JPS629003A - Displacement control device for variable displacement motor - Google Patents

Displacement control device for variable displacement motor

Info

Publication number
JPS629003A
JPS629003A JP14906985A JP14906985A JPS629003A JP S629003 A JPS629003 A JP S629003A JP 14906985 A JP14906985 A JP 14906985A JP 14906985 A JP14906985 A JP 14906985A JP S629003 A JPS629003 A JP S629003A
Authority
JP
Japan
Prior art keywords
motor
control valve
displacement
constant
supply pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14906985A
Other languages
Japanese (ja)
Other versions
JPH038401B2 (en
Inventor
Hirokatsu Sakamoto
阪本 弘克
Makoto Yamamoto
良 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14906985A priority Critical patent/JPS629003A/en
Publication of JPS629003A publication Critical patent/JPS629003A/en
Publication of JPH038401B2 publication Critical patent/JPH038401B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/423Motor capacity control by fluid pressure control means

Abstract

PURPOSE:To make it possible to change a rotational speed of a motor easily by changing a set pressure of a fixed power control valve by the use of a pilot pressure from a remote control valve. CONSTITUTION:On one side of the spool 19 of a constant power control valve 18 elastic force of a spring 30 and a supply pressure to a motor 1 are applied and on the other side a pilot pressure from a remote control valve is also applied. For this reason, even if a motor load is constant, an optional rotational speed of the motor can be gotten by controlling the lever 8 of a remote control valve 7 and simultaneously, at the stoppage of the motor, it is possible to change the displacement of the motor to the maximum easily for the next start-up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種クレーン及びウィンチの巻上げとか建設機
械の走行等に用いられる液圧駆動制御装置における可変
容量形モータの容積制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a displacement control device for a variable displacement motor in a hydraulic drive control device used for hoisting various cranes and winches, running construction machines, etc.

〔従、来の技術〕[Previous technology]

クレーン、ウィンチ等においては負荷を高速低トルク、
中速中トルク、低速大トルクで駆動することにより作業
能率の向上及び原動機馬力の有効利用を図っている。
In cranes, winches, etc., load is controlled at high speed and low torque.
By driving at medium speed and medium torque, and low speed and large torque, we aim to improve work efficiency and effectively utilize the horsepower of the prime mover.

これを第3図に示す特開昭58−32974号公報第5
図の装置で説明すると、ポンプ3からの吐出液は方向切
換弁60により流路61又は62を経て可変容量形モー
タ1に供給されると共に流路61と62に接続されたシ
ャツトル弁20からのモータ供給圧は偏心量切換弁63
を介して定馬力制御弁64に導かれる。
This is shown in Fig. 3 in Japanese Unexamined Patent Publication No. 58-32974
To explain this using the device shown in the figure, liquid discharged from the pump 3 is supplied to the variable displacement motor 1 via a flow path 61 or 62 by a directional control valve 60, and is also supplied from a shuttle valve 20 connected to the flow paths 61 and 62. The motor supply pressure is controlled by the eccentricity switching valve 63.
is led to the constant horsepower control valve 64 via the.

この場合、偏心量切換弁63が位置Aではモータ供給圧
は液室65へ導かれ液室66はタンク4に連通するため
定馬力制御弁64は位置すをとり、偏心機構67の液圧
シリンダ69にモータ供給圧を導き液圧シリンダ68を
タンク4に連通する結果、モータ1回転当たりの押しの
け容積は最大となる。偏心量切換弁63を位置Bにとれ
ば液室66にモータ供給圧が導かれ液室64はタンク4
に連通するため定馬力制御弁64は位置aをとり、液圧
シリンダ68にモータ供給圧を導き液圧シリンダ69を
タンク4に連通する結果、押しのけ容積は最小となる。
In this case, when the eccentric amount switching valve 63 is in position A, the motor supply pressure is guided to the liquid chamber 65 and the liquid chamber 66 communicates with the tank 4, so the constant horsepower control valve 64 is in the position, and the hydraulic cylinder of the eccentric mechanism 67 is As a result of introducing the motor supply pressure to 69 and communicating the hydraulic cylinder 68 to the tank 4, the displacement per revolution of the motor is maximized. When the eccentric amount switching valve 63 is set to position B, the motor supply pressure is introduced to the liquid chamber 66, and the liquid chamber 64 is transferred to the tank 4.
In order to communicate with the tank 4, the constant horsepower control valve 64 assumes position a, and as a result, the motor supply pressure is introduced into the hydraulic cylinder 68 and the hydraulic cylinder 69 is communicated with the tank 4, so that the displacement volume is minimized.

