JPS6289711A - Acrylonitrile polymer fine particle aggregate and production thereof - Google Patents

Acrylonitrile polymer fine particle aggregate and production thereof

Info

Publication number
JPS6289711A
JPS6289711A JP9563686A JP9563686A JPS6289711A JP S6289711 A JPS6289711 A JP S6289711A JP 9563686 A JP9563686 A JP 9563686A JP 9563686 A JP9563686 A JP 9563686A JP S6289711 A JPS6289711 A JP S6289711A
Authority
JP
Japan
Prior art keywords
acrylonitrile
particles
acrylonitrile polymer
fine particle
particle aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9563686A
Other languages
Japanese (ja)
Other versions
JPH0556762B2 (en
Inventor
Teruhiko Sugimori
輝彦 杉森
Fumio Suzuki
文男 鈴木
Naoyuki Fukahori
深堀 直之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Publication of JPS6289711A publication Critical patent/JPS6289711A/en
Publication of JPH0556762B2 publication Critical patent/JPH0556762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/122Pulverisation by spraying
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/38Coatings with pigments characterised by the pigments
    • D21H19/42Coatings with pigments characterised by the pigments at least partly organic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/50Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by form
    • D21H21/52Additives of definite length or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/18Homopolymers or copolymers of nitriles
    • C08J2333/20Homopolymers or copolymers of acrylonitrile

