, Ni-Nb, and Ni-La amorphous alloy catalysts. It goes without saying that similar results can be obtained even if one or two of cerium and other rank nitrides are used in place of La or in place of a portion thereof. In addition to the above components, it is also possible to contain one or more of boron, silicon, phosphorus, arsenic, and tellurium, which promote amorphization.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、Ni々7.rH非晶質合金触媒を使用して一酸
化炭素による一酸化窒素の還元を250 ”Cで行った
ときの、co2及びN2生成量を経時的に示すグラフで
ある。
The drawings are Ni7. FIG. 2 is a graph showing the amount of CO2 and N2 produced over time when reduction of nitrogen monoxide by carbon monoxide is carried out at 250"C using an rH amorphous alloy catalyst.

Claims (1)

【特許請求の範囲】 1、ニッケルを35〜70原子%、イットリウム、チタ
ン、ジルコニウム、ハフニウム、ニオブ及びランタンの
1種又は2種以上を合計で30〜65原子%含有する非
晶質合金粉末の表面層が部分的に結晶化されていて、比
表面積が5m^2/g以上とされている窒素酸化物還元
用触媒。 2、ニッケルを35〜70原子%、イットリウム、チタ
ン、ジルコニウム、ハフニウム、ニオブ及びランタンの
1種又は2種以上を合計で30〜65原子%含有する非
晶質合金粉末を製造する工程と、前記非晶質合金粉末を
250℃以上結晶化温度未満の範囲内の温度で水素を含
む雰囲気中で処理して表面積を増加させる工程とを有す
る、非晶質合金粉末の表面が部分的に結晶化されていて
、比表面積が5m^2/g以上とされている窒素酸化物
還元用触媒の製造方法。
[Claims] 1. An amorphous alloy powder containing 35 to 70 atomic percent of nickel and 30 to 65 atomic percent of one or more of yttrium, titanium, zirconium, hafnium, niobium, and lanthanum in total. A catalyst for reducing nitrogen oxides whose surface layer is partially crystallized and whose specific surface area is 5 m^2/g or more. 2. A step of producing an amorphous alloy powder containing 35 to 70 at% nickel and a total of 30 to 65 at% of one or more of yttrium, titanium, zirconium, hafnium, niobium, and lanthanum; a step of increasing the surface area by treating the amorphous alloy powder in an atmosphere containing hydrogen at a temperature within a range of 250° C. or higher and lower than the crystallization temperature, the surface of the amorphous alloy powder being partially crystallized; A method for producing a catalyst for reducing nitrogen oxides, which has a specific surface area of 5 m^2/g or more.
JP60229523A 1985-10-15 1985-10-15 Catalyst for reducing nitrogen oxide and its preparation Pending JPS6291246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229523A JPS6291246A (en) 1985-10-15 1985-10-15 Catalyst for reducing nitrogen oxide and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229523A JPS6291246A (en) 1985-10-15 1985-10-15 Catalyst for reducing nitrogen oxide and its preparation

Publications (1)

Publication Number Publication Date
JPS6291246A true JPS6291246A (en) 1987-04-25

Family

ID=16893501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229523A Pending JPS6291246A (en) 1985-10-15 1985-10-15 Catalyst for reducing nitrogen oxide and its preparation

Country Status (1)

Country Link
JP (1) JPS6291246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170900A (en) * 2011-02-22 2012-09-10 Denso Corp Exhaust gas purification catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170900A (en) * 2011-02-22 2012-09-10 Denso Corp Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP4368062B2 (en) Catalytic decomposition of N2O
NO300918B1 (en) Process for Selective Catalytic Degradation of Nitrogen Monoxide
JP6855073B2 (en) Multidimensional solid solution fine particles, their production method, and catalyst
JP4921720B2 (en) Catalyst for N2O decomposition during the Ostwald process
JPH10216518A (en) Gold alloy catalyst
JP4611038B2 (en) Method for producing exhaust gas purification catalyst
CN113751023A (en) Bimetallic-based catalyst for low-temperature high-selectivity catalytic oxidation of ammonia, and preparation method and application thereof
JPH04247238A (en) Method for decomposing silver containing catalyst and nitrogen dioxide
US4829043A (en) Silver catalyst and a process for its preparation
JPS6291246A (en) Catalyst for reducing nitrogen oxide and its preparation
CA2037160C (en) Amorphous alloy catalysts for decomposition of flons
GB877684A (en) Production of dicyanogen
Van Den Bosch-Driebergen et al. Co oxidation over silica supported Pt-Rh alloy catalysts
JP2572142B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
EP0645171A1 (en) Palladium-alloy catalyst for thermal decomposition of NO
CA2051064C (en) Catalyst material and method for decomposition of chlorofluorocarbons
JPH0361500B2 (en)
JPH0824845B2 (en) Alloy catalyst for hydrogen oxidation
JPS62114657A (en) Catalyst for removing carbon monoxide or carbon monoxide and nitrogen oxide in exhaust gas
JP3226571B2 (en) Amorphous alloy catalyst for carbon dioxide conversion
JPS61209046A (en) Amorphous metal powder catalyst for low temperature reaction of nitrogen oxide
WO1991004790A1 (en) Amorphous alloy catalyst for cleaning exhaust gas
EP0384563B1 (en) Ammonia oxidation process and catalyst therefor
JPS63294950A (en) Catalyst for reducing nitrogen oxide
JP5798425B2 (en) Exhaust gas purification catalyst and method for producing the same