偏心量切換弁63を中立位置にとると、モータ供給圧は
液室66と65に導かれ、ばね70は設定ばね力にセッ
トされる。この設定ばね力に対してパイロットピストン
71の押付力が押し勝つと定馬力制御弁64は位置aを
とりモータ1回転当たりの押しのけ容積は増加する。こ
れに伴いモータ回転数及びモータ供給圧が低下してバイ
ロフトピストン71の押付力がばね70の設定ばね力と
釣合うと、定馬力制御弁64は中立位置をとり液圧シリ
ンダ68.69を液圧的にロックする結果、押しのけ容
積は一定となる。又、この状態からモータ供給圧が低下
すると、定馬力制御弁64は位置すをとり押しのけ容積
が減少する。これに伴いモータ回転数及びモータ供給圧
が増加してパイロットピストン71の押付力がばね70
の設定ばね力と釣合うと、定馬力制御弁64は中立位置
をとり押しのけ容積は一定となる。このように偏心量切
換弁63を中立位置にとればモータ供給圧に応じたモー
タ1回転当たりの押しのけ容積が得られるので、定馬力
制御が可能である。
When the eccentricity switching valve 63 is placed in the neutral position, the motor supply pressure is guided to the liquid chambers 66 and 65, and the spring 70 is set to the set spring force. When the pressing force of the pilot piston 71 overcomes this set spring force, the constant horsepower control valve 64 assumes position a, and the displacement per revolution of the motor increases. Accordingly, when the motor rotation speed and motor supply pressure decrease and the pressing force of the virofft piston 71 balances the set spring force of the spring 70, the constant horsepower control valve 64 assumes the neutral position and the hydraulic cylinders 68 and 69 are As a result of pressure locking, the displacement volume remains constant. Furthermore, when the motor supply pressure decreases from this state, the constant horsepower control valve 64 is displaced and the displacement volume decreases. Along with this, the motor rotation speed and the motor supply pressure increase, and the pressing force of the pilot piston 71 is increased by the spring 70.
When balanced with the set spring force, the constant horsepower control valve 64 assumes a neutral position and the displacement becomes constant. If the eccentricity switching valve 63 is set in the neutral position in this manner, the displacement per motor rotation can be obtained in accordance with the motor supply pressure, so that constant horsepower control is possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、前記するような従来装置は定馬力制御弁64
の設定ばね力が一定数、これと対抗する負荷圧が一定に
なると押しのけ容積は変化しない。従って、一定負荷の
下ではモータ回転数を調整して作業能率の向上を図るこ
とができない。又、液圧モータ停止時の押しのけ容積を
最大にするには偏心量切換弁が必要である。
However, in the conventional device as described above, the constant horsepower control valve 64
If the set spring force is constant and the opposing load pressure is constant, the displacement will not change. Therefore, it is not possible to improve work efficiency by adjusting the motor rotation speed under a constant load. In addition, an eccentric amount switching valve is required to maximize the displacement volume when the hydraulic motor is stopped.

