JPS6289915A - Optical fiber unit - Google Patents

Optical fiber unit

Info

Publication number
JPS6289915A
JPS6289915A JP60226300A JP22630085A JPS6289915A JP S6289915 A JPS6289915 A JP S6289915A JP 60226300 A JP60226300 A JP 60226300A JP 22630085 A JP22630085 A JP 22630085A JP S6289915 A JPS6289915 A JP S6289915A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber unit
tape
optical
static friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60226300A
Other languages
Japanese (ja)
Other versions
JPH0578007B2 (en
Inventor
Akira Nishimura
西村 陽
Shigeru Tanaka
茂 田中
Nobumasa Nirasawa
韮澤 信昌
Ichiro Ogasawara
小笠原 一郎
Shuzo Suzuki
鈴木 修三
Yutaka Katsuyama
豊 勝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60226300A priority Critical patent/JPS6289915A/en
Publication of JPS6289915A publication Critical patent/JPS6289915A/en
Publication of JPH0578007B2 publication Critical patent/JPH0578007B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the transmission loss due to the fatigue degradation of an optical fiber and the side pressure or compressive strain by constituting outermost layers of optical tape cores, which are laminated and stored in a groove of a spacer, with coating layers which have <=30mum thickness and consist of materials having a low coefficient of static friction. CONSTITUTION:A coefficient mu of static friction of surfaces of optical tape cores used in an optical fiber unit having the spacer structure is set to <=0.9, and thereby, a relaxation rate Aepsilon of a maximum distortion for bend of the optical fiber unit is <=0.2 to suppress the distortion to a very small value and this optical fiber unit is superior in transmission loss characteristic to bend. The layer thickness of the outermost layer of the tape core is set to <=30mum to reduce influences upon physical characteristics such as Young's modulus of the coating material. Since this layer thickness if <=30mum and thin, dimensions of this optical tape core are hardly different from those of an optical tape core which is not provided with a layer having a low coefficient of static friction.

Description

【発明の詳細な説明】 〔発明の概要〕 11■付スペーサの溝中に、最外層の静止摩擦係数を0
.9以下としたテープ状光ファイバ心線の積層体を収納
することにより、湾曲時の最大歪の緩和率を0.2以下
とし、布設後の長期間にわたる曲げによる光ファイバの
疲労劣化および伸び歪の原因で生ずる側圧または圧縮歪
による伝送損失の増加を抑止した光ファイハユニソト。
[Detailed description of the invention] [Summary of the invention] In the groove of the spacer with 11.
.. By housing a laminate of tape-shaped optical fiber cores with a thickness of 9 or less, the maximum strain relaxation rate during bending is 0.2 or less, and fatigue deterioration and elongation strain of the optical fiber due to long-term bending after installation are reduced. Optical fiber Unisoto suppresses the increase in transmission loss due to lateral pressure or compressive strain caused by.

〔産業上の利用分野〕[Industrial application field]

本発明は棒状スペーサの螺旋状溝の中にテープ状光ファ
イバ心線(以下光テープ心線と云う。)の積層体を収納
した光ファイハユニソトに関し、とくに曲げ特性の優れ
た光ファイバユニットに関するものである。
The present invention relates to an optical fiber unit in which a laminate of tape-shaped optical fiber cores (hereinafter referred to as optical tape cores) is housed in a spiral groove of a rod-shaped spacer, and in particular to an optical fiber unit with excellent bending properties. be.

〔従来の技術〕[Conventional technology]

この種の棒状スペーサの螺旋状溝の中に光テープ心線積
層体を収納した構造(以下スペーサ構造と云う。i1フ
ァイバユニットは、高密度化が図れること、接続がテー
プ中位で行えるので容易であることなどの優れた特長を
備えている。
This type of rod-shaped spacer has a structure in which the optical tape fiber laminate is housed in a spiral groove (hereinafter referred to as a spacer structure). It has excellent features such as:

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

スペーサ構造の光ファイバユニットは、曲げた場合、曲
げた外側部分に位置する光ファイバには伸び歪が生じ、
曲げた内側部分に位置する光ファイバには圧縮歪が生じ
る。
When an optical fiber unit with a spacer structure is bent, elongation strain occurs in the optical fiber located on the outside of the bend.
Compressive strain occurs in the optical fiber located in the bent inner portion.

