JPS6290865A - Substrate for alkaline battery and its manufacture - Google Patents
Substrate for alkaline battery and its manufactureInfo
- Publication number
- JPS6290865A JPS6290865A JP60231976A JP23197685A JPS6290865A JP S6290865 A JPS6290865 A JP S6290865A JP 60231976 A JP60231976 A JP 60231976A JP 23197685 A JP23197685 A JP 23197685A JP S6290865 A JPS6290865 A JP S6290865A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- melting point
- fibers
- metal
- fibres
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/70—Carriers or collectors characterised by shape or form
- H01M4/80—Porous plates, e.g. sintered carriers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はアルカリ電池用基板及びその製造法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a substrate for alkaline batteries and a method for manufacturing the same.
従来技術とその間順点
Ni−Cd電池やNi−Fe電池等のアルカリ蓄電池の
高性能型は、従来焼結式極板が使用されてil。これは
カルボニルニッケル粉末を高温度で焼結し、多孔度80
%前後の多孔体基板とし、この径孔中にニッケルやカド
ミウム等の活物質を化学法や電解法で充填したものであ
る。しかし活物質の充填に手間がかかり、コスト高とな
る事と、より多くの活物質を同一体積の極板中に充填し
、より高エネルギー密度の電池にしたいと言う要望の為
に、ペースト式極板や発泡金属基板を使用した極板が提
案されている。しかしながら前者は陰極板にしか使用で
きず、又性能を犠牲にしなければならず、後者は性能は
良いがコストが扁くつき不満足であった。性能を保ちし
かもコストを充分に下げる事のできるものとして金属繊
維式極板が提案された。これは5〜50μmの直径のニ
ッケルや鋼の繊維またはニッケルメッキした鋼繊維をフ
ェルト状に成型し、多孔度を90〜95%にしたもので
、上記焼結式極板よりも同一体積に多くの活物質を充填
することができる。しかも導電材が均一微細に連続分布
しているために極板としての特性も良好である。Between the prior art and high-performance alkaline storage batteries such as Ni-Cd batteries and Ni-Fe batteries, sintered plates have traditionally been used. This is made by sintering carbonyl nickel powder at high temperatures, and the porosity is 80.
%, and active materials such as nickel and cadmium are filled into the pores by chemical or electrolytic methods. However, it takes time to fill the active material, resulting in high costs, and there is a desire to fill more active material into the same volume of electrode plate to create a battery with higher energy density. Electrodes using electrode plates and foamed metal substrates have been proposed. However, the former can only be used as a cathode plate and requires sacrificing performance, while the latter has good performance but is unsatisfactory due to its low cost. A metal fiber electrode plate was proposed as a method that could maintain performance and reduce costs sufficiently. This is made by molding nickel or steel fibers or nickel-plated steel fibers with a diameter of 5 to 50 μm into a felt shape, with a porosity of 90 to 95%. can be filled with active materials. Furthermore, since the conductive material is uniformly and finely and continuously distributed, the properties as an electrode plate are also good.
金属繊維を作る方法としては、金属のブロックを旋盤で
削る方式のビビリ振動切削法や、金属箔を回転刃により
細く切る方式、または金属酸化物のペーストを繊維状に
押出し、それを還元焼結する方法、更に鋼線から繊維を
削り出す方法等各種の方法がある。均一なフェルトを作
るためには一度数10簡の長さの短繊維としてから、湿
式又は乾式でフェルト状に分布させるのが普通である。Methods for making metal fibers include the chattering vibration cutting method, which involves cutting a metal block with a lathe, cutting metal foil into thin pieces with a rotating blade, or extruding a metal oxide paste into fibers, which are then reduced and sintered. There are various methods such as a method of cutting fibers from a steel wire, and a method of cutting fibers from a steel wire. In order to make uniform felt, it is common to make short fibers several tens of fibers long and then distribute them into a felt shape using a wet or dry process.