本発明は前記の欠点を解消した可変容量形モータの容積
制御装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a displacement control device for a variable displacement motor that eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的を達成するための本発明の構成を実施例に対
応する第1図及び第2図を用いて説明する。定馬力制御
弁18は、ばね30及びモータ供給圧と遠隔制御弁7か
らの操作レバー8の操作角度に比例したパイロット圧と
をスプール19を介して対抗させると共に、可変容量形
モータ1回転当たりの押しのけ容積を、ばね30及びモ
ータ供給圧に対してパイロット圧が押し勝つと減少し、
押し負けると増加し、釣合うと一定に保つように可変容
量形モータ1の容積制御シリンダ22を制御するように
している。
The structure of the present invention for achieving the above object will be explained using FIG. 1 and FIG. 2 which correspond to embodiments. The constant horsepower control valve 18 counteracts the spring 30 and motor supply pressure with a pilot pressure proportional to the operating angle of the operating lever 8 from the remote control valve 7 via the spool 19, and also controls the pressure per rotation of the variable displacement motor. When the pilot pressure overcomes the spring 30 and motor supply pressure, the displacement decreases,
The volume control cylinder 22 of the variable displacement motor 1 is controlled so that the volume increases when the pressure is lost, and remains constant when balanced.

〔作 用〕[For production]

遠隔制御弁7の操作レバー8を矢印方向へ操作すると、
操作レーバ8の操作角度に比例したパイロット圧Piが
方向切換弁2の圧力室14と定馬力制御弁18の液室3
3に導かれる。これにより方向切換弁2は位置Aに切換
ねりポンプ3からの吐出液は可変容量形モータ1へ供給
されると共に、モータ供給圧は定馬力制御弁18に導か
れスプール19を介してパイロット圧Pi と対抗する
When the operating lever 8 of the remote control valve 7 is operated in the direction of the arrow,
A pilot pressure Pi proportional to the operating angle of the operating lever 8 is applied to the pressure chamber 14 of the directional control valve 2 and the liquid chamber 3 of the constant horsepower control valve 18.
I am guided by 3. As a result, the directional control valve 2 is switched to position A, and the fluid discharged from the pump 3 is supplied to the variable displacement motor 1, and the motor supply pressure is guided to the constant horsepower control valve 18 via the spool 19 to the pilot pressure Pi. to compete with.

定馬力制御弁18はばね30及びモータ供給圧によるス
プール押付力がパイロット圧によるスプール押付力に打
勝つ初期段階では位置Aにあってモータ供給圧を容積制
御シリンダ22の大容積ポート47に導くので可変容量
形モータ1の1回転当たりの押しのけ容積は最大でモー
タ1はゆるやかに始動する。定馬力制御弁18はパイロ
ット圧によるスプール押付力がばね30及びモータ供給
圧によるスプール押付力に打勝つと位置Bに切換ねりモ
ータ供給圧を小容積ボート50に導(ため、モータ1回
転当たりの押しのけ容積が減少しモータ1は加速される
。モータを所定速度まで加速したところで操作レバー8
の操作を止めるとパイロット圧は一定となり、このパイ
ロット圧によるスプール押付力に他端のスプール押付力
が釣合うと定馬力制御弁8は中立位置をとりモータ1回
転当たりの押しのけ容積が一定となってモータは定速度
で駆動する。この状態から負荷の変化によりモータ供給
圧が変わると、定馬力制御弁18は中立位置から機能位
置に切換ねりモータの押しのけ容積が変化する。これに
伴いモータ回転数及びモータ供給圧が変化してモータ供
給圧が変化する前の圧力に戻ったところで定馬力制御弁
18は再び中立位置をとる。このためモータ1回転当た
りの押しのけ容積は負荷圧に対応する。即ち、パイロッ
ト圧が一定では定馬力特性が得られる。
The constant horsepower control valve 18 is at position A in the initial stage when the spool pressing force due to the spring 30 and the motor supply pressure overcomes the spool pressing force due to the pilot pressure, and guides the motor supply pressure to the large volume port 47 of the volume control cylinder 22. The displacement per revolution of the variable displacement motor 1 is maximum, and the motor 1 starts slowly. When the spool pressing force caused by the pilot pressure overcomes the spool pressing force caused by the spring 30 and the motor supply pressure, the constant horsepower control valve 18 switches to position B and guides the motor supply pressure to the small capacity boat 50 (thereby reducing the amount of power per revolution of the motor). The displacement volume decreases and the motor 1 is accelerated. When the motor is accelerated to a predetermined speed, the operation lever 8 is
When the operation of the constant horsepower control valve 8 is stopped, the pilot pressure becomes constant, and when the spool pushing force due to this pilot pressure is balanced by the spool pushing force at the other end, the constant horsepower control valve 8 assumes a neutral position, and the displacement per revolution of the motor becomes constant. The motor is driven at a constant speed. When the motor supply pressure changes from this state due to a change in load, the constant horsepower control valve 18 is switched from the neutral position to the functional position, and the displacement of the motor changes. Along with this, the motor rotation speed and the motor supply pressure change, and when the motor supply pressure returns to the pressure before the change, the constant horsepower control valve 18 takes the neutral position again. Therefore, the displacement per rotation of the motor corresponds to the load pressure. That is, constant horsepower characteristics are obtained when the pilot pressure is constant.