伸び歪は光ファイバ表面のき裂の伸長を促進するため、
長期間にわたり大きな歪を加え続けることは、長期信頼
性の而から好ましくない。またスペーサ構造の光ファイ
ハユニノ1〜は、光ファ・イハ心線積層体を巻きつけた
構造のため、伸び歪が生じると光ファイバに側圧がかか
ることになる。従って側圧による伝送損失増加の面から
も伸び歪を小さく抑えなければならない。
Since elongation strain promotes the elongation of cracks on the optical fiber surface,
Continuing to apply large strains for a long period of time is undesirable from the standpoint of long-term reliability. Further, since the optical fibers 1 to 1 with the spacer structure have a structure in which the optical fiber core wire laminate is wound, lateral pressure is applied to the optical fibers when elongation strain occurs. Therefore, it is necessary to suppress the elongation strain to a small level in view of the increase in transmission loss due to lateral pressure.

このためには、光ファイバユニットを曲げたときの曲げ
径と、その際の最大伸び歪の関係を調べる必要がある。
For this purpose, it is necessary to investigate the relationship between the bending diameter when the optical fiber unit is bent and the maximum elongation strain at that time.

光ファイバユニットが通常のタイトな構造の場合、曲げ
による最大歪εCは次式で計算することができる。
When the optical fiber unit has a normal tight structure, the maximum strain εC due to bending can be calculated using the following equation.

ここでaは層心径、Rは曲げ半径である。Here, a is the layer core diameter and R is the bending radius.

ところが、スペーサ構造の場合、タイト構造ではあるが
、溝の中で光テープ心線が長平方向に移動できる構造で
あるため、歪は長手方向に緩和され、最大歪は小さくな
ると考えられる。
However, in the case of the spacer structure, although it is a tight structure, it is a structure in which the optical tape cable can move in the longitudinal direction within the groove, so it is thought that the strain is relaxed in the longitudinal direction and the maximum strain is small.

光ファイハユニソトを曲げた場合の歪は、光ファイバユ
ニットをマンドレルに順次巻きつけて、そのときの光フ
ァイバの長さの変化をモニタすることにより調べること
ができる。すなわち、光ファイバユニ7)を曲げた際の
光ファイバユニ、ト内での歪分布は次式で表せるものと
する。(たとえば国分他:昭和60年度信学全大227
5)ここでε、は最大歪、pはスペーサ溝ピッチ、θ0
はx=Oでのファイバ位置を表わす定数である。
The strain caused when the optical fiber unit is bent can be investigated by sequentially winding the optical fiber unit around a mandrel and monitoring the change in the length of the optical fiber at that time. That is, when the optical fiber unit 7) is bent, the strain distribution within the optical fiber unit 7) can be expressed by the following equation. (For example, Kokubu et al.: 1985 IEICE All Universities 227
5) Here, ε is the maximum strain, p is the spacer groove pitch, and θ0
is a constant representing the fiber position at x=O.

このとき光ファイバユニットを長さXだけマンドレルに
巻き付けた場合の長さ変化Δlは次式で示される。
At this time, the length change Δl when the optical fiber unit is wound around the mandrel by length X is expressed by the following equation.

従って、△l(Aを実測することによりε寡を知ること
ができる。光ファイバユニットを曲げた際の最大歪の緩
和率A5は次式で表わせる。
Therefore, by actually measuring Δl(A, it is possible to know the value of ε. The relaxation rate A5 of the maximum strain when the optical fiber unit is bent can be expressed by the following equation.

Aε−ε−/εc(4) スペーサ構造の光ファイバユニットを曲げた場合、最大
歪の緩和率Aεの小さいスペーサ構造の光ファイバユニ
ットの実現が望まれている。
Aε-ε-/εc (4) When an optical fiber unit with a spacer structure is bent, it is desired to realize an optical fiber unit with a spacer structure that has a small maximum strain relaxation rate Aε.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、曲げた際の最大歪の緩和率Aεの小さいスペ
ーサ構造の光ファイバユニットを提供するもので、スペ
ーサの溝中に積層して収納する光テープ心線それぞれの
最外層を、厚さ30μm以下の静止摩擦係数の小さい物
質からなる被覆層で構成したことを特徴としている。
The present invention provides an optical fiber unit having a spacer structure with a small maximum strain relaxation rate Aε when bent. It is characterized by being composed of a coating layer made of a material with a small coefficient of static friction of 30 μm or less.

