JPS6289402A - Controlling method for electric railcar - Google Patents

Controlling method for electric railcar

Info

Publication number
JPS6289402A
JPS6289402A JP60229301A JP22930185A JPS6289402A JP S6289402 A JPS6289402 A JP S6289402A JP 60229301 A JP60229301 A JP 60229301A JP 22930185 A JP22930185 A JP 22930185A JP S6289402 A JPS6289402 A JP S6289402A
Authority
JP
Japan
Prior art keywords
voltage
regenerative
variable
induction motor
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60229301A
Other languages
Japanese (ja)
Inventor
Noriaki Nakamoto
中本 紀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60229301A priority Critical patent/JPS6289402A/en
Publication of JPS6289402A publication Critical patent/JPS6289402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the efficiency of a regenerative braking by reducing the regenerative amount upon decreasing of a regenerative load and reducing a slip frequency in the state that the regenerative amount cannot be increased. CONSTITUTION:When a regenerative load decreases during the regenerative brake control of an induction motor 5 so that the voltage 8 of a filter capacitor 3 exceeds a throttle starting voltage 72 for decreasing a motor voltage VM, VM/fINV (fINV: inverter frequency) decreases. At this time when VM/fINV becomes a limiting value 73 or lower capable of suppressing the overvoltage at voltage overvariation time due to the application and the interruption of the load, it reduces the slip frequency fS. Thus, the regenerative brake does not fail by the protection of the overvoltage against the overvariation while the voltage 8 is clamped to an overvoltage protection set value 71.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、誘導電動機によって駆動される電気車の回
生制動制御の安定化を図るようにした電気車の制御方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a control method for an electric vehicle that stabilizes regenerative braking control of an electric vehicle driven by an induction motor.

〔従来の技術〕[Conventional technology]

第2図は可変電圧可変周波数インバータ(以下インバー
タと略称する)で誘導電動機を制御する電気車の回路図
である。図において、(11は所定の電力を有する架線
(1m)とこの架線(1m)から電力を受ける集電器(
1b)からなる電源、(2)はフィルタリアクトル、1
3)はフィルタコンデンサ、14)はインバータ、(6
)は誘導電動機である。
FIG. 2 is a circuit diagram of an electric vehicle in which an induction motor is controlled by a variable voltage variable frequency inverter (hereinafter referred to as an inverter). In the figure, (11 is a catenary (1 m) having a predetermined power and a current collector (1 m) that receives power from this catenary (1 m).
1b) is a power supply, (2) is a filter reactor, 1
3) is a filter capacitor, 14) is an inverter, (6)
) is an induction motor.

このような電気車は、フィルタリアクトル(2)とフィ
ルタコンデンサ(3)からなるフィルタ回路によって、
電源(11からインバータ(41又はインバータ(4)
から電源(11への外乱を吸収する。一般に電気車の回
生制動は次式を基に制御されている。
Such an electric car uses a filter circuit consisting of a filter reactor (2) and a filter capacitor (3) to
Power supply (11 to inverter (41 or inverter (4)
It absorbs disturbances from the power source (11).Generally, regenerative braking of electric vehicles is controlled based on the following equation.

’工NV −’r −fs         ・” I
llただし、fzNv :インバータ周波数(誘導電動
機の回転界磁周波数) 、 fr :回転子周波数。
'Engineering NV -'r -fs ・”I
ll However, fzNv: inverter frequency (rotating field frequency of induction motor), fr: rotor frequency.

fs:すべり周波数、 VM:電動機電圧、 IM :
電動機電流、P:回生出力、 k、 :定数である。
fs: slip frequency, VM: motor voltage, IM:
Motor current, P: regenerative output, k: constant.