次に、モータ供給圧一定の場合にパイロット圧を変える
と、定馬力制御弁18は機能位置に切換わるため、モー
タ1回転当たりの押しのけ容積が変化しモータ回転数が
変わる。従って、モータ供給圧一定の場合でも操作レバ
ー8によって任意のモータ回転数を得ることができる。
Next, if the pilot pressure is changed when the motor supply pressure is constant, the constant horsepower control valve 18 is switched to the functional position, so the displacement per motor rotation changes and the motor rotation speed changes. Therefore, even when the motor supply pressure is constant, any desired motor rotation speed can be obtained using the operating lever 8.

操作レバー8を中立位置に戻すとパイロット圧は零とな
り、方向切換弁2は中立位置をとるためモータ1は油圧
的にロックされて停止する。一方、定馬力制御弁18は
ばね30及びモータ供給圧により位fiAに切換わるた
めモータlの押しのけ容積は最大となる。
When the operating lever 8 is returned to the neutral position, the pilot pressure becomes zero and the directional control valve 2 assumes the neutral position, so the motor 1 is hydraulically locked and stopped. On the other hand, the constant horsepower control valve 18 is switched to position fiA by the spring 30 and the motor supply pressure, so that the displacement of the motor 1 is maximized.

〔実 施 例〕〔Example〕

本発明の実施例を図面に基いて説明する。第1図におい
て、可変容量形モータ1は方向切換弁2を介してポンプ
3及びタンク4に接続されている。方向切換弁2は図示
中立状態ではポンプ3をタンク4に連通ずると共に、モ
ータ1と方向切換弁2とを接続する流路5,6をポンプ
3及びタンク4との連通を断ってブロックしている。遠
隔制御弁7は操作レーパ8と可変減圧弁9.10からな
り、可変減圧弁9,10の一次ボートはポンプ11に、
2次ポートは通路12.13により方向切換弁2の液室
14.15に接続する。
Embodiments of the present invention will be described based on the drawings. In FIG. 1, a variable displacement motor 1 is connected to a pump 3 and a tank 4 via a directional valve 2. As shown in FIG. In the illustrated neutral state, the directional switching valve 2 communicates the pump 3 with the tank 4, and blocks the passages 5 and 6 connecting the motor 1 and the directional switching valve 2 by cutting off communication with the pump 3 and the tank 4. There is. The remote control valve 7 consists of an operating raper 8 and variable pressure reducing valves 9 and 10, and the primary boat of the variable pressure reducing valves 9 and 10 is connected to the pump 11.
The secondary port is connected to the fluid chamber 14.15 of the directional valve 2 by a passage 12.13.