しかし、このま\では強度がないので焼結により繊維間
の接触点をくつけなければならない。なるべく短時間に
焼結するためには、還元性雰囲気中でニッケルや鋼の融
点以下で、できるだけ高温に保たなければならない。普
通は950〜1150℃位で5〜15分間の焼結が必要
である。高温度である程、保持時間が短時間でよいので
焼結炉の長さも短かくて経済的である。しかし一方、高
温度炉である程、炉材のコストが高くなりまた炉の寿命
も短くなる。又、消費される熱エネルギー(電気または
ガス)の費用が高くつき、相当な原価比率を占める。従
って、いかに低温でしかも短時間で焼結できるようにす
るかが、繊維式基板製造上の最も重要な間g点である。However, since it lacks strength in its current state, it is necessary to bond the contact points between the fibers by sintering. In order to sinter as quickly as possible, the temperature must be kept as high as possible and below the melting point of nickel or steel in a reducing atmosphere. Normally, sintering is required at about 950-1150°C for 5-15 minutes. The higher the temperature, the shorter the holding time, and therefore the shorter the length of the sintering furnace, which is more economical. However, on the other hand, the higher the temperature of the furnace, the higher the cost of the furnace materials and the shorter the life of the furnace. Also, the cost of the thermal energy (electricity or gas) consumed is high and accounts for a significant proportion of the cost. Therefore, the most important point in manufacturing fiber-based substrates is how to sinter at a low temperature and in a short time.
発明の目的
本発明は上記に鑑みなされたものであり、基板強度を向
上した生産性に優れた安価なアルカリ電池用基板を提供
することを目的とする。OBJECTS OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide an inexpensive alkaline battery substrate with improved substrate strength and excellent productivity.
発明の構成 本発明は以下の構成よりなる。Composition of the invention The present invention consists of the following configuration.
(1) ニッケルや鋼などの耐アルカリ性金属繊維に
3ovt%以下の低融点合金のmHを均一に分散しフェ
ルト状とする。(1) mH of a low melting point alloy of 3 ovt% or less is uniformly dispersed in alkali-resistant metal fibers such as nickel or steel and made into a felt shape.
(2)非酸化性又は還元性雰囲気中で低融点合金゛の融
点以上で耐アルカリ性金属の融点以下の温度に加熱し冷
却する。(2) Heating and cooling in a non-oxidizing or reducing atmosphere to a temperature above the melting point of the low melting point alloy and below the melting point of the alkali-resistant metal.
(3)耐アルカリ性金#!繊維の繊維間の接触点を低融
点合金繊維の溶融物で結合した基板である。(3) Alkali-resistant gold #! This is a substrate in which the contact points between fibers are bonded by melted material of low-melting alloy fibers.
実施例 本発明の詳細について、実施例により説明する。Example The details of the present invention will be explained by examples.
材質がニッケルや鋼よりなる繊維径が5〜100μmの
耐アルカリ性繊維に低融点合金として例えばニッケル8
9%、燐11%の合金は融点が875℃であり、この合
金を既述の方法で直径5〜100μmの繊維とすればよ
い。この低融点合金繊維を30 wt%以下の割合で混
入し均一に分散しフェルト状とする。これを非酸化性又
は還元性雰囲気中で900°Cに加熱すると合金は瞬時
に溶け、主体となる耐アルカリ性繊維の表面に拡がり主
体繊維間の接触点に多くの合金が付着する。これを冷却
すると瞬時に合金が固まり、主体繊維相互間を強固に結
合し、フェルト全体としての強度が飛躍的に増大する。Alkali-resistant fibers made of nickel or steel and having a fiber diameter of 5 to 100 μm are combined with a low melting point alloy such as nickel 8.
An alloy containing 9% phosphorus and 11% phosphorus has a melting point of 875° C., and this alloy may be made into fibers with a diameter of 5 to 100 μm by the method described above. This low melting point alloy fiber is mixed in at a ratio of 30 wt% or less and uniformly dispersed to form a felt shape. When this is heated to 900°C in a non-oxidizing or reducing atmosphere, the alloy melts instantly, spreads over the surface of the main alkali-resistant fibers, and a large amount of the alloy adheres to the contact points between the main fibers. When this is cooled, the alloy instantly solidifies, strongly bonding the main fibers to each other, and dramatically increasing the strength of the felt as a whole.
その強度は混入する合金繊維の貸により異り、その光が
多い程強度は大となる。しかし合金繊維足が30%以上
になると過剰となり、溶融時にフェルトから遊離してこ
ぼれ落ちる事になるので30%が限度である。Its strength varies depending on the amount of alloy fibers mixed in, and the more light there is, the higher the strength becomes. However, if the alloy fiber foot exceeds 30%, it becomes excessive and will come loose from the felt during melting and spill out, so 30% is the upper limit.
繊維径が20μmのニッケル繊維で90%多孔度の1酩
厚フエルトを作製した時、上記低融点合金を10%混入
した場合とニッケル繊維のみの場合とについて焼結温度
、焼結時間、基板強度、製造コスト比率を第1表に示し
た。When a 1-thickness felt with 90% porosity was made using nickel fibers with a fiber diameter of 20 μm, the sintering temperature, sintering time, and substrate strength were determined for the cases in which 10% of the above-mentioned low melting point alloy was mixed and in the case of only nickel fibers. The manufacturing cost ratios are shown in Table 1.