Abstract

PURPOSE:To obtain the titled fine particle aggregate useful as a filler for electrostatic recording material, etc., having low hydrophilic nature, improved weather resistance, whiteness, etc., by grinding acrylonitrile aggregated polymer particles satisfying a specific condition, classifying and pulverizing. CONSTITUTION:Firstly, polymer particles which have >=95wt% copolymerization amount of acrylonitrile, 1-8 reduced viscosity, 0.1-2mu particle diameters and contain no sulfonic group obtained by aqueous suspension polymerization method are aggregated, to give acrylonitrile aggregated polymer particles having >=10mu volume-average particle diameter. Then, the particles are ground and classified to give the aimed fine particle aggregate having 1-5mu volume-average particle diameter and <=0.05% number content of particles having >=8mu particle diameter. The grinding of the polymer particles is preferably carried out by blowing jet air flow from a jet air flow inlet 11 to a grinding zone 13 and making raw material particle collide with themselves while rotating them.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は酸化チタン、シリカゲル、カオリン、クレーな
どの無機系充填剤に代えて使用しうるアクリロニトリル
を主成分とする重合体からなる均一な微粒子及びその製
造方法に関するものである。 酸化チタン、シリカゲル、カオリン等の無機系充填剤は
耐薬品性、耐候性に優れており、その微粒子化技術も進
んでおり種々の用途分野で利用されている。しかし、こ
nらの無機充填剤はその製造工程上、強酸性物質となっ
ており、砥用光填剤として用いた場合、紙の長期保存に
よって紙の黄変現象や紙質の劣化金招くことが大きな社
会問題となってさている。また情報化社会における紙の
使用tの増大に伴い、加えられた無機系充填剤の重さに
よる紙の重さは、その印刷工程、輸送分野でも大きな問
題となってきており、無機系充填剤に代えた有機充填剤
使用による上記種々の問題点を改良する試みがなされて
いる。 ま次静電記録紙の誘電体記録層中にも、当該層の表面凹
凸性付与のため、無機質充填剤が加えられているが、こ
nら無機質充填剤は親水性物質であるため、誘電体層の
絶縁性を阻害し、その静電記録特性の低下を招くことが
知られており、このような不都合の生じにぐい充填剤の
開発が望まれている。 〔従来の技術〕 特公昭49−31753号公報には、ポリアクリロニト
リルを溶解しない溶剤、例えばメタノール、エタノール
、フタノール、シクロヘキサ/、トルエン、キシレン、
水等の溶剤中でアクリロニトリルkN合し、得られた重
合体全ボールミル、ローラーミル等の物理的分散法にて
分散処理して均一な微粒子状重合体を得る方法が開示さ
ルている。この方法によって得られるアクリロニトリル
系重合体粒子の平均径は第1図(イ)に示す如く通常的
10〜40μの不規則な形状を有する粒子であり、この
重合体粒子は溶媒中でボールミルやローラーミルの如き
物理的分散処理により平均粒子径が約6〜20μの粒子
まで徴用化することはできるが、有機重合体微粒子とし
て要求さnる平均粒子径5J1以下の重合体粒子とする
ことは難しく、粒子径分布も1〜20μの範囲と極めて
広く五機光填剤の特性からこの径の有機重合体の分級に
よる粒径分布の均一化は極めて難しい現状にある。 特公昭57−31732号公報にはカチオン濃度003
〜3グラムイオン/ /−−H2Ofxル水中でアクリ
ロニトリル金主成分とする不飽和化合物を、自生圧を発
生する12(Ic以上の温度で攪拌下に重合し、生成す
るアクリロニトリル系富含体中に少なくとも2 X 1
0=モル/グラム重合体以上のスルホン酸基’kA人せ
しめるとともに、1〜2000μの粒子径の実質的に溶
融状態にある重合体部の水性分散体を形成せしめた後、
冷却するアクリロニトリル系微粒子N合体の製造方法が
示されている。 この方法によると粒径の均一なアクリロニトリル系重合
体微粒子が得られるが、水性媒体中でアクリロニトリル
糸1合体の溶融滴を形成せしめることが必安なため、ア
クリロニトリル系重合体中のアクリロニトリルの共N 
9割合は93重を憾以下とすることが必要である。それ
故、得られ之アクリロニトリル糸重合体粒子の耐熱性が
十分でないこと、充填剤として必要な白炭が十分でない
ことが問題点として指摘さnている。 更に、この方法によって得らnるアクリロニトリル系重
合体粒子中にはスルホノ酸基又はその塩が2 X 10
−Sモル/fポリマー以上なる割合で含まれており、比
較的親水性の高いものとなるため、静電記録体形成用有
機充填剤として用い友場合には好ましいものでなく、更
に親水性の低いアクリロニトリル系重合体微粉の出現が
望まれている。 〔発明が解決しようとする問題点〕 従来無機充填剤に代えて使用しうる有機系充填剤として
開発されてきた技術では、平均粒子径が5μ以下で、粗
大粒子を含まない有機樹脂微粒子を作ることが極めて欺
しいか、或いは親水性基や極性基を多量に含む特定の樹
脂からの微粒子集合体が作れるのみであった。 本発明者等は、稿々のアクリロニトリル系1合体につい
て超微粉化の検討を実施した処、特定の構成からなるア
クリロニトリル系重合体を粉砕分級して得られる特定の
微粉が静電記録体等の充填剤として優れた効果を発揮す
ることを見い出し、本発明を完成した。 本発明の要旨とするところは、アクリロニトリルの共重
合量が95重量%以上であり、スルホン酸基を実質的に
含量ない還元粘度1.0〜aOなる重合体よりなり体積
平均粒子径が1〜5μにあり、8μを越える径の粒子の
数含有率が1105L4以下であること全特徴とするア
クリロニトリル系重合体微粒子集合体及びその製造法に
ある。 本発明のアクリロニトリル系重合体を構成する単量体は
アクリロニトリルを95重量係以上含有するものであり
、得らnる重合体の分子量を示す還元粘度(ポリマー濃
度α5%ジメチルホルムアミド溶液を用いて25℃で測
定した粘度)は1.0〜&0なる範囲にあるものである
。 本発明の微粉体を構成するアクリロニトリルの共重合量
が95重量%未満の重合体は本発明で用−るアクリロニ
トリル系重合体に比べ熱可塑性を示すと共に硬度、耐薬
品性が不足し、充填剤として必須の要件である白変及び
耐候性、耐光性が低いものとなる。還元粘度が1.0未
満のアクリロニトリル系重合体は脆い傾向が′j)9、
一方還元粘度がaOを越えて大きな重合体からは粒子径
が5μ以下の均一な微粒子体とすることが難しい。 本発明のアクリロニトリル系重合体微粒子集合体を構成
するアクリロニトリル系重合体中には、スルホン酸基が
実質的に含まれていないこと、とくに、5×10−s当
量/lポリマー禾満であること、更に好ましくは2 X
 10−”当量/lポリマーであることが必要である。 アクリロニトリル系重合体中のスルホン酸基含量が5×
10−Sモル/lポリマーより大きな重合体より作られ
たアクリロニトリル系重合体粉末は親水性に富んだもの
となり易く、塗料用添加剤として用めた場合には、塗膜
に親水性を与える傾向が強く、塗膜の劣化を起す要因と
なり易い。また紙用添加剤として用い友場合も、紙質自
体が酸性となり長期保存中に紙質の劣化を17tすこと
となる。また、静電記録紙用充填剤として用いた際には
、画像濃度、解像度の優れた静電記録紙とすることがで
きない。このような観点より本発明で用いるアクリロニ
トリル系重合体中にはスルホン酸基が実質的に含まれな
いこと、より詳しくはスルホン酸基@量が5×10−s
当1に/fポポリー、とくに2 X 10−5当t/l
ポリマー禾満なる含有量とするのがよい。 アクリロニトリルと5mft%以下なる割合で共重合し
うる他の共重合可能なビニルモノマーとしてはメチルメ
タクリレート、メチルアクリレート、エチルアクリレー
ト、塩化ビニル、酢酸ビニル、スチレン、α−メチルス
チレン、マレイノ酸、マレイン酸アミド、Nフェニル置
換マレイミドなど全率げることができる。 本発明によって得られるアクリロニトリル系重合体倣粒
子は体積平均粒子径が1〜5μの範囲にあり8μを越え
る径の粒子の数含有率が(105%以下、好ましくは、
体積平均粒径が1.5〜4μの範囲にあり8μを越える
径の粒子の数含有率がno 2%以下であることが必要
である。平均粒子径が1μよりも小さな微粒子体の集合
体は塗料や紙コーテイング剤用の艶消し用充填剤として
用いる場合には、期待した程の艶消し効果を奏すること
ができず、紙コーテイング剤としては筆記性、押印性に
優れた書写面を形成することができにくくなる。 一方平均粒子径が5μを越えるアクリロニトリル系重合
体粒子の重合体は粒子径自体が荒すぎ、このような粒子
径の充填剤を用いて得られた塗膜は肌荒れが目立ち美観
に優れた塗膜全形成することができない。またこのよう
なアクリロニトリル系重合体を紙コーティング用充填剤
として用いて作られたコーテイング紙もやはり筆記性、
押印性を良好なものとすることができない。 このような傾向は8pk越える大きな径を有する粒子が
105%を超えて含まれていると顕著となる。このこと
は、例えば、アクリロニトリル系重合体粒子を球状物と
仮定し次場合、径が2.5μの粒子の最大断面積は4.
9μ2であるのに対し、径8μの粒子の最大断面積は5
[12μ2、径10μの粒子の最大断面積は7a5μ2
と、粒子径の拡大率がZ4倍、4倍と拡大するのに対し
て断面積は夫々1α5倍、16倍と急拡大してゆくこと
が認めら詐るのであり、8μを越える粒子が(10ss
t越えて宮まnる平均粒子径1〜5μのアクリロニトリ
ル系重合体微粒子集合体はその充填剤としての特性が損
われる。 上述し友如く、径の大きな粒子がわずかに含1Aている
アクリロニトリル系重合体微粒子の特注を改良するには
8μを越える径を有する粒子の含有率tα05%以下、
好ましくは1102チ以下とすれば、その特性は著るし
く改良され友ものとすることができるのであるが、とく
に記録密度が8本/Wt−越える解像度を備えることが
要求される静電記録体製造用充填剤として、当該重合体
粒子を用いる際には、更に10μを越える径の粒子数含
有率が微粒子粒径分布測定装置(コールタ−エレクトロ
ニクス社製コールタ−カウンターにて測定)にて測定し
た粒子数50万個当950ケ以下とするのがよく、かく
の如き特性を有するアクリロニトリル糸重合体粒子を用
いて作られた静電記録体は16本/wmの高密度の記録
ぞ度taUする静電記録体とすることができる。 また上述した特性を備えた本発明のアクリロニトリル系
重合体微粒子集合体を塗料用充填剤として用いることに
より形成される塗膜はプッやフィッシュアイなどの塗装
欠陥のない耐候性良好な塗膜とすることができる。 本発明全実施するに際して用いるアクリロニトリル系重
合体の重合方法としては酸化還元重合触媒を用いた水性
懸濁重合法或いは特願昭59−135552号、同59
−133553号に示した如き水溶性有機溶媒と水と全
特定割合で混合した水性溶媒中でパーオキサイド触媒に
て1合法し、アクリロニトリル95〜100g量係他の
共重合可能なビニルモノマー5gfi1以下で、スルホ
ン酸基を実質的に含んでいない還元粘度1.0〜a o
 oz合体とするのがよい。 上記1合方法によって得た重合体は第1図(イ)に示す
如く粒子径01〜2μの微細な一次重合体粒子が重合過
程で相互に結合した多孔質状の体積平均粒子径が約20
〜40μの凝集重合体粒子となっている。この凝集1合
体粒子はボールミル、ハンマーミル等、従来の粒体微粉
化手段によっては粒子径が5μ以下の微粒子集合体に粉
砕することはできない。 本発明のアクリロニトリル系重合体微粒子は、粉砕ゾー
ンが第3図(至)に示す如く衝撃粉砕部を有せず粉砕ゾ
ーンにジェット気流導入口(ハ)よりジェット気流を回
転ジェット気流が生ずるように吹込み、原料粉末供給口
より粉砕ゾーンに供給し、粉末に回転力を与えかつ粉末
同士の衝突によって粉砕する方法によつで、粉砕時にお
ける重合体の発熱現象を効率よく防止すると共に粉体の
回転力と粉体同士の衝突力によって凝集状重合体粒子が
極めて効率よく解砕され、本発明の体積平均粒径が1〜
5μ、8μを越える径t−Wする粒子数含有率がαaS
S以下、好ましくは体積平均粒子径1.5〜4μであり
、8μを越える径を有する粒子教官V率がαo.02%
以下のアクリロニトリル系重合体粒子集合体を作ること
ができる。 第3図(イ)は本発明で用いる解砕式粉砕機の一例を示
す粉砕部平面図であり、(ロ)はY−X断面図である。 第5図中α埠は、粉体の円周運動を加速するとともに、
気流の乱れを生じさせて、粉体同士の衝突頻度を増加さ
せる几めの圧縮空気の導入口、α3は粉砕ゾーン、α◆
は粉体を粉砕ゾーンに押込むための圧縮空気の導入口、
o3Fi粉体供給口、αQは粉体を圧縮空気で加速する
ためのベンチュリー管であり、(ロ)は粉砕された微粉
の排出口である。 さらに本発明においては第4図に示す如き、衝撃型粉砕
機とサイクロン方式の分級器とを併用し、この両者を特
定条件下で使用して上記アクリロニトリル系重合体粒子
全開枠粉砕することによっても目的とする性能を備えた
アクリロニ) +フル系1合停機粒子集合物を得ること
ができる。 第4図(’I)は本発明で用いる衝撃型粉砕機の一例を
示す粉砕部平面図であり、(ロ)はX−X断面図である
。第4図中eυはジェット気流導入口、に)はノズル噴
射口、(至)は原料粉体供給口、(ハ)は粒体流速加速
部、(イ)は粒体粉砕衝撃壁、翰は粉砕分級室であり、
上記の衝撃壁(イ)は粉砕室内を流れるジェット気流の
流れ方向と逆方向へ回転する機能を備えた回転リングで
あることがよい。 このタイプの装置を用いる場合には、200m/ 86
0以上の高速気流にてアクリロニトリル系重合体粒子を
加速し、衝撃粉砕壁に衝突させ。 凝集状態のアクリロニトリル系重合体粒子全開枠するの
が好ましい。ここで用いる高速気流の流速が200 m
/ sea未満である場合には凝集状態のアクリロニト