〔作 用〕[For production]

本発明は光テープ心線表面の静止摩擦係数を小さくし、
とくに0.9以下とすることにより、光フアイハユニソ
トを曲げたときの最大歪の緩和率を0.2以下とし、布
設後の光ファイバの疲労劣化、および伸び歪が原因で生
じる側圧または圧縮歪による伝送損失の増加を最小限に
抑えることができる。以下実施例により説明する。
The present invention reduces the coefficient of static friction on the optical tape core surface,
In particular, by setting it to 0.9 or less, the maximum strain relaxation rate when the optical fiber is bent is 0.2 or less, and fatigue deterioration of the optical fiber after installation and lateral pressure or compressive strain caused by elongation strain can be prevented. Increase in transmission loss can be minimized. This will be explained below using examples.

〔実施例〕〔Example〕

第1図に断面構造を示すテープ心線スペーサケーブルに
おける本発明のテープ心線を用いた実施例について歪緩
和率を測定した。第1図で1は溝付スペーサ、2は溝、
3は光テープ心線、4は押え巻テープ、5はケーブルシ
ース、6は抗張力体を示す。
The strain relaxation rate was measured for an example using the tape core wire of the present invention in a tape core wire spacer cable whose cross-sectional structure is shown in FIG. In Figure 1, 1 is a grooved spacer, 2 is a groove,
3 is an optical tape core, 4 is a pressure tape, 5 is a cable sheath, and 6 is a tensile strength member.

歪緩和率の測定は次の4種類の光テープ心線を用いたテ
ープ心線スペーサケーブルにより行った。
The strain relaxation rate was measured using a tape core wire spacer cable using the following four types of optical tape core wires.

光テープ心線I:幅1.6 nm、厚さ0.45 mm
の5心光テープ心線で、被覆材は紫外線硬化型樹脂。
Optical tape core I: width 1.6 nm, thickness 0.45 mm
This is a 5-core optical tape core, and the coating material is ultraviolet curing resin.

〔従来の光テープ心線〕[Conventional optical tape core]

光テープ心線■:光テープ心線Iの表面に着色剤を塗布
Optical tape core ■: Coloring agent is applied to the surface of optical tape core I.

〔本発明の実施例1〕 光テープ心線■:光テープ心線Iの表面に溶剤可溶性ナ
イロンを塗布。〔本発明の実施例2〕光テープ心綿■:
光テープ心線Iの表面にテフロンを塗布。〔本発明の実
施例3〕 これら4種の光テープ心線それぞれの表面の静止摩(が
係数μは次のようになる。
[Embodiment 1 of the present invention] Optical tape core ■: Solvent-soluble nylon was applied to the surface of optical tape core I. [Embodiment 2 of the present invention] Optical tape batting ■:
Apply Teflon to the surface of the optical tape core I. [Embodiment 3 of the present invention] The coefficient μ of static friction on the surface of each of these four types of optical tape cores is as follows.

光テープ心線1.  II、  III、 IVをそれ
ぞれ収納した第1図に断面構造を示す溝付スペーサ1の
外径が9mmφ、ケーブルシース外径が14mmφのテ
ープ心線スペーサケーブルを試作した。次いで、これら
4種類のテープ心線スペーサケーブルを、径500 m
mφのマンドレルに順次200mm長ずつ巻き付けてい
き、それぞれのテープ心線スペーサケーブルの最外層に
位置する光テープ心線の#1〜#5の5心について、長
さの変化を位相法を用いてモニタした。このとき試料4
種類の光テープ心線とテープ心線スペーサケーブルを両
端部で固定し、変調周波数は500MHzとした。得ら
れた波形よりスペーサ構造における最大歪ε℃を求め、
静止摩擦係数μにおける歪の緩和率Aε(川を算出した
。その結果を第2図に示す。第2図から解るように緩和
率A5 (/i)は次式で表すことができる。
Optical tape core wire 1. A tape core spacer cable was prototyped in which the outer diameter of the grooved spacer 1, whose cross-sectional structure is shown in FIG. 1, was 9 mmφ and the outer diameter of the cable sheath was 14 mmφ. Next, these four types of tape core spacer cables were made into a diameter of 500 m.
Wrap each 200 mm length around a mφ mandrel, and use the phase method to measure the change in length for the five fibers #1 to #5 of the optical tape cores located in the outermost layer of each tape core spacer cable. I monitored it. At this time, sample 4
A variety of optical tape cores and a tape core spacer cable were fixed at both ends, and the modulation frequency was set to 500 MHz. Determine the maximum strain ε℃ in the spacer structure from the obtained waveform,
The strain relaxation rate Aε (river) at the static friction coefficient μ was calculated. The results are shown in FIG. 2. As can be seen from FIG. 2, the relaxation rate A5 (/i) can be expressed by the following equation.

式(5)より、静止摩擦係数μ=0.9のとき緩和率A
ε(0,9)は0.2となることがわかる。
From equation (5), when the static friction coefficient μ=0.9, the relaxation rate A
It can be seen that ε(0,9) is 0.2.

次に、1種類の試料のテープ心線スペーサケーブルを用
い、曲げ径200 mmφで湾曲し、そのときの曲げに
よる伝送損失の変化を実測した。実測結果を第3図に示
す。
Next, one type of sample tape core wire spacer cable was bent to a bending diameter of 200 mm, and the change in transmission loss due to bending was actually measured. The actual measurement results are shown in Figure 3.

従来の静止摩擦係数が3.21の光テープ心線■を用い
たテープ心線スペーサケーブルの場合、最小〜最大(値
)で0.2〜0.6の10失増がみられた。
In the case of a conventional tape fiber spacer cable using an optical tape fiber (2) with a coefficient of static friction of 3.21, a 10 loss increase of 0.2 to 0.6 was observed from the minimum to the maximum (value).

これに対し、本発明による静止摩擦係数がそれぞれ0.
89.0.65.0,44の光テープ心線U、  II
l、  ■を用いたテープ心線スペーサケーブルの場合
、損失増は認められない。
In contrast, the static friction coefficient according to the present invention is 0.
89.0.65.0,44 optical tape cable U, II
In the case of tape core spacer cables using 1 and 2, no increase in loss was observed.

以上の本発明の実施例による実測結果から、スペーサ構
造の光ファイバユニットに用いる光テープ心線表面の静
止摩擦係数μを0.9以下にすることにより、光ファイ
バユニットを曲げた際の最大歪の緩和率A5を0.2以
下にし、歪を充分小さく抑えることができ、また曲げに
対する伝送損失特性の優れた光ファイバユニットを得る
ことができ下とすることにより、被覆材のヤング率など
の物理的特性に与える影響の小さいことを確認した。
From the above actual measurement results according to the embodiments of the present invention, it has been found that by setting the static friction coefficient μ of the surface of the optical tape used in the spacer-structured optical fiber unit to 0.9 or less, the maximum strain when the optical fiber unit is bent is reduced. By setting the relaxation rate A5 of 0.2 or less, strain can be suppressed to a sufficiently low level, and an optical fiber unit with excellent transmission loss characteristics against bending can be obtained. It was confirmed that the effect on physical properties was small.

なおこの層厚は30μm以下の薄い層であることから、
寸法的にも、従来の低静止摩擦係数の層を設けない従来
の光テープ心線と殆ど変らない。
In addition, since this layer is a thin layer with a thickness of 30 μm or less,
Dimensionally, it is almost the same as a conventional optical tape core without a conventional low static friction coefficient layer.

なお以上述べた実施例では、低静止摩擦係数の被覆I響
をテープ心線最外層両面に施した例であるが、一方の面
のみに施しても本発明においては同等であり、−態様で
ある。
In the embodiments described above, a coating with a low coefficient of static friction is applied to both sides of the outermost layer of the tape core wire, but it is equivalent in the present invention even if it is applied only to one side. be.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、テープ心線の最外
層に静止摩擦係数を0.9以下とする被覆層を設け、光
ファイバユニットを曲げた際の最大歪の緩和率を0.2
以下とし、歪を小さくすることにより、布設後の長期間
にわたり曲がりによる光ファイバの疲労劣化、および伸
び歪が原因で生じる側圧または圧縮歪による伝送損失の
増加を最小限に抑えることができる。
As described above, according to the present invention, a coating layer having a static friction coefficient of 0.9 or less is provided on the outermost layer of the ribbon core, and the relaxation rate of maximum strain when the optical fiber unit is bent is 0.9. 2
By setting the strain as follows and reducing the strain, it is possible to minimize fatigue deterioration of the optical fiber due to bending over a long period of time after installation, and increase in transmission loss due to lateral pressure or compressive strain caused by elongation strain.