本発明では、焼結温度が低くしかも焼結時間も屍以下と
なり、又、基板強度は2.5倍、製造コストは猛である
。In the present invention, the sintering temperature is low and the sintering time is less than that of the sintering time, the substrate strength is 2.5 times higher, and the manufacturing cost is extremely high.
発明の効果Effect of the invention
Claims (2)
wt%以下で予め混入された低融点合金の繊維の溶融物
により金属繊維間の接触点を結合したことを特徴とする
アルカリ電池用基板。(1) 30% of alkali-resistant metal fibers such as nickel and copper
1. A substrate for an alkaline battery, characterized in that contact points between metal fibers are bonded by a melt of fibers of a low melting point alloy mixed in advance in an amount of wt% or less.
t%以下の低融点合金の繊維を予め均一に分散しフェル
ト状とし、これを非酸化性又は還元性雰囲気中で該合金
の融点以上で主体金属の融点以下の温度に加熱した後、
冷却することを特徴とするアルカリ電池用基板の製造法
。(2) 30w for metal fibers mainly made of nickel or copper
Fibers of a low melting point alloy of t% or less are uniformly dispersed in advance and made into a felt shape, and after heating this in a non-oxidizing or reducing atmosphere to a temperature above the melting point of the alloy and below the melting point of the main metal,
A method for manufacturing an alkaline battery substrate characterized by cooling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60231976A JPS6290865A (en) | 1985-10-16 | 1985-10-16 | Substrate for alkaline battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60231976A JPS6290865A (en) | 1985-10-16 | 1985-10-16 | Substrate for alkaline battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6290865A true JPS6290865A (en) | 1987-04-25 |
Family
ID=16931993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60231976A Pending JPS6290865A (en) | 1985-10-16 | 1985-10-16 | Substrate for alkaline battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6290865A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016861A1 (en) * | 1995-11-02 | 1997-05-09 | Toyo Kohan Co., Ltd. | Core body for electrode base of secondary cell, process for manufacturing the core body, electrode base of secondary cell, process for manufacturing the electrode base, and electrode and battery using them |
-
1985
- 1985-10-16 JP JP60231976A patent/JPS6290865A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997016861A1 (en) * | 1995-11-02 | 1997-05-09 | Toyo Kohan Co., Ltd. | Core body for electrode base of secondary cell, process for manufacturing the core body, electrode base of secondary cell, process for manufacturing the electrode base, and electrode and battery using them |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3266936A (en) | Electrode supports and method for their production | |
KR101739803B1 (en) | A thermal batteries using a eutectic salt coated solid-electrolyte and a manufacturing method therefor | |
US4368167A (en) | Method of making an electrode | |
US4654195A (en) | Method for fabricating molten carbonate ribbed anodes | |
CN112599784B (en) | Porous aluminum alloy current collector and preparation method thereof, and porous aluminum alloy composite sodium negative electrode and preparation method thereof | |
US6099991A (en) | Electrode for alkaline storage batteries and process for producing the same | |
JPS6290865A (en) | Substrate for alkaline battery and its manufacture | |
US3663297A (en) | Process for the preparation of sintered zinc powder battery electrodes | |
JPH0275155A (en) | Manufacture of battery electrode plate | |
JP2674057B2 (en) | Method of manufacturing polarizable electrodes | |
JPS59134563A (en) | Production process of collector for electrode | |
JPH0434622B2 (en) | ||
JPS6326511B2 (en) | ||
JPS62147660A (en) | Manufacture of electrode for fuel cell | |
JPS5942949B2 (en) | nickel electrode | |
JPS6366858A (en) | Electrode for molten carbonate fuel cell | |
US4452873A (en) | Positive electrode for galvanic high-temperature cells and method of its manufacture | |
JPS60150558A (en) | Production method of fuel electrode for melted carbonate type fuel cell | |
JPH0261095B2 (en) | ||
JPS6247964A (en) | Manufacture of porous substrate for alkaline storage battery | |
JP3555118B2 (en) | Manufacturing method of paste type electrode | |
JPH0517661B2 (en) | ||
JPS6151380B2 (en) | ||
JPS62202457A (en) | Manufacture of plate for battery | |
JPH06124715A (en) | Manufacture of negative plate for thermal battery |