リル系重合体粒子の開砕かしにくくなる傾向にあり、5
μ以上の粒径をもつ粒子含有率が30憾以上のものしか
得られず、8μ以上の粒子径をもつ粒子含有率も10幅
以上と極めて粒子径分布の大きなものとなる。これに対
し、流速200m/sec以上の高速気流を用いること
により、5μ以上の粒子径會有する粒子含有率が10〜
15%、8μ以上の粒子径tVする粒子含有率が1〜5
4で体積平均粒子径が3〜5μの微粒子集合体として得
られるようになる。 このようにして得られた微粒子集合体り分級機で処理さ
れ、目的とする体積平均粒子径t−有し、かつ8μを越
える粒子径の粒子の数含有率がαaSS以下となるもの
が得られる。 分級機としてはサイクロン式等のものが挙げられるが、
例えば粉砕機と分級機が合体しtタイプ、即ち、ジェッ
ト気流にてアクリロニトリル系重合体粉本粒子同士を衝
突させて粉砕するとともに、旋回にともなう遠心力によ
り粉砕室内の粉本を分級する方法でもよい。 又、サイクロン方式の分級機においては、分級室内の流
体速度即ち微粒子集合体の速度としてt半径01m当り
80m/sec以上とするのが好ましい。 〔本発明の効果〕 本発明によって得られたアクリロニトリル系重合体粒子
は、体積平均粒子径が1〜5μの範囲にあり、8μを越
える径の粒子数含有率がα05係以下、好ましくは体積
平均粒径が1.5〜4μであり、8μを越える径の粒子
数含有率が102%以下であり、とくに10μを越える
径を有する粒子含有量が測定個数50万個当り50ケ以
下、好ましくは30ケ以下であるため、充填剤として、
とくに、その要求特性の厳しい静電記録体用充填剤とし
て用いた場合にも有効に利用することができる。また、
用いるアクリロニトリル系重合体はアクリロニトリル重
合単位が95fil1%で、スルホン酸基含有量がcA
、OX 10−’当量/lポリマー以下、とくに2X1
0−’当量/lポリマーのものを用いることにより、そ
の耐薬品性、耐水性、耐候性に富んでおり、白変も高く
、その比重も軽いこと、バインダーとの接着性も良好で
あるため塗料用充填剤や、艶消し剤としても従来用いら
れて′@友無機系光充填に代えて用いた場合、幾多の利
点を奏することができる。 以下、実施例により本発明を更に詳細に説明する。 〔実施例1〜6.比較例1〜3〕 くアクリロニトリル系重合体粉末の製造〉水性懸濁重合
法にて還元粘度23なるポリアクリロニトリル重合体を
得几。スルホン酸基含有量はt 8 X 10−5当童
/lポリマーであり、その平均粒子径は25μであった
。得られた1合体粒子の電子顕微鏡拡大写真を第1図(
イ)に示した。このアクリロニトリル系重合体粒子金、
第4図に示した粉体金粒体粉砕衝撃壁に衝突させて粉砕
する型の粉砕機とサイクロ7式分級機を用い、第1表に
示す風速にて平均粒子径20μ〜五5μのアクリロニト
リル系重合体粉末を製造しアクリロニトリル重合体粉末
〔1〕〜
[Field of Industrial Application] The present invention relates to uniform fine particles made of a polymer mainly composed of acrylonitrile that can be used in place of inorganic fillers such as titanium oxide, silica gel, kaolin, and clay, and a method for producing the same. be. Inorganic fillers such as titanium oxide, silica gel, and kaolin have excellent chemical resistance and weather resistance, and their micronization technology has advanced and is used in a variety of fields of application. However, due to the manufacturing process, these inorganic fillers are strongly acidic substances, and when used as a polishing filler, long-term storage of paper may cause yellowing of the paper and deterioration of paper quality. It has become a major social problem. In addition, with the increasing use of paper in the information society, the weight of paper due to the weight of added inorganic fillers has become a major problem in the printing process and transportation field. Attempts have been made to improve the various problems mentioned above by using organic fillers instead of . Inorganic fillers are also added to the dielectric recording layer of electrostatic recording paper in order to give the layer surface roughness, but since these inorganic fillers are hydrophilic substances, It is known that this impairs the insulation properties of the body layer, leading to a deterioration of its electrostatic recording properties, and it is desired to develop a filler that does not cause such disadvantages. [Prior art] Japanese Patent Publication No. 49-31753 discloses that solvents that do not dissolve polyacrylonitrile, such as methanol, ethanol, phthanol, cyclohexa/, toluene, xylene,
A method has been disclosed in which acrylonitrile kN is combined in a solvent such as water, and the resulting polymer is subjected to a dispersion treatment using a physical dispersion method such as a ball mill or a roller mill to obtain a uniform particulate polymer. The average diameter of the acrylonitrile polymer particles obtained by this method is usually irregularly shaped particles of 10 to 40 μm, as shown in Figure 1 (a), and these polymer particles are processed by ball milling or rolling in a solvent. Although it is possible to obtain particles with an average particle size of approximately 6 to 20μ by physical dispersion treatment such as a mill, it is difficult to obtain polymer particles with an average particle size of 5J1 or less, which is required for organic polymer fine particles. The particle size distribution is also extremely wide, ranging from 1 to 20 microns, and due to the characteristics of the optical filler, it is extremely difficult to make the particle size distribution uniform by classifying organic polymers of this size. In Japanese Patent Publication No. 57-31732, the cation concentration is 003.
~3 g ions//--H2Ofx An unsaturated compound mainly composed of acrylonitrile gold is polymerized in water with stirring at a temperature of 12 at least 2 x 1
After forming an aqueous dispersion of the polymer moiety in a substantially molten state with a particle size of 1 to 2000 μm and forming an aqueous dispersion of the polymer moiety in a substantially molten state with a particle size of 1 to 2000 μm.
A method for producing a cooled acrylonitrile-based fine particle N coalescence is shown. According to this method, fine acrylonitrile polymer particles with a uniform particle size can be obtained, but since it is necessary to form molten droplets of one acrylonitrile thread in an aqueous medium, co-N of acrylonitrile in the acrylonitrile polymer is required.
For the 9 ratio, it is necessary to keep the weight of 93 times lower than 93 times. Therefore, problems have been pointed out that the heat resistance of the obtained acrylonitrile thread polymer particles is not sufficient and that the amount of white charcoal required as a filler is not sufficient. Furthermore, the acrylonitrile polymer particles obtained by this method contain 2×10 sulfonate groups or salts thereof.
-S mol/f polymer is contained in a ratio of more than The appearance of fine powder of acrylonitrile-based polymers with low levels of acrylonitrile is desired. [Problems to be solved by the invention] With the technology that has been developed as an organic filler that can be used in place of inorganic fillers, it is difficult to create fine organic resin particles with an average particle size of 5μ or less and no coarse particles. Either this was extremely deceptive, or only fine particle aggregates could be made from specific resins containing large amounts of hydrophilic or polar groups. The present inventors conducted a study on ultrafine pulverization of the acrylonitrile polymer described in the paper, and found that a specific fine powder obtained by crushing and classifying an acrylonitrile polymer with a specific composition was used for electrostatic recording materials, etc. It was discovered that it exhibits excellent effects as a filler, and the present invention was completed. The gist of the present invention is that the copolymerized amount of acrylonitrile is 95% by weight or more, the polymer is made of a polymer that does not substantially contain sulfonic acid groups and has a reduced viscosity of 1.0 to aO, and has a volume average particle diameter of 1 to 1. The present invention provides an acrylonitrile polymer fine particle aggregate and a method for producing the same, characterized in that the number content of particles having a diameter of 5μ and exceeding 8μ is 1105L4 or less. The monomer constituting the acrylonitrile polymer of the present invention contains acrylonitrile of 95% or more by weight, and the reduced viscosity (polymer concentration The viscosity (measured at °C) is in the range of 1.0 to &0. A polymer with a copolymerized amount of less than 95% by weight of acrylonitrile constituting the fine powder of the present invention exhibits thermoplasticity and lacks hardness and chemical resistance compared to the acrylonitrile-based polymer used in the present invention. As a result, white discoloration, weather resistance, and light resistance, which are essential requirements, will be low. Acrylonitrile polymers with a reduced viscosity of less than 1.0 tend to be brittle'j)9,