また最外層の層厚を30μm以下とすることにより、被
覆材のヤング率などの物理的特性に与える影響を少くす
るとともに、寸法的にも低静止摩擦係数の被覆を施さな
い従来のテープ心線と変らない。
In addition, by setting the thickness of the outermost layer to 30 μm or less, the influence on the physical properties such as the Young's modulus of the coating material is reduced, and it is also dimensionally similar to conventional tape cores without coating with a low coefficient of static friction. It's no different.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は歪緩和率を測定したテープ心線スペーサケーブ
ルの断面構造、第2図は従来および本発明によるテープ
心線の摩擦係数と緩和率の実測結果、第3図は従来およ
び本発明によるテープ心線の静止摩擦係数と曲げによる
伝送損失増加実測結果である。 1・・・/l■付スペーザ、2・・・溝、3・・・光テ
ープ心線、4・・・押え巻テープ、5・・・ケーブルシ
ース、6・・・抗張力体 特許出願人 住友電気工業株式会社 (外1名) 代理人 弁理士 玉 蟲 久五部 第 1 図 I/πp止ff4擦(縄(側 テープノし線のHJ!!係数と引和率の実測[結果筒 
2 図 1/静止摩擦係紋(μ) テープIL線の静止摩擦係数と曲げによる損失増力0実
浸1結果 第 3 図
Fig. 1 shows the cross-sectional structure of the tape cable spacer cable whose strain relaxation rate was measured, Fig. 2 shows the actual measurement results of the friction coefficient and relaxation rate of the tape cable according to the conventional and the present invention, and Fig. 3 shows the results of the conventional and the present invention. This is the actual measurement result of the static friction coefficient of the tape core wire and the increase in transmission loss due to bending. 1... Spacer with/l ■, 2... Groove, 3... Optical tape core wire, 4... Holder winding tape, 5... Cable sheath, 6... Tensile strength body patent applicant Sumitomo Denki Kogyo Co., Ltd. (1 other person) Agent Patent attorney Tama Mushi Kyugobe No. 1 Figure I/πp stop ff4 rub (rope (HJ!! coefficient of side tape knotted wire!! Actual measurement of pulling sum ratio [result tube
2 Figure 1/ Static friction lock (μ) Static friction coefficient of tape IL wire and loss due to bending 0 actual immersion 1 results Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)棒状スペーサの外周面に螺旋状に設けた複数条の
溝中に、複数本のテープ状光ファイバ心線を棒状スペー
サの径方向に重ねた積層体を収納してなる光ファイバユ
ニットにおいて、 前記テープ状光ファイバ心線それぞれの最外層は、 厚さ30μm以下の静止摩擦係数の小さい物質による被
覆層を施してなる 光ファイバユニット。
(1) In an optical fiber unit in which a laminate in which a plurality of tape-shaped optical fiber cores are stacked in the radial direction of the bar-shaped spacer is housed in a plurality of grooves spirally provided on the outer peripheral surface of the bar-shaped spacer. , an optical fiber unit in which the outermost layer of each of the tape-shaped optical fiber cores is coated with a coating layer of a material having a small coefficient of static friction and having a thickness of 30 μm or less.
(2)前記被覆層は着色剤、テフロンまたは溶剤可溶性
ナイロンからなる特許請求の範囲第1項記載の光ファイ
バユニット。
(2) The optical fiber unit according to claim 1, wherein the coating layer is made of a colorant, Teflon, or solvent-soluble nylon.
(3)前記テープ状光ファイバ心線それぞれの表面の静
止摩擦係数が0.9以下からなる特許請求の範囲第1項
記載の光ファイバユニット。
(3) The optical fiber unit according to claim 1, wherein the surface of each of the tape-shaped optical fiber cores has a coefficient of static friction of 0.9 or less.
(4)前記テープ状光ファイバ心線それぞれの被覆の最
外層から2層目の被覆層が紫外線硬化型樹脂からなる特
許請求の範囲第1項、第2項または第3項記載の光ファ
イバユニット。
(4) The optical fiber unit according to claim 1, 2 or 3, wherein the second coating layer from the outermost layer of the coating of each of the tape-shaped optical fiber cores is made of an ultraviolet curable resin. .
(5)前記テープ状光ファイバ心線の最外層の被覆層を
前記テープ状光ファイバ心線の一方の面にのみ施してな
る特許請求の範囲第1項、第2項、第3項または第4項
記載の光ファイバユニット。
(5) Claims 1, 2, 3 or 3, wherein the outermost coating layer of the tape-shaped optical fiber is applied only to one surface of the tape-shaped optical fiber. The optical fiber unit according to item 4.
JP60226300A 1985-10-11 1985-10-11 Optical fiber unit Granted JPS6289915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226300A JPS6289915A (en) 1985-10-11 1985-10-11 Optical fiber unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226300A JPS6289915A (en) 1985-10-11 1985-10-11 Optical fiber unit

Publications (2)

Publication Number Publication Date
JPS6289915A true JPS6289915A (en) 1987-04-24
JPH0578007B2 JPH0578007B2 (en) 1993-10-27

Family

ID=16843049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226300A Granted JPS6289915A (en) 1985-10-11 1985-10-11 Optical fiber unit

Country Status (1)

Country Link
JP (1) JPS6289915A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436811U (en) * 1987-08-28 1989-03-06
JPH0519150A (en) * 1991-07-11 1993-01-29 Fujikura Ltd Coated optical fiber tape and optical cable using the same
JPH06273643A (en) * 1993-03-22 1994-09-30 Hitachi Cable Ltd Optical fiber cable stabilized in low-temperature characteristic
US5524164A (en) * 1993-01-14 1996-06-04 Sumitomo Electric Industries, Ltd. Coated tape form optical fiber wire
US5561730A (en) * 1995-02-23 1996-10-01 Siecor Corporation Cable containing fiber ribbons with optimized frictional properties
JP2000113739A (en) * 1998-10-01 2000-04-21 Alcatel Communication cable network to be used in culvert duct system or originally used for other purpose
US6122426A (en) * 1997-07-15 2000-09-19 Sumitomo Electric Industries, Ltd. Optical cable and optical cable chamber element
WO2006134668A1 (en) * 2005-06-17 2006-12-21 Toyokuni Electric Cable Co., Ltd. Fiber ribbon slotted core optical fiber trunk cable and optical communication cable regional connection method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188613U (en) * 1982-06-10 1983-12-15 日本電信電話株式会社 fiber optic cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188613U (en) * 1982-06-10 1983-12-15 日本電信電話株式会社 fiber optic cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436811U (en) * 1987-08-28 1989-03-06
JPH0519150A (en) * 1991-07-11 1993-01-29 Fujikura Ltd Coated optical fiber tape and optical cable using the same
US5524164A (en) * 1993-01-14 1996-06-04 Sumitomo Electric Industries, Ltd. Coated tape form optical fiber wire
JPH06273643A (en) * 1993-03-22 1994-09-30 Hitachi Cable Ltd Optical fiber cable stabilized in low-temperature characteristic
US5561730A (en) * 1995-02-23 1996-10-01 Siecor Corporation Cable containing fiber ribbons with optimized frictional properties
US6122426A (en) * 1997-07-15 2000-09-19 Sumitomo Electric Industries, Ltd. Optical cable and optical cable chamber element
JP2000113739A (en) * 1998-10-01 2000-04-21 Alcatel Communication cable network to be used in culvert duct system or originally used for other purpose
WO2006134668A1 (en) * 2005-06-17 2006-12-21 Toyokuni Electric Cable Co., Ltd. Fiber ribbon slotted core optical fiber trunk cable and optical communication cable regional connection method

Also Published As

Publication number Publication date
JPH0578007B2 (en) 1993-10-27

Similar Documents

Publication Publication Date Title
JP3001117B2 (en) Optical cable and its manufacturing method
JP3282640B2 (en) Submarine optical cable
JPS58111736A (en) Pressure detector
JPS6289915A (en) Optical fiber unit
US4826279A (en) Optical fiber unit
JPS5999411A (en) Connection and repair of optical fiber cable
JPH10319284A (en) Spacer type optical fiber cable
JP3805407B2 (en) Optical cable having U-shaped carrier with improved crushing performance
JPH0926534A (en) Optical fiber combined aerial wire
US4441309A (en) Zero torque helically wrapped cable
JPS6298314A (en) Optical fiber unit
JPH03137607A (en) Coated optical fiber
JP2579615B2 (en) Optical fiber composite cable
WO1999052116A1 (en) Coaxial cable, multicore cable, and electronics using them
JP2867939B2 (en) Optical fiber cable core fixing method
CA1176092A (en) Helically wrapped cable
JP3584619B2 (en) Optical cable and method for manufacturing the same
JP2514047Y2 (en) Optical fiber composite optical fiber for overhead ground wire
JPS6265006A (en) Loose type optical fiber cable
JPS60177312A (en) Manufacture of optical fiber cable
JP3006493B2 (en) Metal tube type light unit
JPH11305086A (en) Optical fiber unit and optical fiber cable using the same
JPH08262296A (en) Optical fiber cable
JP3354325B2 (en) Multi-core optical fiber cable
JPS632008A (en) Resin coated optical fiber strand

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term