18は可変容量形モータ1の容積制御シリンダ22を制
御する定馬力制御弁で、通路12.13に1次ポートを
接続したシャツトル弁16、通路17を経て導かれる遠
隔制御弁7からのパイロット圧と、流路5,6に1次ボ
ートを接続したシャツトル弁20、通路21を経て導か
れるモータ供給圧及びばね30とをスプール19を介し
て対抗させている。
Reference numeral 18 denotes a constant horsepower control valve that controls the displacement control cylinder 22 of the variable displacement motor 1, and pilot pressure from the remote control valve 7 led through the shuttle valve 16 and the passage 17 whose primary port is connected to the passage 12.13. A shuttle valve 20 with a primary boat connected to the flow paths 5 and 6, a motor supply pressure led through a passage 21, and a spring 30 are opposed to each other via a spool 19.

定馬力制御弁18の具体的構成例を第2図について説明
すると、本体24の弁孔25に嵌挿されたスプール19
には、これに形成された環溝34、通孔35に本体24
の通孔21、環溝52からのモータ供給圧を導き通孔3
5に嵌挿されたパイロットピストン36をばね受は軸2
9に当接させると共に、ランド37.38で環溝34か
ら離隔された環溝39,40は本体24の環溝53,5
4からばね室28と共に常時通路41.42を経てタン
ク4に連通している。そして、スプール19の一端部に
はこれに取付けたばね受は座27とばね受は軸29との
間に介装されたばね30の弾発力をねじ32により所定
ばね力に設定してロックナツト31でロックし、スプー
ル19の他端部は遠隔制御弁7からのパイロット圧が導
かれる液室33に位置せしめている。
A specific example of the configuration of the constant horsepower control valve 18 will be explained with reference to FIG.
, an annular groove 34 and a through hole 35 are formed in the main body 24.
The motor supply pressure from the through hole 21 and the ring groove 52 is guided to the through hole 3.
The pilot piston 36 fitted into the spring bearing is connected to the shaft 2.
The annular grooves 39 and 40 are in contact with the annular grooves 53 and 5 of the main body 24 and are spaced apart from the annular groove 34 by lands 37 and 38.
4, together with the spring chamber 28, constantly communicates with the tank 4 via a passage 41,42. The spring holder attached to one end of the spool 19 is set to a predetermined spring force by a screw 32, and the spring 30 interposed between the seat 27 and the spring holder shaft 29 is tightened with a lock nut 31. The other end of the spool 19 is positioned in a liquid chamber 33 to which pilot pressure from the remote control valve 7 is introduced.

スプール19はばね30及びモータ供給圧によるスプー
ル押付力がパイロット圧によるスプール押付力に打勝つ
間図示の如く左行程端に位置して環溝34と環溝44及
び環溝40と環溝45を連通し、通路21からのモータ
供給圧を環溝34゜44、通路46を経て容積制御シリ
ンダ22の大容積ポート47へ導くと共に、小容積ポー
ト50を通路49から環溝45,40,54、通路41
.42を経てタンク4に連通ずる。スプール両端の押付
力のバランスがくずれスプール19が右行してランド3
7.38で環溝44,45を閉塞すると、容積制御シリ
ンダ22のポート47.50は通路21及びタンク4と
の連通を断たれる。さらに右行すると環溝52と45及
び環溝53と44が連通し通路21からのモータ供給圧
を通路49を経て小容積ポート50に導くと共に、通路
46に接続する大容積ポート47をタンク4に連通ずる
While the spool pressing force caused by the spring 30 and the motor supply pressure overcomes the spool pressing force caused by the pilot pressure, the spool 19 is positioned at the left stroke end as shown in the figure, and the ring grooves 34 and 44 and the ring grooves 40 and 45 are connected to each other. The motor supply pressure from the passage 21 is guided to the large volume port 47 of the volume control cylinder 22 via the annular groove 34, 44 and the passage 46, and the small volume port 50 is connected from the passage 49 to the annular grooves 45, 40, 54, Passage 41
.. It communicates with tank 4 via 42. The balance between the pressing forces at both ends of the spool is lost, causing the spool 19 to move to the right and land 3.
When the annular grooves 44 and 45 are closed at 7.38, the port 47.50 of the volume control cylinder 22 is disconnected from the passage 21 and the tank 4. Moving further to the right, the annular grooves 52 and 45 and the annular grooves 53 and 44 communicate with each other to guide the motor supply pressure from the passage 21 to the small volume port 50 via the passage 49, and to connect the large volume port 47 connected to the passage 46 to the tank 4. It will be communicated to.