すテわち、回転磁界の周波数を回転子周波数ur)より
小さくすることによって、制動が作用する。このとき、
インバータ(4)の損失を無視すると、1B1式の回生
電力(p)が得られ、@2図に矢印で示すように、N源
(1)へ電力(p)を帰還することができる。
That is, braking is effected by making the frequency of the rotating magnetic field smaller than the rotor frequency (ur). At this time,
Ignoring the loss of the inverter (4), regenerative power (p) of the 1B1 type is obtained, and the power (p) can be fed back to the N source (1) as shown by the arrow in Figure @2.

ところが、この回生電力(P)を十分に消費する負荷が
あれば、電源(11側電圧及びフィルタコンデンサ(3
)の電圧は上昇(7f?いが、回生電力(Piが負荷の
電力より多いときは、電源(1)及びフィルタコンデン
サ(31の電圧は上昇をつづけることになる。このまま
電圧上昇が継続すると、インバータ(4)および電源(
1)と接続されている機器は、過電圧による保樽装首が
動作し、各機器は停止することになる。
However, if there is a load that consumes enough regenerative power (P), the power supply (11 side voltage and filter capacitor (3
) voltage increases (7f?) However, when the regenerated power (Pi is greater than the load power), the voltage of the power supply (1) and filter capacitor (31) will continue to rise.If the voltage continues to rise, Inverter (4) and power supply (
1) The devices connected to the device will be locked down due to overvoltage, and each device will stop.

このため、一般には誘導電動機(5(の−次電圧制御に
おいては、すべり周波数(f8)は固定されているため
電動機電圧(vM)を減少させ、(2+ 、 +31式
より回生電力CP+を減少させて、インバータ(4)等
の各機器が動作可能な最大電圧で動作するように電動機
電圧(VM)を制御するようにしている。これにより、
定常的には、最大電圧にクランプされるように制御さね
、負荷が投入されたときには、電源電圧が減少するため
、電動機電圧(VM)を増加させて最大電圧となるよう
に回生電力(P)を増加させる。このように、回生制動
時には電力の同生量をそのときの状態で常に最大になる
よう制御さねでいる。
For this reason, in general, in the -order voltage control of an induction motor (5), since the slip frequency (f8) is fixed, the motor voltage (vM) is decreased, and the regenerative power CP+ is decreased from the formula (2+, +31). Therefore, the motor voltage (VM) is controlled so that each device such as the inverter (4) operates at the maximum voltage at which it can operate.
In steady state, control is performed so that the voltage is clamped to the maximum voltage, and when a load is applied, the power supply voltage decreases, so the motor voltage (VM) is increased and the regenerative power (P ) increases. In this way, during regenerative braking, the amount of generated electric power is always controlled to be the maximum in the current state.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の電気車制御方法は以上のように行わわるので、電
源電圧の変化によっては、回生電力制御の応答よりもさ
きにインバータの過電圧保樽装首が動作1〜、回生制動
が不能となる。このため回生効率が低下し、以後の運転
には空気制動を用いなければならないという問題点があ
った。
Since the conventional electric vehicle control method is performed as described above, depending on a change in the power supply voltage, the inverter's overvoltage keeper is activated before the regenerative power control response occurs, and regenerative braking becomes disabled. Therefore, there was a problem in that the regeneration efficiency decreased and air braking had to be used for subsequent operation.

この発明は上記のような問題点を解消するためになさね
たもので、回生電力は可能な限り発生させ1.過渡変動
でインバータを停止させないようにした電気車の制御方
法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to generate as much regenerative power as possible.1. The purpose of this invention is to obtain a control method for an electric vehicle that prevents the inverter from stopping due to transient fluctuations.