On the other hand, it is difficult to form uniform fine particles with a particle diameter of 5 μm or less from a polymer having a reduced viscosity exceeding aO. The acrylonitrile polymer constituting the acrylonitrile polymer fine particle aggregate of the present invention should contain substantially no sulfonic acid groups, and in particular, should have a content of 5 x 10-s equivalent/l polymer. , more preferably 2X
It is necessary that the sulfonic acid group content in the acrylonitrile-based polymer is 5×
Acrylonitrile polymer powders made from polymers larger than 10-S mol/l polymer tend to be highly hydrophilic, and when used as paint additives, tend to impart hydrophilic properties to paint films. is strong and is likely to cause deterioration of the paint film. Furthermore, when used as a paper additive, the paper quality itself becomes acidic and the paper quality deteriorates by 17 tons during long-term storage. Furthermore, when used as a filler for electrostatic recording paper, it is impossible to produce electrostatic recording paper with excellent image density and resolution. From this point of view, the acrylonitrile polymer used in the present invention should contain substantially no sulfonic acid groups, more specifically, the amount of sulfonic acid groups should be 5 x 10-s.
To 1/f poly, especially 2 x 10-5 t/l
It is preferable that the content of the polymer be sufficient. Other copolymerizable vinyl monomers that can be copolymerized with acrylonitrile at a ratio of 5 mft% or less include methyl methacrylate, methyl acrylate, ethyl acrylate, vinyl chloride, vinyl acetate, styrene, α-methylstyrene, maleic acid, and maleic acid amide. , N-phenyl-substituted maleimide, etc. The acrylonitrile polymer imitation particles obtained by the present invention have a volume average particle diameter in the range of 1 to 5μ, and the number content of particles with a diameter exceeding 8μ is (105% or less, preferably,
It is necessary that the volume average particle diameter is in the range of 1.5 to 4μ, and the number content of particles with a diameter exceeding 8μ is no more than 2%. When aggregates of fine particles with an average particle diameter of less than 1 μm are used as a matting filler for paints or paper coating agents, they cannot produce the expected matting effect and are not used as paper coating agents. It becomes difficult to form a writing surface with excellent writing and stamping properties. On the other hand, polymers of acrylonitrile polymer particles with an average particle size exceeding 5μ have a particle size that is too rough, and coating films obtained using fillers with such particle diameters have noticeable surface roughness, resulting in coating films with excellent appearance. Unable to fully form. Additionally, coated paper made using such acrylonitrile polymer as a filler for paper coating also has good writability,
Good imprintability cannot be obtained. Such a tendency becomes remarkable when particles having a large diameter exceeding 8 pk are contained in an amount exceeding 105%. For example, assuming that the acrylonitrile polymer particles are spherical, the maximum cross-sectional area of particles with a diameter of 2.5 μm is 4.5 μm.
9μ2, whereas the maximum cross-sectional area of a particle with a diameter of 8μ is 5
[12μ2, the maximum cross-sectional area of a particle with a diameter of 10μ is 7a5μ2
This falsifies the fact that while the particle diameter expansion rate increases by Z4 times and 4 times, the cross-sectional area rapidly expands by 1α5 times and 16 times, respectively, and particles exceeding 8μ ( 10ss
Aggregates of fine acrylonitrile polymer particles with an average particle diameter of 1 to 5 μm that exceed t will lose their properties as fillers. As mentioned above, in order to improve the custom-made acrylonitrile polymer fine particles containing only a small amount of large diameter particles, the content of particles with a diameter exceeding 8μ is tα 05% or less,
If it is preferably 1102 or less, its characteristics will be significantly improved and it can be used as a companion, but it is especially suitable for electrostatic recording materials that are required to have a recording density of more than 8 lines/Wt. When using the polymer particles as a manufacturing filler, the number content of particles with a diameter exceeding 10μ was further measured using a fine particle size distribution measuring device (measured with a Coulter Counter manufactured by Coulter Electronics). The number of particles is preferably 950 or less per 500,000 particles, and an electrostatic recording material made using acrylonitrile thread polymer particles having such characteristics has a high density recording density of 16 particles/wm. It can be an electrostatic recording medium. Furthermore, the coating film formed by using the acrylonitrile polymer fine particle aggregate of the present invention having the above-mentioned properties as a paint filler has good weather resistance and is free from coating defects such as bulges and fish eyes. be able to. The method for polymerizing the acrylonitrile polymer used in carrying out the present invention is an aqueous suspension polymerization method using a redox polymerization catalyst, or Japanese Patent Application No. 135552/1989, No. 59
-133553, using a peroxide catalyst in an aqueous solvent mixed with a water-soluble organic solvent and water in specific proportions, and using 95 to 100 g of acrylonitrile and 5 gfi1 or less of other copolymerizable vinyl monomers. , reduced viscosity 1.0 to ao, which does not substantially contain sulfonic acid groups
It is better to combine oz. As shown in Figure 1 (a), the polymer obtained by the above 1-polymerization method has a porous structure in which fine primary polymer particles with a particle size of 01 to 2 μm are bonded to each other during the polymerization process, and the volume average particle size is about 20 μm.
It is agglomerated polymer particles of ~40μ. These agglomerated particles cannot be pulverized into a fine particle aggregate having a particle size of 5 μm or less by conventional particle pulverization means such as a ball mill or a hammer mill. The acrylonitrile polymer fine particles of the present invention have a crushing zone that does not have an impact crushing part as shown in FIG. This method efficiently prevents heat generation in the polymer during pulverization, and also reduces the amount of powder generated. The agglomerated polymer particles are very efficiently crushed by the rotational force and the collision force between the powders, and the volume average particle diameter of the present invention is
The number content of particles with diameter t-W exceeding 5μ, 8μ is αaS
S or less, preferably a volume average particle diameter of 1.5 to 4μ, and a particle having a diameter exceeding 8μ, the instructor V ratio is αo. 02%
The following acrylonitrile polymer particle aggregate can be made. FIG. 3(A) is a plan view of the crushing part showing an example of the crushing type crusher used in the present invention, and FIG. 3(B) is a Y-X sectional view. In Fig. 5, α-bar accelerates the circumferential motion of the powder and
α3 is the crushing zone, α◆
is a compressed air inlet for forcing the powder into the grinding zone;
The o3Fi powder supply port, αQ, is a venturi tube for accelerating the powder with compressed air, and (b) is the discharge port for the pulverized fine powder. Furthermore, in the present invention, as shown in FIG. 4, an impact type crusher and a cyclone type classifier are used in combination, and both are used under specific conditions to crush the acrylonitrile polymer particles in a fully open frame. It is possible to obtain an acrylonitrile (acryloni) + full-type 1-coupling machine particle aggregate with the desired performance. FIG. 4('I) is a plan view of a crushing part showing an example of an impact type crusher used in the present invention, and FIG. 4(B) is a sectional view taken along line XX. In Fig. 4, eυ is the jet stream introduction port, 2) is the nozzle injection port, (to) is the raw material powder supply port, (c) is the granule flow rate acceleration section, (a) is the granule crushing impact wall, and It is a crushing and classification chamber,
The above-mentioned impact wall (a) is preferably a rotating ring having a function of rotating in a direction opposite to the flow direction of the jet stream flowing inside the crushing chamber. When using this type of equipment, 200m/86
Acrylonitrile polymer particles are accelerated with a high-speed airflow of 0 or more and collided with the impact crushing wall. It is preferable that the acrylonitrile polymer particles in agglomerated state are completely opened. The flow velocity of the high-speed airflow used here is 200 m
/sea, it tends to be difficult to break up the acrylonitrile polymer particles in the aggregated state,
Only particles having a particle size of 8 μ or more can be obtained with a particle content of 30 or more, and the particle size distribution is extremely large, with a width of 10 or more. On the other hand, by using a high-speed air flow with a flow rate of 200 m/sec or more, the content of particles with a particle size of 5 μ or more can be reduced to 10 to 10.
15%, particle content with particle diameter tV of 8 μ or more is 1 to 5
4, a fine particle aggregate having a volume average particle diameter of 3 to 5 μm can be obtained. The fine particle aggregate thus obtained is processed in a classifier to obtain a particle having the desired volume average particle diameter t- and in which the number content of particles with a particle diameter exceeding 8μ is αaSS or less. . Examples of classifiers include cyclone type, etc.
For example, there is a T-type method in which a crusher and a classifier are combined, that is, the acrylonitrile polymer powder particles are crushed by colliding with each other using a jet stream, and the powder particles in the crushing chamber are classified by centrifugal force caused by rotation. good. Further, in a cyclone type classifier, it is preferable that the fluid velocity in the classification chamber, that is, the velocity of the particle aggregate, be 80 m/sec or more per 01 m of radius t. [Effects of the present invention] The acrylonitrile polymer particles obtained by the present invention have a volume average particle diameter in the range of 1 to 5 μ, and the content of particles with a diameter exceeding 8 μ is below the α05 coefficient, preferably in the volume average The particle size is 1.5 to 4μ, the content of particles with a diameter exceeding 8μ is 102% or less, and in particular, the content of particles with a diameter exceeding 10μ is 50 or less per 500,000 particles measured, preferably Since it is less than 30 pieces, it can be used as a filler.
In particular, it can be effectively used as a filler for electrostatic recording materials with strict requirements. Also,
The acrylonitrile polymer used has 95fil1% of acrylonitrile polymer units and a sulfonic acid group content of cA.
, OX 10-' equivalent/l polymer or less, especially 2X1
By using a 0-' equivalent/l polymer, it has excellent chemical resistance, water resistance, weather resistance, high white discoloration, low specific gravity, and good adhesion with binders. It has been conventionally used as a filler for paints and as a matting agent, and when used in place of inorganic light fillers, it can bring many advantages. Hereinafter, the present invention will be explained in more detail with reference to Examples. [Examples 1 to 6. Comparative Examples 1 to 3 Production of Acrylonitrile Polymer Powder A polyacrylonitrile polymer having a reduced viscosity of 23 was obtained by an aqueous suspension polymerization method. The sulfonic acid group content was t 8 X 10-5 molecules per liter of polymer, and the average particle size was 25μ. Figure 1 shows an enlarged electron microscope photograph of the single coalescing particle obtained (
A). This acrylonitrile polymer particle gold,
Acrylonitrile with an average particle diameter of 20 μm to 55 μm was produced using a pulverizer of the type shown in Figure 4 that crushes powder gold particles by colliding with an impact wall and a Cyclo 7 classifier at the wind speed shown in Table 1. Acrylonitrile polymer powder [1] ~