本実施例は前記するような構成であるから、遠隔制御弁
7の操作レーバ8を矢印方向へ操作すると、可変減圧弁
9が作動してポンプ11と通路12が連通し操作レーバ
8の操作角度に比例したパイロット圧Piが方向切換弁
2の液室14と定馬力制御弁18の液室33に導かれる
Since this embodiment has the above-mentioned configuration, when the operating lever 8 of the remote control valve 7 is operated in the direction of the arrow, the variable pressure reducing valve 9 is operated and the pump 11 and the passage 12 are connected to each other, so that the operating angle of the operating lever 8 is changed. A pilot pressure Pi proportional to is guided to the liquid chamber 14 of the directional control valve 2 and the liquid chamber 33 of the constant horsepower control valve 18.

これにより方向切換弁2は位置Aに切換ねりポンプ3か
らの吐出液は流路5から可変容量形モータ1へ供給され
ると共に、モータ供給圧はシャツトル弁20、通路21
を経て定馬力制御弁18に導かれる。定馬力制御弁18
はばね30及びモータ供給圧によるスプール押付力がパ
イロット圧によるスプール押付力に打勝つ初期段階では
位置Aにあってモータ供給圧を容積制御シリンダ22の
大容積ボート47へ導き小容量ボート50をタンク4に
連通するから、モータ1回転当たりの押しのけ容積は最
大でモータ1はゆるやかに始動する定馬力制御弁18は
パイロット圧によるスプール押付力がばね30及びモー
タ供給圧によるスプール押付力に打勝つと位置Bに切換
わり、モータ供給圧を小容積ポート50に導き大容積ボ
ート47をタンク4に連通ずるから、モータ1回転あた
りの押しのけ容積は減少しモータ1は加速される。モー
タを所定速度まで加速したところで操作レバー8の操作
を止めるとパイロット圧によるスプール押付力が一定と
なり、このスプール押付力にばね30及びモータ供給圧
によるスプール押付力が釣合うと定馬力制御弁18は中
立位置をとりモータ1の押しのけ容積は一定となってモ
ータは定速度で駆動する。この状態から負荷の減少によ
りモータ供給圧が低下し定馬力制御弁18が中立位置か
ら位置Bに切換ねると、小容積ポート50にモータ供給
圧が導かれ大容積ボート47はタンク4に連通するため
モータ1回転当たりの押しのけ容積が減少する。これに
伴いモータ回転数及びモータ供給圧が増し、モータ供給
圧がその低下前の圧力に戻ったところで定馬力制御弁1
8は再び中立位置をとるから、モータ1回転当たりの押
しのけ容積はモータ供給圧に対応する。即ち、パイロッ
ト圧一定では定馬力特性が得られる。
As a result, the directional control valve 2 is switched to position A, and the liquid discharged from the pump 3 is supplied to the variable displacement motor 1 from the flow path 5, and the motor supply pressure is changed to the shuttle valve 20 and the passage 21.
It is led to the constant horsepower control valve 18 through the. Constant horsepower control valve 18
At the initial stage when the spool pressing force due to the spring 30 and the motor supply pressure overcomes the spool pressing force due to the pilot pressure, the motor supply pressure is guided to the large capacity boat 47 of the capacity control cylinder 22 and the small capacity boat 50 is transferred to the tank. 4, the displacement per revolution of the motor is maximum, and the motor 1 starts slowly.When the spool pressing force caused by the pilot pressure overcomes the spool pressing force caused by the spring 30 and the motor supply pressure, the constant horsepower control valve 18 Switching to position B, the motor supply pressure is guided to the small volume port 50 and the large volume boat 47 is communicated with the tank 4, so the displacement per revolution of the motor is reduced and the motor 1 is accelerated. When the operation of the operating lever 8 is stopped after accelerating the motor to a predetermined speed, the spool pressing force due to the pilot pressure becomes constant, and when this spool pressing force is balanced by the spool pressing force due to the spring 30 and the motor supply pressure, the constant horsepower control valve 18 is activated. is in a neutral position, the displacement of the motor 1 is constant, and the motor is driven at a constant speed. From this state, when the motor supply pressure decreases due to a decrease in load and the constant horsepower control valve 18 switches from the neutral position to position B, the motor supply pressure is introduced to the small volume port 50 and the large volume boat 47 communicates with the tank 4. Therefore, the displacement per rotation of the motor decreases. Along with this, the motor rotation speed and motor supply pressure increase, and when the motor supply pressure returns to the pressure before the decrease, the constant horsepower control valve 1
8 assumes the neutral position again, so the displacement per revolution of the motor corresponds to the motor supply pressure. That is, constant horsepower characteristics are obtained when the pilot pressure is constant.