r問題点を解決するための手段〕 この発明に係る電気車の制御方法は、誘導電動機の回生
制動制御中に可変電圧可変周波数インバータの電源側電
圧が可変電圧可変周波数インバータが動作可能な最大甫
圧値に近(なると、誘導電動機の電圧を減少して可変電
圧可変周波数インバータの電源側電圧のト昇を抑制し、
可変電圧可変同波数インバータのW源側電圧の上昇を抑
制できないときは誘導電動機のすべり周波数を所定の割
合で減少[、て、すべり周波数の減少率を保持するよう
にしたものである。
Means for Solving Problems] The electric vehicle control method according to the present invention is such that during regenerative braking control of an induction motor, the power supply side voltage of a variable voltage variable frequency inverter reaches the maximum voltage at which the variable voltage variable frequency inverter can operate. When the voltage approaches the voltage value, the voltage of the induction motor is reduced to suppress the rise in the voltage on the power supply side of the variable voltage variable frequency inverter.
When the increase in the voltage on the W source side of the variable voltage variable same wave number inverter cannot be suppressed, the slip frequency of the induction motor is reduced at a predetermined rate [so that the rate of decrease in the slip frequency is maintained.

〔作用〕[Effect]

この発明における電気車の制御方法は、回生制動の効率
を向上する。
The electric vehicle control method according to the present invention improves the efficiency of regenerative braking.

〔実症例〕[Actual case]

式(2)の電動機電圧(VM)/インバータ周波数の値
を変えたときの誘導電動機の特性を第3図に示す。
FIG. 3 shows the characteristics of the induction motor when the value of motor voltage (VM)/inverter frequency in equation (2) is changed.

図において、曲線(61)をVM/f rNy −k 
ax 、曲線(62)をVM/fINV = k111
2とすると、k2x > k22のときのすべり周波数
・電動機′嵯流特性で、すべり周波数(fs)をf81
からfs2に変化させたとき、同じ特性曲線での変化は
、曲線(61)の方が曲線(62)より大きい。このこ
とは、逆に制御の安定という点からすると、曲線(62
)の方が安定であることを示している。これは、VM/
fruvの変化に対する電動機雷流の変化が小さいこと
による。
In the figure, curve (61) is defined as VM/f rNy −k
ax, curve (62) as VM/fINV = k111
2, the slip frequency (fs) is set to f81 by the slip frequency/motor's current characteristics when k2x > k22.
When changing from fs2 to fs2, the change in the same characteristic curve is larger for curve (61) than for curve (62). Conversely, from the point of view of control stability, this means that the curve (62
) is more stable. This is VM/
This is because the change in motor lightning current with respect to the change in fruv is small.

以下、すべり周波数・電動機電流特性を第3図の曲線(
62)とした電気車制御方法を図について説明する。@
1図において、(71)は過電圧保護設定値、(+72
)は電動機電流しぼりこみ開始電圧、(73)は過電圧
抑制の限界値、(8)はフィルタコンデンサ電圧(EF
C)の経時曲線、(91は誘導電動機(5)のVM/f
工NVの経時曲線、(10)目すべり周波数(f8)の
経時曲線、(1υけ回生出力(Piの経時曲線である。
Below, the slip frequency and motor current characteristics are expressed by the curve in Figure 3 (
62) will be explained with reference to the figures. @
In Figure 1, (71) is the overvoltage protection setting value, (+72
) is the motor current throttling start voltage, (73) is the overvoltage suppression limit value, and (8) is the filter capacitor voltage (EF
C) time course curve, (91 is the VM/f of the induction motor (5)
(10) A time curve of the slip frequency (f8), and a time curve of (1υ regenerative output (Pi)).

このよう庁第1図において、時刻11で回生負荷が減少
するとコンデンサ電圧(81が上昇する。このコンデン
サ電圧(8(が電動機電圧(vM)を減少させるし2了
りこみ開始常圧(72)をこλると、VM/rBvを減
少させることにより、コンデンサ電圧(8]か過電圧保
護設定値以−4二となるのを抑制する。
In Figure 1, when the regenerative load decreases at time 11, the capacitor voltage (81) increases. Therefore, by reducing VM/rBv, the capacitor voltage (8) is prevented from becoming -42 below the overvoltage protection setting value.