〔9〕を得之。得らnた粒子体集合物の電子懸
微境拡大写真?第1図(ロ)に示した。 粉体特性全測定し之結果を第1表に示した。 く静τ匡記録体への応用〉 アクリロニトリル系重合体粉末〔1〕〜〔9]各50部
をメチルエチルケトン200部中に投入し、々拌器にて
分散せしめたところ人々のアクリロニトリル系重合体粉
末はメチルエチルケトン中に良好に分散し、目視検査で
は段床同士の7礎集kcよる塊の生成は生じなかった。 メチルメタクリレート40部とブチルメタクリレート6
0部なる共会合比のアクリル樹脂の30%トルエン@液
を用意し、上記、種々のアクリロニトリル重合体粉末の
メチルエチルケトン分散液音別えることによジ、誘電記
録体形成用液を作った。 高分子カチオン処理を施した基紙上に上記種々の誘電体
記録体形成用溶液tl−塗布した後乾燥し、静電記録体
を作成した。 こnら静電記録体の表面抵抗率全200,60%RH,
100VDCT測定した結果を@2表に示した。 また、こt′L、ら静電記録体に8本/Iff+及び1
6本/5lII+ノ線密度k +Tする固定マルチヘッ
ドより負の信号電荷全印加し、正電荷をもった現像粉に
よる現mt行ない静電画像形成性テスト全行った結果を
第2表に示した。 〔比較例4〕 水性懸濁重合法により、アクリロニトリル93重量係、
酢酸ビニル7it係からなる単重体を重合し、還元粘度
2.5、スルホン酸基含有量2、2 X 10−5当量
/fポリマーなる平均粒子径30μのアクリロニトリル
系重合体粒子を得た。 このアクリロニトリル系重合体粒子を、第3図に示した
粉体を粒体粉砕衝撃壁に衝突させて粉砕する型の粉砕機
に流速230 m/ secの高速気流により供給して
粒子を粉砕し、平均粒子径65μの粉末[10)  k
得たが、平均粒子径の小さな粉末への微粉末化は不可能
であった。又、8宋〔10〕の表面は第2図に示した如
く融着していた。 また、参考の為に粉末〔10〕を使用し、実施例1のく
静電記録体への応用〉と同様の方法で静電記録体全作成
し、その特性全測定した結果を表2に示した。 〔実施例7〜12〕 実施例1のくアクリロニトリル系重合体粉本の製造〉で
使用したのと同一の重合体粒子を図3に示した粉砕ゾー
ンを有するジェット気流により粒子体同士の衝突を起し
て粉砕する方式の粉砕機に供給して、アクリロニトリル
重合体粉末〔11〕〜〔16〕を得た。粉体物性を測定
した結果を第3表に示した。 さらに、粉末〔11〕〜(16]t−使用し、実施例1
のく静電記録体への応用〉と同様の方法で静電記録体を
作成し、その特性を測定した結果を第4表に示し次。 〔実施例13〜16〕 攪拌機、温度計を備えた2tの重合容器を窒素置換し几
後第5表に示す仕込み組成物を入れ重合を開始し友。重
合系に白濁が認められた時点より、第5表に示し次追加
溶媒を加え、追加溶媒の添加終了後さらに重合を進め7
0分後に重合を終了し友。得られたアクリロニトリル系
重合体を分離し、洗浄し乾燥したところ、平均粒子径2
0〜30μの白色の重合体粒子が得らnた。 上述の如くして得友アクリロニトリル系重合体粉末(A
)〜(D)を実施例1のくアクリロニトリル系重合体粉
末の製造〉と同様にして粉砕し、平均粒子径2.0〜五
〇なるアクリロニトリル系重合体の微粉床を得、その粒
子特性t−測測定た結果を@6表に示した。 〔実施例17〜20〕 実施例3と同一の重合法で得られた体積平均粒径20〜
30μの白色のTL甘せ粒子を、実施例7と同様にして
粉砕し、体積平均粒径2〜3μのアクリロニトリル糸重
合体の微粉末を得、その粒子特性を測定した結果t−第
7表に示し友。
Obtained [9]. An enlarged photo of the electron environment of the obtained particle aggregate? It is shown in Figure 1 (b). All powder properties were measured and the results are shown in Table 1. Application to recording media> When 50 parts each of acrylonitrile polymer powders [1] to [9] were added to 200 parts of methyl ethyl ketone and dispersed with a stirrer, the acrylonitrile polymer powder was well dispersed in methyl ethyl ketone, and visual inspection showed that no lumps were formed due to the 7 bases kc of the tiers. 40 parts of methyl methacrylate and 6 parts of butyl methacrylate
A 30% toluene solution of an acrylic resin having a co-association ratio of 0 parts was prepared, and a methyl ethyl ketone dispersion of the various acrylonitrile polymer powders was mixed to prepare a dielectric recording material forming solution. The above-mentioned various dielectric recording material forming solutions tl were coated on a base paper treated with polymeric cations and dried to prepare electrostatic recording materials. These electrostatic recording materials have a total surface resistivity of 200, 60% RH,
The results of 100VDCT measurement are shown in Table @2. In addition, from this t'L, 8 lines/Iff+ and 1
All negative signal charges were applied from a fixed multi-head with a linear density of 6 lines/5l II + T, and development with positively charged developing powder was performed.The results of all electrostatic image formation tests are shown in Table 2. . [Comparative Example 4] By aqueous suspension polymerization method, acrylonitrile 93% by weight,
A monopolymer consisting of 7 liters of vinyl acetate was polymerized to obtain acrylonitrile polymer particles having a reduced viscosity of 2.5, a sulfonic acid group content of 2.2×10 −5 equivalents/f polymer, and an average particle diameter of 30 μm. The acrylonitrile polymer particles were supplied to a pulverizer of the type shown in FIG. 3, which pulverizes the powder by colliding it with a granule crushing impact wall, using a high-speed air flow at a flow rate of 230 m/sec to pulverize the particles. Powder with an average particle size of 65μ [10) k
However, it was impossible to pulverize the powder into a powder with a small average particle size. Also, the surface of 8 Song [10] was fused as shown in Figure 2. In addition, for reference, an electrostatic recording material was prepared in the same manner as in Example 1 (Application to electrostatic recording material) using powder [10], and the results of all measurements of its characteristics are shown in Table 2. Indicated. [Examples 7 to 12] The same polymer particles used in Example 1 (Production of Acrylonitrile Polymer Powder) were subjected to collisions between the particles using a jet stream having a crushing zone shown in Figure 3. The mixture was fed to a grinder that grinds and grinds to obtain acrylonitrile polymer powders [11] to [16]. The results of measuring the powder physical properties are shown in Table 3. Further, powders [11] to (16)t- were used, and Example 1
An electrostatic recording medium was prepared in the same manner as in ``Application to electrostatic recording medium'', and its characteristics were measured.The results are shown in Table 4. [Examples 13 to 16] A 2-ton polymerization vessel equipped with a stirrer and a thermometer was purged with nitrogen, and then the charging composition shown in Table 5 was added to start polymerization. From the time when cloudiness was observed in the polymerization system, the following additional solvents were added as shown in Table 5, and after the addition of the additional solvent was completed, the polymerization was continued.
Polymerization was completed after 0 minutes. When the obtained acrylonitrile polymer was separated, washed and dried, the average particle size was 2.
White polymer particles of 0 to 30 μm were obtained. Tokutomo acrylonitrile polymer powder (A
) to (D) were pulverized in the same manner as in Example 1 (Production of Acrylonitrile Polymer Powder) to obtain a fine powder bed of acrylonitrile polymer having an average particle size of 2.0 to 50, and its particle characteristics t -Measurements The results are shown in Table 6. [Examples 17 to 20] Volume average particle size 20 to 20 obtained by the same polymerization method as Example 3
30μ white TL sweetened particles were crushed in the same manner as in Example 7 to obtain a fine powder of acrylonitrile thread polymer with a volume average particle diameter of 2 to 3μ, and the particle characteristics were measured.Results t-Table 7 Show your friends.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明で用いる懸濁1合にて得之アクリ
ロニトリル糸1合体粒子の電子顕微鏡拡大写真であり、
同図(ロ)は本発明のアクリロニトリル系重合体微粒子
集合体の電子顕微鏡拡大写真、第2図は比較例の重合体
粒子の電子顕微鏡拡大写真を示す。第3図は本発明の実
施に際して用いる解砕式粉砕装置の概略図であり、(イ
)は粉砕シーツの平面図を、(ロ)は供給部のY−Y断
面図である。第4図は衝撃式粉砕装置の概略図であり、
(イ)は粉砕ゾーンの平面図を、(ロ)はそのX−X断
面図である。 11・・・・・粉体加速用圧縮空気導入口13・・・・
・粉砕ゾーン 14・・・・・粉体押込み用圧縮空気導入口15・・・
・・粉体供給口 16・・・・・ベンチュリー管 17・・・・・粉砕された微粉の排出口21・・・・・
ジェット気流導入口 22・・・・・ノズル噴射口 23・・・・・原料粉体供給口 24・・・・・粒体流速供給口 25・・・・・粒体粉砕価′s9゜ 26・・・・・扮砕分級室
FIG. 1(A) is an enlarged electron microscope photograph of the acrylonitrile thread 1 coalesced particles obtained in the suspension used in the present invention.
FIG. 2B shows an enlarged electron microscope photograph of an acrylonitrile polymer fine particle aggregate of the present invention, and FIG. 2 shows an electron microscope enlarged photograph of polymer particles of a comparative example. FIG. 3 is a schematic diagram of a crushing type crushing apparatus used in carrying out the present invention, in which (a) is a plan view of the crushing sheet, and (b) is a YY cross-sectional view of the supply section. FIG. 4 is a schematic diagram of an impact type crushing device,
(A) is a plan view of the crushing zone, and (B) is its XX sectional view. 11... Compressed air inlet for powder acceleration 13...
- Grinding zone 14... Compressed air inlet for pushing powder 15...
...Powder supply port 16...Venturi tube 17...Discharge port 21 for crushed fine powder...
Jet air flow introduction port 22...Nozzle injection port 23...Raw material powder supply port 24...Particle flow velocity supply port 25...Particle crushing value 's9゜26. ...Crushing and classification room

Claims (6)

【特許請求の範囲】[Claims] (1)アクリロニトリルの共重合量が95重量%以上で
あり、スルホン酸基を実質的に含まない還元粘度1.0
〜8.0なる重合体よりなり体積平均粒子径が1〜5μ
にあり、8μを越える径の粒子の数含有率が0.05%
以下であることを特徴とするアクリロニトリル系重合体
微粒子集合体。
(1) The copolymerized amount of acrylonitrile is 95% by weight or more, and the reduced viscosity is 1.0, which does not substantially contain sulfonic acid groups.
~8.0 and the volume average particle diameter is 1~5μ
The number content of particles with a diameter exceeding 8μ is 0.05%.
An acrylonitrile polymer fine particle aggregate characterized by the following:
(2)アクリロニトリルの共重合量が95重量%以上で
あり、スルホン酸基を実質的に含まない還元粘度1.0
〜8.0なる重合体よりなり体積平均粒子径が1.5〜
4μにあり、8μを越える径の粒子の数含有率が0.0
2%以下であることを特徴とする特許請求の範囲第1項
記載のアクリロニトリル系重合体微粒子集合体。
(2) The copolymerized amount of acrylonitrile is 95% by weight or more, and the reduced viscosity is 1.0, which does not substantially contain sulfonic acid groups.
Made of a polymer with a volume average particle size of 1.5 to 8.0
4μ, and the number content of particles with a diameter exceeding 8μ is 0.0
The acrylonitrile polymer fine particle aggregate according to claim 1, wherein the acrylonitrile polymer fine particle aggregate is 2% or less.
(3)水性懸濁重合法にて製造したアクリロニトリルの
共重合度が95重量%以上で、スルホン酸基を実質的に
含まない還元粘度1.0〜8.0で、粒子径0.1〜2
μの重合体粒子が凝集した体積平均粒子径10μ以上の
アクリロニトリル系重合体粒子を、粉砕分級により体積
平均粒子径が1〜5μにあり、8μを越える径の粒子の
数含有率が0.05%以下なる微粒子集合体とすること
を特徴とするアクリロニトリル系重合体微粒子集合体の
製造法。
(3) Acrylonitrile produced by aqueous suspension polymerization has a degree of copolymerization of 95% by weight or more, substantially contains no sulfonic acid groups, has a reduced viscosity of 1.0 to 8.0, and has a particle size of 0.1 to 8.0. 2
Acrylonitrile polymer particles with a volume average particle diameter of 10 μ or more, which are agglomerated polymer particles of μ, are pulverized and classified to have a volume average particle diameter of 1 to 5 μ, and the number content of particles with a diameter exceeding 8 μ is 0.05 % or less, a method for producing an acrylonitrile polymer fine particle aggregate.
(4)200m/sec以上のジェット気流にてアクリ
ロニトリル系重合体粉末を加速して粉砕室へ供給し、粉
砕室内の粉砕衝撃壁に衝突させて粉砕することを特徴と
する特許請求の範囲第3項記載のアクリロニトリル系重
合体微粒子集合体の製造法。
(4) The acrylonitrile polymer powder is accelerated by a jet stream of 200 m/sec or more, supplied to the crushing chamber, and is crushed by colliding with a crushing impact wall in the crushing chamber. A method for producing an acrylonitrile polymer fine particle aggregate as described in 1.
(5)ジェット気流にてアクリロニトリル系重合体粉末
粒子同士を衝突させて粉砕することを特徴とする特許請
求の範囲第3項記載のアクリロニトリル系重合体微粒子
集合体の製造方法。
(5) A method for producing an acrylonitrile polymer fine particle aggregate according to claim 3, characterized in that the acrylonitrile polymer powder particles are pulverized by colliding with each other in a jet stream.
(6)ジェット気流にてアクリロニトリル系重合体粉末
を加速し、粉砕室内で旋回させ、該アクリロニトリル系
重合体粉末粒子同士を衝突させて粉砕するとともに、旋
回にともなう遠心力により粉砕室内のアクリロニトリル
系重合体粉末を分級することを特徴とする、特許請求の
範囲第3項記載のアクリロニトリル系重合体微粒子集合
体の製造方法。
(6) Accelerate the acrylonitrile polymer powder with a jet stream, swirl it in the grinding chamber, collide the acrylonitrile polymer powder particles with each other, and grind them. 4. A method for producing an acrylonitrile polymer fine particle aggregate according to claim 3, which comprises classifying the combined powder.
JP9563686A 1985-05-09 1986-04-24 Acrylonitrile polymer fine particle aggregate and production thereof Granted JPS6289711A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP60-98717 1985-05-09
JP9871785 1985-05-09
JP60-131511 1985-06-17
JP13151185 1985-06-17

Publications (2)

Publication Number Publication Date
JPS6289711A true JPS6289711A (en) 1987-04-24
JPH0556762B2 JPH0556762B2 (en) 1993-08-20

Family

ID=26439843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9563686A Granted JPS6289711A (en) 1985-05-09 1986-04-24 Acrylonitrile polymer fine particle aggregate and production thereof

Country Status (5)

Country Link
JP (1) JPS6289711A (en)
AU (1) AU583918B2 (en)
CA (1) CA1293235C (en)
DE (1) DE3615155A1 (en)
GB (1) GB2175591B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529564A (en) * 1998-11-10 2002-09-10 バイエル アクチェンゲゼルシャフト Thermoplastic molding compositions with improved mechanical properties
JP2011006505A (en) * 2009-06-23 2011-01-13 Toyobo Co Ltd Organic lusterless material
JP2015166473A (en) * 2015-06-15 2015-09-24 東洋紡株式会社 Organic lusterless material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075743B2 (en) * 1986-12-22 1995-01-25 ダイキン工業株式会社 Tetrafluoroethylene copolymer powder and method for producing the same
AUPN388195A0 (en) * 1995-06-29 1995-07-20 Glover, Mark Richard Water grinding of particulate material using high and ultra high pressure water processing
AUPN829796A0 (en) * 1996-02-23 1996-03-21 Bengold Holdings Pty Ltd Improved grinding method and apparatus for performing same
FI19991742A (en) * 1999-06-24 2000-12-24 Neste Chemicals Oy In dry applicable polymer pigment
DE102005042607A1 (en) * 2005-09-07 2007-03-08 Basf Ag polymerization
CN104761671A (en) * 2015-03-31 2015-07-08 东华大学 Preparation method of polyacrylonitrile nano latex particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026099A (en) * 1983-07-25 1985-02-08 株式会社リンレイ Bleaching agent
JPS6114201A (en) * 1984-06-29 1986-01-22 Soken Kagaku Kk Production of fine polymer powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026099A (en) * 1983-07-25 1985-02-08 株式会社リンレイ Bleaching agent
JPS6114201A (en) * 1984-06-29 1986-01-22 Soken Kagaku Kk Production of fine polymer powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529564A (en) * 1998-11-10 2002-09-10 バイエル アクチェンゲゼルシャフト Thermoplastic molding compositions with improved mechanical properties
JP4906190B2 (en) * 1998-11-10 2012-03-28 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Thermoplastic polymer and molding composition and molded body containing the same
JP2011006505A (en) * 2009-06-23 2011-01-13 Toyobo Co Ltd Organic lusterless material
JP2015166473A (en) * 2015-06-15 2015-09-24 東洋紡株式会社 Organic lusterless material

Also Published As

Publication number Publication date
DE3615155A1 (en) 1986-11-13
AU583918B2 (en) 1989-05-11
CA1293235C (en) 1991-12-17
GB2175591A (en) 1986-12-03
GB2175591B (en) 1989-01-25
GB8610974D0 (en) 1986-06-11
JPH0556762B2 (en) 1993-08-20
AU5707786A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
JP3329884B2 (en) Granular pigment composite material and production method thereof
DE102005051851B4 (en) Method of manufacturing toner and toner
JPS6289711A (en) Acrylonitrile polymer fine particle aggregate and production thereof
JPH05505643A (en) Method for forming fine polymer particles and polymer-encapsulated particles
KR100233070B1 (en) Polyester composition, process for preparing same and film formed using same
US4342602A (en) Dulling agent on the basis of wax for varnishes, and process for the manufacture thereof
DE102005044600B4 (en) Method of manufacturing toner
JP2002363291A (en) Biodegradable polyester resin fine particle and biodegradable polyester resin composite fine particle
JP2007121665A (en) Positive charge type encapsulated inorganic fine particles, method for manufacturing same, and toner
US20050017105A1 (en) Superfine powders and methods for manufacture of said powders
DE102005046765B4 (en) Process for producing a toner and toner
JPH05117443A (en) Antiblocking agent
JPH0542326B2 (en)
JPH10158213A (en) Aromatic dicarboxylic acid fine powder
JP2007121663A (en) Negative charge type encapsulated silica, method for manufacturing same, and toner
JPH0262122B2 (en)
JP2000080293A (en) Thermoplastic resin composition, its production and biaxially oriented film composed of the composition
US20090011237A1 (en) Superfine powders and their methods of manufacture
JPH052232B2 (en)
JPS6160767A (en) Water based paint
JPH02189359A (en) Polyester composition and its production
JPH0547568B2 (en)
JPS582803B2 (en) Tenkazaigan Yuunetsukasoseijiyushi no Seizouhou
Horiuchi et al. Preparation of pigment–polymer hybrid particles for plastic colorants by dry‐impact blending method
JPH0699060A (en) Glycol based dispersion of calcium carbonate