次に、モータ供給圧一定の場合にパイロット圧を変える
と、スプール19にかかる押付力のバランスがくずれ定
馬力制御弁18は機能位置A又はBに切換わるため、モ
ータlの押しのけ容積が変わるのに伴いモータ回転数が
変化する。従って、モータ供給圧一定の場合でも操作レ
バー8により任意のモータ回転数を得ることが可能であ
る。
Next, if the pilot pressure is changed when the motor supply pressure is constant, the pressing force applied to the spool 19 will be unbalanced and the constant horsepower control valve 18 will be switched to the functional position A or B, so the displacement of the motor l will change. The motor rotation speed changes accordingly. Therefore, even when the motor supply pressure is constant, it is possible to obtain an arbitrary motor rotation speed using the operating lever 8.

操作レバー8を中立位置に戻すと、パイロ−/ ト圧は
零となり、方向切換弁2は中立位置をとるためモータ1
は油圧的にロックされて停止し、定馬力制御弁18はば
ね30及びモータ供給圧により位置Aに切換ねリモータ
1の押しのけ容積は最大となる。
When the operating lever 8 is returned to the neutral position, the pilot pressure becomes zero, and the directional control valve 2 assumes the neutral position, so the motor 1
is hydraulically locked and stopped, and the constant horsepower control valve 18 is switched to position A by the spring 30 and motor supply pressure, so that the displacement of the remoter 1 is maximized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、遠隔制御弁からの
パイロット圧によって定馬力制御弁の設定圧を可変にし
ているので、パイロット圧一定では定馬力特性が得られ
、又、負荷一定の状態でもレバー操作により任意のモー
タ回転数を得ることができて作業能率の向上に役立つ。
As explained above, according to the present invention, since the set pressure of the constant horsepower control valve is made variable by the pilot pressure from the remote control valve, constant horsepower characteristics can be obtained when the pilot pressure is constant, and when the load is constant, However, by operating the lever, you can obtain any desired motor rotation speed, which helps improve work efficiency.

さらに切換弁を追加することなしにモータ停止時の押し
のけ容積を最大にできるためコストを低減できる。
Furthermore, since the displacement volume when the motor is stopped can be maximized without adding a switching valve, costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の油圧回路図、第2図は定馬力
制御弁の縦断面図、第3図は従来装置の油圧回路図であ
る。 1・・可変容量形モータ、7・・遠隔制御弁、18・・
定馬力制御弁、19・・スプール、22・・容積制御シ
リンダ、30・・ばね。
FIG. 1 is a hydraulic circuit diagram of an embodiment of the present invention, FIG. 2 is a vertical sectional view of a constant horsepower control valve, and FIG. 3 is a hydraulic circuit diagram of a conventional device. 1..Variable displacement motor, 7..Remote control valve, 18..
Constant horsepower control valve, 19... Spool, 22... Volume control cylinder, 30... Spring.