このとき、時刻も2で減少させたVM/fxuv (g
+が負荷の投入・しゃ断による電圧過渡変動時の過電圧
を抑制することがで去る限界値(73)以下になると、
すべり周波数(fs)を減少さすることにより、制御の
安定化を図っている。こねによって、コンデンサ電圧(
81が、過電圧保護設定値(γ1)にクランプさねでい
る間の過渡変動に対1.でも、過電圧の保護により回生
ブレーキを失効させることが々い。時刻t3で回生負荷
が復帰し次とAKけVM/frsvを元に戻17、回生
量を増加させることが可能である。
At this time, VM/fxuv (g
When + becomes less than the limit value (73), which suppresses overvoltage during voltage transient fluctuations due to load turning on/off,
Control is stabilized by reducing the slip frequency (fs). By kneading, the capacitor voltage (
81 is clamped to the overvoltage protection setting value (γ1). However, overvoltage protection often causes regenerative braking to fail. At time t3, the regenerative load is restored, and then AK and VM/frsv are returned to their original values17, making it possible to increase the amount of regeneration.

こねによって、回生効率の増大の人ならず、空僚11i
11勅を減らすことによるプレーギシュー等の摩耗を減
少させることかできる。
By kneading, not only people but also Airmen 11i can increase regeneration efficiency.
11 By reducing the number of blades, it is possible to reduce the wear of the play guishu, etc.

上1f実施例では、 −HVM/fTNV [91カ過
N 圧抑制の限界値(73)を下回るとfsを減少させ
たま\であるが、V’M/f INvi9)は回生負荷
が復帰したときに戻すことも可能である。
In the above 1f example, when -HVM/fTNV [91+N] falls below the limit value (73) for pressure suppression, fs remains decreased, but V'M/fINvi9) changes when the regenerative load returns. It is also possible to return to

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によねば、回生負荷の縮少に伴っ
て電源側電圧の上昇をVM/f :[NVを減少させる
ことによって回生量を減らL7て過電圧を抑制し、回生
量を多くとJlない状態においては、すべり周波数を減
少することにより8+制御q)安定化を図り、回生失効
を棒力醋少させ回生負荷の増大を図1にとができるので
、回生制動の効率向上を期待することかできる。
As described above, according to the present invention, as the regenerative load is reduced, the increase in the voltage on the power supply side is reduced by reducing VM/f:[NV, thereby reducing the amount of regeneration, L7 suppresses overvoltage, and increases the amount of regeneration. In a state where there is no Jl, it is possible to stabilize the 8+ control q) by reducing the slip frequency, reduce the loss of regenerative braking, and increase the regenerative load as shown in Figure 1. This improves the efficiency of regenerative braking. I can hope for it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実殉例による電気車の制御方法を
示す曲線図、第2図は電気車の制御回路図、第3図は肋
導′jlt @機の特性曲線図である。 図において、  (’71)は過電圧保護設定値、(ツ
2)Vi電動機電流1.ぼり込み開始膚圧、(73)は
過電圧抑制の限界値、(8)はフィルタコンデンサ電圧
、(91は電動機電圧とインバータ周波数の比である。 なお、@図中同一符号は同−又は相当部分を示す。
FIG. 1 is a curve diagram showing a control method for an electric vehicle according to a practical example of the present invention, FIG. 2 is a control circuit diagram of the electric vehicle, and FIG. 3 is a characteristic curve diagram of a rib conductor. In the figure, ('71) is the overvoltage protection setting value, (T2) Vi motor current 1. Skin pressure at the start of sinking, (73) is the limit value for overvoltage suppression, (8) is the filter capacitor voltage, (91 is the ratio of motor voltage to inverter frequency. In addition, the same symbol in the figure indicates the same - or equivalent part. shows.

Claims (2)

【特許請求の範囲】[Claims] (1)可変電圧可変周波数インバータで誘導電動機を制
御する電気車の制御方法において、上記可変電圧可変周
波数インバータで上記誘導電動機を回生制動制御中に、
上記可変電圧可変周波数インバータの電源側の電圧が上
記可変電圧可変周波数インバータが動作可能な最大電圧
値に近くなると、上記誘導電動機の電圧を減少させて上
記可変電圧可変周波数インバータの電源側電圧の上昇を
抑制し、上記可変電圧可変周波数インバータの電源側電
圧の上昇を抑制できないときは上記誘導電動機のすべり
周波数を所定の割合だけ減少して、上記すべり周波数の
減少率を保持することを特徴とする電気車の制御方法。
(1) In an electric vehicle control method in which an induction motor is controlled by a variable voltage variable frequency inverter, during regenerative braking control of the induction motor by the variable voltage variable frequency inverter,
When the voltage on the power supply side of the variable voltage variable frequency inverter approaches the maximum voltage value at which the variable voltage variable frequency inverter can operate, the voltage of the induction motor is decreased to increase the voltage on the power supply side of the variable voltage variable frequency inverter. and when an increase in the voltage on the power supply side of the variable voltage variable frequency inverter cannot be suppressed, the slip frequency of the induction motor is reduced by a predetermined percentage to maintain the reduction rate of the slip frequency. How to control an electric car.
(2)可変電圧可変周波数インバータの電源側電圧が所
定の値より低くなると誘導電動機のすべり周波数を減少
する前の値に戻すことを特徴とする特許請求の範囲第1
項記載の電気車の制御方法。
(2) Claim 1 characterized in that when the power supply side voltage of the variable voltage variable frequency inverter becomes lower than a predetermined value, the slip frequency of the induction motor is returned to the value before being reduced.
Method for controlling an electric vehicle as described in section.
JP60229301A 1985-10-14 1985-10-14 Controlling method for electric railcar Pending JPS6289402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229301A JPS6289402A (en) 1985-10-14 1985-10-14 Controlling method for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229301A JPS6289402A (en) 1985-10-14 1985-10-14 Controlling method for electric railcar

Publications (1)

Publication Number Publication Date
JPS6289402A true JPS6289402A (en) 1987-04-23

Family

ID=16889988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229301A Pending JPS6289402A (en) 1985-10-14 1985-10-14 Controlling method for electric railcar

Country Status (1)

Country Link
JP (1) JPS6289402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252902A (en) * 2001-02-23 2002-09-06 Railway Technical Res Inst Motor control device, and control method of electric vehicle motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252902A (en) * 2001-02-23 2002-09-06 Railway Technical Res Inst Motor control device, and control method of electric vehicle motor
JP4627902B2 (en) * 2001-02-23 2011-02-09 財団法人鉄道総合技術研究所 Electric motor control device and electric vehicle electric motor control method

Similar Documents

Publication Publication Date Title
US4315203A (en) Control system for induction motor-driven car
US4096423A (en) Direct current motor chopper propulsion system
US3781614A (en) Induction motor control system
JPS6289402A (en) Controlling method for electric railcar
JPS61203893A (en) Modulating method for pwm inverter
JPS61116905A (en) Controlling method of electric railcar
JP4627902B2 (en) Electric motor control device and electric vehicle electric motor control method
JP2551549B2 (en) Induction motor type electric vehicle controller
JP3781221B2 (en) Regenerative braking device
JP2000156991A (en) Device for varying speed of motor
JP3509020B2 (en) Torque control device
JPH01209991A (en) Control of linear induction motor
JPS6162388A (en) Controlling method of synchronous motor
JP2598898B2 (en) Induction motor drive
Allan et al. Rheostatic stabilisation of a chopper-controlled brake for traction drives
JPS62290302A (en) Induction motor-type electric rolling stock controller
JPS62201096A (en) Variable speed control device of induction motor
JPH0591793A (en) Inverter device
SU1443111A2 (en) Induction electric drive
GB2083302A (en) Variable speed electric motor drive system
SU1601723A1 (en) Reversible electric drive
JPS6223560B2 (en)
JPH0467408B2 (en)
JPS5837788U (en) Harmonic suppression control device
JPS59136005A (en) Controlling method for electric rolling stock