Claims (1)

【特許請求の範囲】[Claims] 可変容量形モータの容積制御シリンダを定馬力制御弁に
より制御するようにした可変容量形モータの容積制御装
置において、定馬力制御弁は、ばね及びモータ供給圧と
遠隔制御弁からのパイロット圧とをスプールを介して対
抗させると共に、モータ1回転当たりの押しのけ容積を
、前記ばね及びモータ供給圧に対してパイロット圧が押
し勝つと減少し、押し負けると増加し、釣合うと一定に
保つように容積制御シリンダを制御するようにしたこと
を特徴とする可変容量形モータの容積制御装置。
In a displacement control device for a variable displacement motor in which the displacement control cylinder of the variable displacement motor is controlled by a constant horsepower control valve, the constant horsepower control valve controls the spring and motor supply pressure and the pilot pressure from the remote control valve. In addition to opposing each other via the spool, the displacement volume per rotation of the motor decreases when the pilot pressure overcomes the spring and motor supply pressure, increases when the pilot pressure overpowers the spring and motor supply pressure, and maintains a constant volume when balanced. A displacement control device for a variable displacement motor, characterized in that it controls a control cylinder.
JP14906985A 1985-07-05 1985-07-05 Displacement control device for variable displacement motor Granted JPS629003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14906985A JPS629003A (en) 1985-07-05 1985-07-05 Displacement control device for variable displacement motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14906985A JPS629003A (en) 1985-07-05 1985-07-05 Displacement control device for variable displacement motor

Publications (2)

Publication Number Publication Date
JPS629003A true JPS629003A (en) 1987-01-17
JPH038401B2 JPH038401B2 (en) 1991-02-06

Family

ID=15467003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14906985A Granted JPS629003A (en) 1985-07-05 1985-07-05 Displacement control device for variable displacement motor

Country Status (1)

Country Link
JP (1) JPS629003A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193604A (en) * 1987-09-30 1989-04-12 Kayaba Ind Co Ltd Control device for two-speed motor
JPH066703U (en) * 1992-06-26 1994-01-28 住友建機株式会社 Hydraulic motor drive circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193604A (en) * 1987-09-30 1989-04-12 Kayaba Ind Co Ltd Control device for two-speed motor
JPH066703U (en) * 1992-06-26 1994-01-28 住友建機株式会社 Hydraulic motor drive circuit

Also Published As

Publication number Publication date
JPH038401B2 (en) 1991-02-06

Similar Documents

Publication Publication Date Title
KR940009216B1 (en) Pump discharge flow rate controlled by pilot pressure acting on vehicle drive valves
US4712377A (en) Control apparatus for hydraulic motor
US20120097460A1 (en) Hydraulically-powered working vehicle
KR970703504A (en) CONTINUOUSLY VARIABLE HYDROSTATIC TRANSMISSION
KR970700832A (en) RATIO CONTROLLER FOR A HYDROSTATIC TRANSMISSION
EP2444556A1 (en) Pump Unit
US3747350A (en) Power transmission
WO1994010447A1 (en) Capacity control device in variable capacity hydraulic pump
US3696836A (en) Power transmission
US4017219A (en) Control system for variable displacement pumps
KR20050036767A (en) Automatic transmission mechanism of hydraulic motor
JPS629003A (en) Displacement control device for variable displacement motor
EP0084835B1 (en) Power transmission
WO1996027938A1 (en) Electric hydraulic hybrid motor, control device and control method for the same motor
JPH0240595B2 (en)
JPS63214562A (en) Hydraulic drive circuit
GB1012299A (en)
KR100351500B1 (en) Travel control device with one lever for dozer
JP4056596B2 (en) Fluid pressure system using fluid pressure source device
US3813188A (en) Pump assembly for power steering system
JPS60128079A (en) Steering force control device in power control device
JPH0744771Y2 (en) Variable displacement hydraulic / mechanical power converter constant flow rate horsepower controller
SU1300190A1 (en) Axial-piston step-controlled hydraulic motor
JP2837173B2 (en) Control valve device
SU1430478A1 (en) Hydraulic drive of working member of trencher

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees