JP2551549B2 - Induction motor type electric vehicle controller - Google Patents

Induction motor type electric vehicle controller

Info

Publication number
JP2551549B2
JP2551549B2 JP58164126A JP16412683A JP2551549B2 JP 2551549 B2 JP2551549 B2 JP 2551549B2 JP 58164126 A JP58164126 A JP 58164126A JP 16412683 A JP16412683 A JP 16412683A JP 2551549 B2 JP2551549 B2 JP 2551549B2
Authority
JP
Japan
Prior art keywords
output
inverter
frequency
induction motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58164126A
Other languages
Japanese (ja)
Other versions
JPS6059904A (en
Inventor
棚町  徳之助
正彦 射場本
茂俊 岡松
堀江  哲
金吾 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58164126A priority Critical patent/JP2551549B2/en
Publication of JPS6059904A publication Critical patent/JPS6059904A/en
Application granted granted Critical
Publication of JP2551549B2 publication Critical patent/JP2551549B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、直流電源からインバータを介して誘導電動
機に給電し、車両を駆動する誘導電動機式電気車の制御
装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an induction motor type electric vehicle that drives a vehicle by supplying power to an induction motor from a DC power source via an inverter.

〔発明の背景〕[Background of the Invention]

最近、電気鉄道の分野でインバータ制御による誘導電
動機式電気車の開発が進められている。
Recently, in the field of electric railways, development of an induction motor type electric vehicle by inverter control has been advanced.

第1図は従来のインバータ制御による誘導電動機式電
気車の制御装置の構成を示す電気回路図であつて、1は
直流架線、2はパンタグラフ、3はリアクトルLFとコン
デンサCFからなり、架線電流ISに含まれる高調波成分を
軽減するためのフイルタ、4はパルス幅変調インバー
タ、5は誘導電動機、6は車両速度に応じた速度周波数
fn、すなわち、誘導電動機5の回転周波数を発生する手
段、7は誘導電動機5のすべりに対応するすべり周波数
fsを設定する手段、8は速度周波数fnにすべり周波数fs
を加減算して、インバータ4の動作周波数、すなわち出
力周波数f(力行時はf=fn+fs、回生時はf=fn
fs)を制御する周波数制御手段、9はコンデンサCF電圧
Ecfを検出する手段、10はコンデンサCF電圧Ecfの検出値
とインバータ4の動作周波数fにより、インバータ4の
通流率γつまりインバータ4の出力電圧を制御する電圧
制御手段である。
FIG. 1 is an electric circuit diagram showing the configuration of a conventional induction motor type electric vehicle control device by an inverter control, in which 1 is a DC overhead wire, 2 is a pantograph, 3 is a reactor L F and a capacitor C F , A filter for reducing harmonic components contained in the current I S , 4 a pulse width modulation inverter, 5 an induction motor, 6 a speed frequency according to the vehicle speed
f n , that is, means for generating the rotation frequency of the induction motor 5, and 7 is a slip frequency corresponding to the slip of the induction motor 5.
A means for setting f s , 8 is a slip frequency f s for the velocity frequency f n
Is added / subtracted to obtain the operating frequency of the inverter 4, that is, the output frequency f (f = f n + f s during power running, f = f n − during regeneration).
f s ) frequency control means, 9 is the capacitor C F voltage
Means for detecting E cf , and 10 is a voltage control means for controlling the conduction ratio γ of the inverter 4, that is, the output voltage of the inverter 4, by the detected value of the capacitor C F voltage E cf and the operating frequency f of the inverter 4.

第1図において、誘導電動機5を一定トルクで加減速
するために、誘導電動機5の磁束つまりV(電圧)/f
(周波数)と電動機電流IMが一定となるように、誘導電
動機5のV/fは架線1の電圧ESが変動しても一定となる
ように電圧制御手段10により制御し、また電動機電流IM
は指令値IMPと電流検出手段13の出力の偏差(IMP−IM
をすべり周波数設定手段7に与え、その出力(すべり周
波数)により制御する。ところが、このような制御だけ
では、本発明者らがすでに提案した特開昭57-145503号
で述べているように、インバータ4の入力電流ID(架線
1に流れる電流IS)がフイルタ回路3と共振して、電気
振動が発生する。このため、その電気振動を架線1に流
れる電流ISにより、ギヤツプ付変流器等の電気振動検出
手段11で検出し、その出力を電気振動抑制手段12に与
え、その出力により電気振動を抑制するようにインバー
タ4の動作周波数fを制御する。この電気振動抑制手段
12の具体的構成、およびこの手段による電気振動抑制動
作の詳細については、上記特開昭57-145503号を参照さ
れたい。
In FIG. 1, in order to accelerate / decelerate the induction motor 5 with a constant torque, the magnetic flux of the induction motor 5, that is, V (voltage) / f
(Frequency) and the electric motor current I M are kept constant, and the V / f of the induction motor 5 is controlled by the voltage control means 10 so that it is constant even if the voltage E S of the overhead line 1 changes. I M
Is the deviation between the command value I MP and the output of the current detection means 13 (I MP −I M ).
Is applied to the slip frequency setting means 7 and controlled by its output (slip frequency). However, with such control alone, as described in Japanese Patent Laid-Open No. 57-145503 already proposed by the present inventors, the input current I D of the inverter 4 (current I S flowing through the overhead wire 1) is filtered by the filter circuit. Resonating with 3, electric vibration is generated. Therefore, the current I S flowing through the electric oscillation in the overhead line 1, is detected by an electrical vibration detecting means 11 of the current transformer or the like with Giyatsupu provides its output to the electric vibration suppressing means 12, suppressing the electric oscillation by the output The operating frequency f of the inverter 4 is controlled so that This electric vibration suppression means
For details of the specific construction of 12 and the electric vibration suppressing operation by this means, refer to the above-mentioned JP-A-57-145503.

そして、以上のような電気振動を抑制する方法で、本
発明者らは電気振動抑制手段12のゲインを種々変えて、
電気振動が発生しない安定範囲を、架線1の電圧ESをパ
ラメータとして、実験により求めた。その結果、安定範
囲はインバータ4の動作周波数fに対して第2図のよう
に山なりとなり、またその安定範囲は架線1の電圧ES
対して第2図のように変化し、電気振動抑制手段12のゲ
インは架線1の電圧ESの高い場合(第2図の実線)が低
い場合(第2図の点線)より低くて良いことが分つた。
したがつて、電気振動抑制手段12のゲインを架線1の電
圧ESが高い場合に安定となるように、第2図の一点鎖線
に設定しても、架線1の電圧ESが低くなつた場合に電気
振動が発生することになる。また、電動機電流IM(電流
指令値IMP)をパラメータとして同様の実験を行なつた
ところ、第3図に示すように、電気振動抑制手段12のゲ
インは電動機電流IMの小さい場合(第3図の実線)が大
きい場合(第3図の点線)より低くて良いことが分つ
た。したがつて、電気振動抑制手段12のゲインを電動機
電流IMが小さい場合に安定となるように、第3図の一点
鎖線に設定しても、電動機電流IMを大きくした場合に電
気振動が発生することになる。さらに、力行と回生では
第4図に示すように、電気振動抑制手段12のゲインは回
生の場合(第4図の実線)が力行の場合(第4図の点
線)より低くて良いことが分つた。したがつて、電気振
動抑制手段12のゲインを回生の場合に安定となるよう
に、第4図の一点鎖線に設定しても、力行の場合に電気
振動が発生することになる。
Then, by the method of suppressing the electric vibration as described above, the present inventors variously change the gain of the electric vibration suppressing means 12,
A stable range in which electric vibration does not occur was experimentally obtained using the voltage E S of the overhead wire 1 as a parameter. As a result, the stable range becomes mountainous with respect to the operating frequency f of the inverter 4 as shown in FIG. 2, and the stable range changes with respect to the voltage E S of the overhead line 1 as shown in FIG. It has been found that the gain of the suppressing means 12 may be lower when the voltage E S of the overhead line 1 is high (solid line in FIG. 2) than when it is low (dotted line in FIG. 2).
Therefore, even if the gain of the electric vibration suppressing means 12 is set to the one-dot chain line in FIG. 2 so as to be stable when the voltage E S of the overhead line 1 is high, the voltage E S of the overhead line 1 is low. In this case, electric vibration will occur. In addition, when was the row summer Similar experiments motor current I M (current command value I MP) as parameters, as shown in FIG. 3, when the gain of the electrical vibration suppressing means 12 small motor current I M (No. It has been found that the solid line in FIG. 3) may be lower than the case where it is large (dotted line in FIG. 3). Therefore, even if the gain of the electric vibration suppressing means 12 is set to the one-dot chain line in FIG. 3 so as to be stable when the electric motor current I M is small, the electric vibration is generated when the electric motor current I M is increased. Will occur. Furthermore, as shown in FIG. 4 for power running and regeneration, the gain of the electric vibration suppressing means 12 may be lower in the case of regeneration (solid line in FIG. 4) than in the case of power running (dotted line in FIG. 4). Ivy. Therefore, even if the dashed line of FIG. 4 is set so that the gain of the electric vibration suppressing means 12 is stable in the case of regeneration, electric vibration is generated in the case of power running.

以上のように、従来例では、電気振動抑制手段12のゲ
インが電気車の運転条件(架線1の電圧ES、電動機電流
IM、力行と回生)に関係なく一定なので、運転条件が変
化した場合に電気振動が発生し、インバータ4の転流失
敗やトルク変動の原因となり、ひいては電気車を円滑に
運転できなくなるという欠点があつた。
As described above, in the conventional example, the gain of the electric vibration suppressing means 12 depends on the operating conditions of the electric vehicle (the voltage E S of the overhead wire 1 and the electric motor current).
Since it is constant regardless of I M , power running and regeneration), electric vibration occurs when operating conditions change, which causes commutation failure of the inverter 4 and torque fluctuation, which in turn makes it impossible to operate the electric vehicle smoothly. I got it.

〔発明の目的〕[Object of the Invention]

本発明の目的は、上記した従来技術の欠点をなくし、
直流電源の電圧、誘導電動機の電流、インバータの出力
周波数、力行と回生の運転モードなどの電気車の運転条
件が変化しても、電気振動を発生することなく安定に制
御できる誘導電動機式電気車の制御装置を提供すること
にある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art,
An induction motor type electric vehicle that can be stably controlled without generating electric vibration even if the operating conditions of the electric vehicle such as the voltage of the DC power supply, the current of the induction motor, the output frequency of the inverter, and the operation modes of power running and regeneration are changed. It is to provide the control device.

〔発明の概要〕[Outline of Invention]

上記目的を達成するため、本発明は、直流電源からフ
ィルタ回路を介して給電されるインバータと、このイン
バータによって付勢される車両駆動用誘導電動機と、こ
の誘導電動機の回転周波数とすべりに対応するすべり周
波数を加減算し上記インバータの動作周波数を制御する
周波数制御手段と、上記インバータの出力電圧を制御す
る電圧制御手段と、上記直流電源から上記誘導電動機に
至る回路における電気量の振動的変動を検出する手段
と、この振動的変動を検出する手段の出力に応じて電気
振動を抑制するように上記インバータの動作周波数を調
整する手段とを備えた誘導電動機式電気車の制御装置に
おいて、上記周波数制御手段から出力される上記インバ
ータの動作周波数もしくは上記電動機回転周波数のいず
れかと、上記直流電源の電圧、上記誘導電動機に流れる
電流、および力行と回生の運転モードのうちの少なくと
も1つとから、上記動作周波数を調整する手段の出力の
ゲインがあらかじめ検出された特性に基づいて設定され
た電気振動が発生しない安定範囲に入るように上記動作
周波数を調整する手段の出力を増減する手段を設けたこ
とを特徴とする。
In order to achieve the above object, the present invention corresponds to an inverter fed from a DC power source through a filter circuit, a vehicle driving induction motor energized by the inverter, and a rotation frequency and slip of the induction motor. Frequency control means for controlling the operating frequency of the inverter by adding / subtracting the slip frequency, voltage control means for controlling the output voltage of the inverter, and detecting vibrational fluctuations in the amount of electricity in the circuit from the DC power supply to the induction motor. And a means for adjusting the operating frequency of the inverter so as to suppress the electric vibrations according to the output of the means for detecting the vibrational fluctuations. Either the operating frequency of the inverter or the motor rotation frequency output from the means, and the DC power supply From the voltage, the current flowing in the induction motor, and at least one of the powering mode and the regenerative operation mode, an electric vibration set based on a characteristic in which the gain of the output of the means for adjusting the operating frequency is detected in advance is It is characterized in that means for increasing / decreasing the output of the means for adjusting the operating frequency is provided so as to fall within a stable range where it does not occur.

〔発明の実施例〕Example of Invention

以下、本発明を図示の実施例に基づいて詳細に説明す
る。
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第5図は本発明の一実施例を示す電気回路図である。
第1図の従来例と異なるところは、電気振動抑制手段12
の出力を、コンデンサCF電圧Ecfとインバータ4の動作
周波数fにより増減する手段14Aを設けて、その出力で
インバータ4の動作周波数fを制御するようにしたこと
で、他の符号は第1図と同じである。
FIG. 5 is an electric circuit diagram showing an embodiment of the present invention.
The difference from the conventional example of FIG.
Since the means 14A for increasing / decreasing the output of the capacitor C F voltage E cf and the operating frequency f of the inverter 4 is provided, and the operating frequency f of the inverter 4 is controlled by the output, other symbols are the first. It is the same as the figure.

上記増減する手段14Aは、第6図に示すように、関数
発生器15〜17、低位優先回路18、減算器19および乗算器
20から構成されている。関数発生器15には電圧検出手段
9の出力であるコンデンサCF電圧Ecfが、また関数発生
器16,17にはそれぞれ周波数制御手段8の出力であるイ
ンバータ4の動作周波数fが入力され、それぞれ図示の
ような特性の出力を発生する。低位優先回路18では、関
数発生器15,16の各出力を入力してこれらを比較し、低
位(図の実線)の方を出力する。減算器19は低位優先回
路18の出力から関数発生器17の出力を減算して図示実線
のような出力を発生する。なお、低位優先回路18および
減算器19の出力のうちフラツト(一定)な部分は、図示
矢印のように、電圧Ecf(ES)が低い場合は上方へ、高
い場合は下方へ移動する。この減算器19の出力と上記電
気振動抑制手段12の出力を乗算器20で乗算することによ
り、第7図に示すような特性が得られる。
As shown in FIG. 6, the increasing / decreasing means 14A includes function generators 15 to 17, a low-priority circuit 18, a subtractor 19 and a multiplier.
It consists of 20. The function generator 15 is supplied with the capacitor C F voltage E cf which is the output of the voltage detection means 9, and the function generators 16 and 17 are respectively supplied with the operating frequency f of the inverter 4 which is the output of the frequency control means 8, Each produces an output with the characteristics shown. The low-order priority circuit 18 inputs the outputs of the function generators 15 and 16, compares them, and outputs the low-order one (solid line in the figure). The subtractor 19 subtracts the output of the function generator 17 from the output of the low-priority circuit 18 to generate an output as shown by the solid line in the figure. Incidentally, flats (constant) part of the output of the low priority circuit 18 and the subtractor 19, as shown by the arrow, when the voltage E cf (E S) is low upward, is higher moves downward. By multiplying the output of the subtractor 19 and the output of the electric vibration suppressing means 12 by the multiplier 20, the characteristic as shown in FIG. 7 is obtained.

この実施例の動作を第7図により説明する。電気振動
抑制手段12とその出力を増減する手段14Aを含めたゲイ
ンは、第7図の一点鎖線G1と二点鎖線G2に示すように、
インバータ4の動作周波数fが低いところと高いところ
では低くなるように、また架線1の電圧ESが高い場合に
は低く(第7図の一点鎖線G1)、架線1の電圧ESが低い
場合には高く(第7図の二点鎖線G2)となるように設定
する。そうすると、架線1の電圧ESが変化して、安定範
囲が、架線1の電圧ESの高い場合の第7図の実線から架
線1の電圧ESの低い場合の第7図の点線へと変化して
も、電気振動抑制手段12とその出力を増減する手段14A
を含めたゲインが、架線1の電圧ESの変化に応じて、架
線1の電圧ESの高い場合の第7図の一点鎖線G1から架線
1の電圧ESの低い場合の第7図の二点鎖線G2へ変化する
ので、電気振動抑制手段12とその出力を増減する手段14
Aを含めたゲインは第7図に示すように、常に安定範囲
の中にあり、従来例のように電気振動が発生することは
なくなる。なお、電気振動抑制手段12の出力を増減させ
るには、コンデンサCF電圧Ccf、インバータ4の動作周
波数fだけでなく、架線1の電圧ES、速度周波数fnでも
良いことはいうまでもない。
The operation of this embodiment will be described with reference to FIG. The gain including the electric vibration suppressing means 12 and the means 14A for increasing / decreasing the output of the electric vibration suppressing means 12 is as shown by the one-dot chain line G 1 and the two-dot chain line G 2 in FIG.
The operating frequency f of the inverter 4 should be low where it is low and high, and low when the voltage E S of the overhead line 1 is high (dashed line G 1 in FIG. 7) and the voltage E S of the overhead line 1 is low. In this case, it is set to be high (two-dot chain line G 2 in FIG. 7). Then, the voltage E S of the overhead line 1 changes, and the stable range changes from the solid line of FIG. 7 when the voltage E S of the overhead line 1 is high to the dotted line of FIG. 7 when the voltage E S of the overhead line 1 is low. Even if it changes, the electric vibration suppressing means 12 and means 14A for increasing or decreasing its output
Gain, including, in response to the change of the voltage E S of the overhead line 1, the seventh is lower from the one-dot chain line G 1 of FIG. 7 in the case of high voltage E S of overhead wire 1 of the voltage E S of the overhead line 1 Figure since changes to the two-dot chain line G 2, means 14 for increasing or decreasing the electrical vibration suppression means 12 and the output
The gain including A is always in the stable range as shown in FIG. 7, and electric vibration does not occur unlike the conventional example. In addition, in order to increase or decrease the output of the electric vibration suppressing means 12, not only the capacitor C F voltage C cf and the operating frequency f of the inverter 4, but also the voltage E S of the overhead wire 1 and the speed frequency f n may be used. Absent.

以上のように、第5図の実施例によれば、架線1の電
圧ESが変化しても、電気振動を発生することなく安定に
制御でき、インバータ4が転流失敗したり、トルク変動
が発生したりすることはなくなるという効果がある。
As described above, according to the embodiment of FIG. 5, even if the voltage E S of the overhead wire 1 changes, stable control can be performed without generating electric vibration, the inverter 4 fails in commutation, or torque fluctuations occur. The effect is that there is no occurrence of.

第8図は本発明の他の実施例を示す電気回路図であ
る。第5図の実施例と異なるところは、電気振動抑制手
段12の出力を、電動機電流IMとインバータ4の動作周波
数fにより増減する手段14Bを設けて、その出力でイン
バータ4の動作周波数fを制御するようにしたことで、
他の符号は第5図と同じである。
FIG. 8 is an electric circuit diagram showing another embodiment of the present invention. The difference from the embodiment of FIG. 5 is that means 14B for increasing / decreasing the output of the electric vibration suppressing means 12 according to the motor current I M and the operating frequency f of the inverter 4 is provided, and the operating frequency f of the inverter 4 is increased by the output. By controlling it,
Other reference numerals are the same as those in FIG.

上記増減する手段14Bは、第9図に示すように、関数
発生器16,17、低位優先回路18、減算器19および乗算器2
0から構成されている。関数発生器16,17にはそれぞれ周
波数制御手段8の出力であるインバータ4の動作周波数
fが入力され、それぞれ図示のような特性の出力を発生
する。低位優先回路18では、電流検出手段13の出力であ
る電動機電流IMと関数発生器16の出力を入力してこれら
を比較し、低位(図の実線)の方を出力する。減算器19
は低位優先回路18の出力から関数発生器17の出力を減算
して図示実線のような出力を発生する。なお、低位優先
回路18および減算器19の出力のうちフラツト(一定)な
部分は、図示矢印のように、電動機電流IMが大きい場合
は上方へ、小さい場合は下方へ移動する。この減算器19
の出力と上記電気振動抑制手段12の出力を乗算器20で乗
算することにより、第10図に示すような特性が得られ
る。
As shown in FIG. 9, the increasing / decreasing means 14B includes function generators 16, 17, a low-priority circuit 18, a subtractor 19 and a multiplier 2.
Consists of 0. The operation frequency f of the inverter 4 which is the output of the frequency control means 8 is input to the function generators 16 and 17, respectively, and each output of the characteristic shown in the figure is generated. The low-level priority circuit 18 inputs the motor current I M , which is the output of the current detection means 13, and the output of the function generator 16, compares them, and outputs the low-level (solid line in the figure). Subtractor 19
Generates the output as shown by the solid line by subtracting the output of the function generator 17 from the output of the low priority circuit 18. The flat (constant) portion of the outputs of the low-priority circuit 18 and the subtractor 19 moves upward when the electric motor current I M is large and downward when the electric motor current I M is small. This subtractor 19
By multiplying the output of 1 and the output of the electric vibration suppressing means 12 by the multiplier 20, the characteristic shown in FIG. 10 is obtained.

この実施例の動作を第10図により説明する。電気振動
抑制手段12とその出力を増減する手段14Bを含めたゲイ
ンは、第10図の一点鎖線G3と二点鎖線G4に示すように、
インバータ4の動作周波数fが低いところと高いところ
では低くなるように、また電動機電流IMが大きい場合に
は高く(第10図の二点鎖線G4)、電動機電流IMが小さい
場合には低く(第10図の一点鎖線G3)なるように設定す
る。そうすると、電動機電流IMをその指令値IMPにより
変化させて、安定範囲が、電動機電流IMの小さい場合の
第10図の実線から電動機電流IMの大きい場合の第10図の
点線へと変化しても、電気振動抑制手段12とその出力を
増減する手段14Bを含めたゲインが、電動機電流IMの変
化に応じて、電動機電流IMの小さい場合の第10図の一点
鎖線G3から電動機電流IMの大きい場合の第10図の二点鎖
線G4へ変化するので、電気振動抑制手段12とその出力を
増減する手段14Bを含めたゲインは第10図に示すよう
に、常に安定範囲の中にあり、従来例のように電気振動
を発生することはなくなる。なお、電気振動抑制手段12
の出力を増減させるには、電動機電流IM、インバータ4
の動作周波数fだけでなく、電動機電流IMの指令値
IMP、速度周波数fnでも良いことはいうまでもない。
The operation of this embodiment will be described with reference to FIG. The gain including the means 12B for increasing and decreasing the electric vibration suppressing means 12 and its output is, as shown by the one-dot chain line G 3 and the two-dot chain line G 4 in FIG. 10,
It should be low at low and high operating frequencies f of the inverter 4, high when the motor current I M is large (two-dot chain line G 4 in FIG. 10), and low when the motor current I M is small. Set it so that it is low (dotted line G 3 in Fig. 10). Then, the motor current I M is changed by the command value I MP so that the stable range changes from the solid line in FIG. 10 when the motor current I M is small to the dotted line in FIG. 10 when the motor current I M is large. be varied, gain, including means 14B to increase or decrease the electrical vibration suppression means 12 whose output, the electric motor in accordance with a change in the current I M, the motor current I dashed line 10 view when M small G 3 When the motor current I M is large, it changes to the alternate long and two short dashes line G 4 in FIG. 10, so that the gain including the electric vibration suppressing means 12 and the means 14B for increasing / decreasing its output is always as shown in FIG. It is in the stable range, and electric vibration is not generated unlike the conventional example. The electric vibration suppressing means 12
To increase or decrease the output of the motor current I M , inverter 4
Not only the operating frequency f of but also the command value of the motor current I M
Needless to say, I MP and speed frequency f n are also acceptable.

以上のように、第8図の実施例によれば、電動機電流
IMが変化しても、電気振動を発生することなく安定に制
御でき、インバータ4が転流失敗したり、トルク変動が
発生したりすることはなくなるという効果がある。
As described above, according to the embodiment of FIG.
Even if I M changes, there is an effect that stable control can be performed without generating electric vibration, and commutation failure of the inverter 4 or torque fluctuation does not occur.

第11図は本発明のもう一つの他の実施例を示す電気回
路図である。第5図及び第8図の各実施例と異なるとこ
ろは、電気振動抑制手段12の出力を、インバータ4の動
作周波数fにより増減し、かつその増減量を運転モード
(力行と回生)に対応してスイツチSWにより切り換えて
調整する手段14Cを設けて、その出力でインバータ4の
動作周波数fを制御するようにしたことで、他の符号は
第5図及び第8図と同じである。
FIG. 11 is an electric circuit diagram showing another embodiment of the present invention. 5 and 8 is different from each embodiment in that the output of the electric vibration suppressing means 12 is increased / decreased by the operating frequency f of the inverter 4 and the amount of increase / decrease corresponds to the operation mode (power running and regeneration). By providing a means 14C for switching and adjusting by means of a switch SW and controlling the operating frequency f of the inverter 4 by its output, the other symbols are the same as those in FIGS. 5 and 8.

上記増減する手段14Cは、第12図に示すように、関数
発生器16,17、減算器19、乗算器20、スイツチSWおよび
増幅器21(ゲインK)から構成されている。関数発生器
16,17にはそれぞれ周波数制御手段8の出力であるイン
バータ4の動作周波数fが入力され、それぞれ図示のよ
うな特性の出力を発生する。減算器19では、関数発生器
16の出力から関数発生器17の出力を減算して図示実線の
ような出力を発生する。この減算器19の出力は上記電気
振動抑制手段12の出力と乗算器20で乗算される。乗算器
20の出力は、力行時には力行指令によりスイツチSWがa
側に切り換えられているため、そのまま出力され、回生
時には回生指令によりスイツチSWがb側に切り換えられ
るため、増幅器21でK(K<1)倍されて出力される。
その結果、第13図に示すような特性が得られる。
As shown in FIG. 12, the increasing / decreasing means 14C comprises function generators 16 and 17, a subtractor 19, a multiplier 20, a switch SW and an amplifier 21 (gain K). Function generator
The operating frequency f of the inverter 4, which is the output of the frequency control means 8, is input to 16 and 17, respectively, and outputs with the characteristics shown in the drawing are generated. In the subtractor 19, the function generator
The output of the function generator 17 is subtracted from the output of 16 to generate the output indicated by the solid line in the figure. The output of the subtractor 19 is multiplied by the output of the electric vibration suppressing means 12 in the multiplier 20. Multiplier
The output of 20 is that the switch SW is
Since the switch SW is switched to the side, the switch SW is switched to the side b by the regeneration command during the regeneration, and thus the amplifier 21 multiplies it by K (K <1) and outputs it.
As a result, the characteristics shown in FIG. 13 are obtained.

この第11図の実施例の動作を第13図により説明する。
電気振動抑制手段12とその出力を増減する手段14Cを含
めたゲインは、第13図の一点鎖線G5と二点鎖線G6に示す
ように、インバータ4の動作周波数fが低いところと高
いところでは低くなるように、また力行の場合には高く
(第13図の二点鎖線G6)、回生の場合には低く(第13図
の一点鎖線G5)なるように設定する。そうすると、力行
と回生を切換えて、安定範囲が、力行の場合の第13図の
点線から回生の場合の第13図の実線へ変化しても、電気
振動抑制手段12とその出力を増減する手段14Cを含めた
ゲインが、それに応じて、力行の場合の第13図の二点鎖
線G6から回生の場合の第13図の一点鎖線G5へ変化するの
で、電気振動抑制手段12とその出力を増減する手段14C
を含めたゲインは第13図に示すように、常に安定範囲の
中にあり、従来例のように電気振動が発生することはな
くなる。なお、電気振動抑制手段12の出力を増減させる
には、インバータ4の動作周波数fだけでなく、速度周
波数fnでも良いことはいうまでもない。
The operation of the embodiment shown in FIG. 11 will be described with reference to FIG.
The gain including the electric vibration suppressing means 12 and the means 14C for increasing / decreasing the output of the inverter 4 is set at a low operating frequency f and a high operating frequency f of the inverter 4 as shown by the one-dot chain line G 5 and two-dot chain line G 6 in FIG. Is set to be low, high for power running (two-dot chain line G 6 in FIG. 13), and low for regenerative (one-dot chain line G 5 in FIG. 13). Then, by switching between power running and regeneration, even if the stable range changes from the dotted line in FIG. 13 in the case of power running to the solid line in FIG. 13 in the case of regeneration, the electric vibration suppressing means 12 and means for increasing or decreasing the output thereof. The gain including 14C accordingly changes from the two-dot chain line G 6 in FIG. 13 in the case of power running to the one-dot chain line G 5 in FIG. 13 in the case of regeneration, so the electric vibration suppressing means 12 and its output Means to increase or decrease 14C
As shown in FIG. 13, the gain including is always within the stable range, and electric vibration does not occur unlike the conventional example. It goes without saying that the output of the electric vibration suppressing means 12 may be increased or decreased not only by the operating frequency f of the inverter 4 but also by the speed frequency f n .

以上のように、第11図の実施例によれば、運転モード
(力行と回生)が変化しても、電気振動を発生すること
なく安定に制御でき、インバータ4が転流失敗したり、
トルク変動が発生したりすることはなくなるという効果
がある。
As described above, according to the embodiment of FIG. 11, even if the operation mode (power running and regeneration) is changed, stable control can be performed without generating electric vibration, and the inverter 4 fails in commutation.
The effect is that torque fluctuations will not occur.

以上の第5図、第8図及び第11図の各実施例では、そ
れぞれ架線1の電圧ESが変化した場合、電動機電流IM
変化させた場合及び運転モード(力行と回生)が変化し
た場合について説明したが、これらの実施例を運転条件
(架線1の電圧ES、電動機電流IM及び運転モード(力行
と回生)によつては併用、たとえば第5図(架線1の電
圧ESが変化した場合)と第11図(運転モード(力行と回
生)が変化した場合)の実施例を併用して第14図に示す
ようにしても良いことはもちろんである。
In each of the embodiments shown in FIGS. 5, 8, and 11 above, when the voltage E S of the overhead wire 1 changes, when the motor current I M changes, and when the operation mode (power running and regeneration) changes. However, depending on the operating conditions (voltage E S of overhead line 1, motor current I M and operating mode (power running and regeneration), these examples may be used together, for example, as shown in FIG. 5 (voltage E of overhead line 1). It is needless to say that the embodiment shown in FIG. 14 may be combined with the embodiment of FIG. 11 (when S is changed) and FIG. 11 (when operation mode (power running and regeneration) is changed).

すなわち、第14図の実施例では、電気振動抑制手段12
の出力を、コンデンサCF電圧Ecfとインバータ4の動作
周波数fにより増減し、かつその増減量を運転モード
(力行と回生)に対応してスイツチSWにより切り換えて
調整する手段14Dを設けて、その出力でインバータ4の
動作周波数fを制御するようにしたことで、他の符号は
第5図、第8図及び第11図と同じである。
That is, in the embodiment of FIG. 14, the electric vibration suppressing means 12
The output of is increased / decreased by the capacitor C F voltage E cf and the operating frequency f of the inverter 4, and the amount of increase / decrease is switched and adjusted by the switch SW in accordance with the operation mode (power running and regeneration). Since the operating frequency f of the inverter 4 is controlled by the output, the other symbols are the same as those in FIGS. 5, 8 and 11.

上記増減する手段14Dは、第15図に示すように、関数
発生器15〜17、低位優先回路18、減算器19、乗算器20、
スイツチSWおよび増幅器21(ゲインK)から構成されて
いる。
The increasing / decreasing means 14D is, as shown in FIG. 15, function generators 15 to 17, a low priority circuit 18, a subtractor 19, a multiplier 20,
It is composed of a switch SW and an amplifier 21 (gain K).

第7図に示したような安定範囲の電圧ES変動による影
響は、力行時と回生時共に同じ傾向である。ただ、電気
振動を抑制するための電気振動抑制手段12とその出力を
増減する手段14Dを含めたゲインが、第13図に示したよ
うに、回生時は力行時より小さくてよいだけである。し
たがつて、第15図において、力行時はスイツチSWをa側
に切り換え、第6図と同様にして電気振動を抑制し(こ
のとき、第7図の特性が得られる)、また回生時はスイ
ツチSWをb側に切り換えて乗算器20の出力を増幅器21に
通すことにより、両手段12,14Dを含めたゲインを、力行
時のゲイン(第7図の特性のゲイン)のK(K<1)倍
にして、電気振動を抑制する。
The influence of the voltage E S fluctuation in the stable range as shown in FIG. 7 has the same tendency during power running and during regeneration. However, as shown in FIG. 13, the gain including the electric vibration suppressing means 12 for suppressing electric vibration and the means 14D for increasing / decreasing the output thereof may be smaller than that during power running as shown in FIG. Therefore, in FIG. 15, the switch SW is switched to the a side during power running to suppress electric vibration in the same manner as in FIG. 6 (at this time, the characteristic of FIG. 7 is obtained), and during regeneration, By switching the switch SW to the b side and passing the output of the multiplier 20 through the amplifier 21, the gain including both the means 12 and 14D is set to K (K <of the gain at the time of power running (gain of characteristic in FIG. 7). 1) Double to suppress electric vibration.

また、これまでの各実施例では、電気振動を架線1に
流れる電流ISにより検出しているが、コンデンサCF電圧
Ecfあるいは電動機電流IMにより検出してもよいことは
いうまでもない。
Further, in each of the above-described embodiments, the electric vibration is detected by the current I S flowing through the overhead wire 1, but the capacitor C F voltage
It goes without saying that it may be detected by E cf or the motor current I M.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明によれば、インバータの
動作周波数もしくは電動機回転周波数のいずれかと、直
流電源の電圧、誘導電動機に流れる電流、および力行と
回生の運転モードのうちの少なくとも1つとから、動作
周波数を調整する手段の出力のゲインがあらかじめ検出
された特性に基づいて設定された電気振動が発生しない
安定範囲に入るように上記動作周波数を調整する手段の
出力を増減する手段を設けたので、これらの条件が変化
しても、電気振動を発生することなく安定に制御するこ
とができ、インバータが転流失敗したり、トルク変動が
発生したりすることがなく、電気車を円滑に運転するこ
とができる。
As described above, according to the present invention, from either the operating frequency of the inverter or the motor rotation frequency, the voltage of the DC power supply, the current flowing in the induction motor, and at least one of the powering and regeneration operation modes, Since the means for increasing or decreasing the output of the means for adjusting the operating frequency is provided so that the gain of the output of the means for adjusting the operating frequency falls within a stable range in which electric vibration does not occur, which is set based on the characteristics previously detected. Even if these conditions change, stable control can be performed without generating electric vibration, and the inverter can be operated smoothly without commutation failure or torque fluctuation. can do.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の誘導電動機式電気車の制御装置の電気回
路図、第2図〜第4図は同制御装置の動作説明図、第5
図は本発明の一実施例に係る制御装置の電気回路図、第
6図は同制御装置における電気振動抑制手段の出力を増
減する手段の詳細ブロツク図、第7図は同制御装置の動
作説明図、第8図は本発明の他の実施例に係る制御装置
の電気回路図、第9図は同制御装置における電気振動抑
制手段の出力を増減する手段の詳細ブロツク図、第10図
は同制御装置の動作説明図、第11図は本発明のさらに他
の実施例に係る制御装置の電気回路図、第12図は同制御
装置における電気振動抑制手段の出力を増減する手段の
詳細ブロツク図、第13図は同制御装置の動作説明図、第
14図は本発明のなおさらに他の実施例に係る制御装置の
電気回路図、第15図は同制御装置における電気振動抑制
手段の出力を増減する手段の詳細ブロツク図である。 1……直流架線、3……フイルタ回路、4……インバー
タ、5……誘導電動機、6……速度周波数発生手段、7
……すべり周波数設定手段、8……周波数制御手段、10
……電圧制御手段、11……電気振動検出手段、12……電
気振動抑制手段、14A〜14D……電気振動抑制手段の出力
を増減する手段。
FIG. 1 is an electric circuit diagram of a control device for a conventional induction motor type electric vehicle, and FIGS. 2 to 4 are operation explanatory diagrams of the control device, and FIG.
FIG. 6 is an electric circuit diagram of a control device according to an embodiment of the present invention, FIG. 6 is a detailed block diagram of means for increasing / decreasing the output of the electric vibration suppressing means in the control device, and FIG. 7 is an explanation of the operation of the control device. FIG. 8 is an electric circuit diagram of a control device according to another embodiment of the present invention, FIG. 9 is a detailed block diagram of means for increasing / decreasing the output of the electric vibration suppressing means in the control device, and FIG. 10 is the same. Fig. 11 is an operation explanatory view of the control device, Fig. 11 is an electric circuit diagram of the control device according to still another embodiment of the present invention, and Fig. 12 is a detailed block diagram of means for increasing / decreasing the output of the electric vibration suppressing means in the control device. , FIG. 13 is an operation explanatory view of the control device,
FIG. 14 is an electric circuit diagram of a control device according to still another embodiment of the present invention, and FIG. 15 is a detailed block diagram of means for increasing / decreasing the output of the electric vibration suppressing means in the control device. 1 ... DC overhead wire, 3 ... filter circuit, 4 ... inverter, 5 ... induction motor, 6 ... speed frequency generating means, 7
...... Slip frequency setting means, 8 ...... Frequency control means, 10
...... Voltage control means, 11 ...... electric vibration detecting means, 12 ...... electric vibration suppressing means, 14A to 14D ...... means for increasing or decreasing the output of the electric vibration suppressing means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀江 哲 勝田市市毛1070番地 株式会社日立製作 所水戸工場内 (72)発明者 阿部 金吾 勝田市市毛1070番地 株式会社日立製作 所水戸工場内 (56)参考文献 特開 昭57−145503(JP,A) 特開 昭54−75708(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Horie 1070 Ichige Katsuta City Mito Plant, Hitachi Ltd. (72) Inventor Kingo Abe 1070 Ichige Katsuta City Mito Plant, Hitachi Ltd. ( 56) References JP-A-57-145503 (JP, A) JP-A-54-75708 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】直流電源からフィルタ回路を介して給電さ
れるインバータと、このインバータによって付勢される
車両駆動用誘導電動機と、この誘導電動機の回転周波数
とすべりに対応するすべり周波数を加減算し上記インバ
ータの動作周波数を制御する周波数制御手段と、上記イ
ンバータの出力電圧を制御する電圧制御手段と、上記直
流電源から上記誘導電動機に至る回路における電気量の
振動的変動を検出する手段と、この振動的変動を検出す
る手段の出力に応じて電気振動を抑制するように上記イ
ンバータの動作周波数を調整する手段とを備えた誘導電
動機式電気車の制御装置において、 上記周波数制御手段から出力される上記インバータの動
作周波数もしくは上記電動機回転周波数のいずれかと、
上記直流電源の電圧、上記誘導電動機に流れる電流、お
よび力行と回生の運転モードのうちの少なくとも1つと
から、上記動作周波数を調整する手段の出力のゲインが
あらかじめ検出された特性に基づいて設定された電気振
動が発生しない安定範囲に入るように上記動作周波数を
調整する手段の出力を増減する手段を設けたことを特徴
とする誘導電動機式電気車の制御装置。
1. An inverter fed from a DC power source through a filter circuit, an induction motor for driving a vehicle which is energized by the inverter, a rotational frequency of the induction motor, and a slip frequency corresponding to a slip, and the slip frequency corresponding to the slip is added and subtracted. Frequency control means for controlling the operating frequency of the inverter, voltage control means for controlling the output voltage of the inverter, means for detecting the oscillatory fluctuation of the amount of electricity in the circuit from the DC power supply to the induction motor, and the vibration In a control device for an induction motor type electric vehicle, which comprises means for adjusting the operating frequency of the inverter so as to suppress electric vibration in accordance with the output of the means for detecting dynamic fluctuation, the output from the frequency control means With either the operating frequency of the inverter or the motor rotation frequency,
The gain of the output of the means for adjusting the operating frequency is set based on the characteristics detected in advance from the voltage of the DC power supply, the current flowing in the induction motor, and at least one of the powering mode and the regeneration mode. A control device for an induction motor type electric vehicle, further comprising means for increasing / decreasing the output of the means for adjusting the operating frequency so as to be within a stable range in which electric vibration does not occur.
JP58164126A 1983-09-08 1983-09-08 Induction motor type electric vehicle controller Expired - Lifetime JP2551549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164126A JP2551549B2 (en) 1983-09-08 1983-09-08 Induction motor type electric vehicle controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164126A JP2551549B2 (en) 1983-09-08 1983-09-08 Induction motor type electric vehicle controller

Publications (2)

Publication Number Publication Date
JPS6059904A JPS6059904A (en) 1985-04-06
JP2551549B2 true JP2551549B2 (en) 1996-11-06

Family

ID=15787237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164126A Expired - Lifetime JP2551549B2 (en) 1983-09-08 1983-09-08 Induction motor type electric vehicle controller

Country Status (1)

Country Link
JP (1) JP2551549B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2732619B2 (en) * 1988-11-17 1998-03-30 株式会社東芝 Electric car control device
FR2916585B1 (en) * 2007-05-25 2009-08-21 Alstom Transport Sa METHOD FOR CONTROLLING VOLTAGE OR CURRENT OF RLC FILTER, RECORDING MEDIUM AND VEHICLES FOR THIS METHOD.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475708A (en) * 1977-11-29 1979-06-16 Mitsubishi Electric Corp Device for controlling electric motor vehicle
JPS57145503A (en) * 1981-03-04 1982-09-08 Hitachi Ltd Controlling device of induction motor driven electric motor vehicle

Also Published As

Publication number Publication date
JPS6059904A (en) 1985-04-06

Similar Documents

Publication Publication Date Title
JP3435104B2 (en) Apparatus and method for generating braking torque in an AC drive
EP0059924B1 (en) Control apparatus for electric cars propelled by induction motor
JPH0612954B2 (en) Synchronous motor control method
JP2551549B2 (en) Induction motor type electric vehicle controller
JPH06165571A (en) Controller for brushless motor
JP3554798B2 (en) Electric car control device
JP3622410B2 (en) Control method of electric motor by inverter
JPH0341029B2 (en)
JPH03265485A (en) Controller for servo motor
JP3824206B2 (en) Linear induction motor electric vehicle control device
JP2598898B2 (en) Induction motor drive
JP2550517B2 (en) Inverter control method for driving an induction machine
JPH0379959B2 (en)
JPH05333953A (en) Static reactive power compensating device
JP2619390B2 (en) Induction motor speed control device
JP2749314B2 (en) Variable speed turbine generator control unit
JP2732619B2 (en) Electric car control device
JP2000217378A (en) Motor drive
JP2910235B2 (en) Electric vehicle speed control device
JPH04193005A (en) Controller for inverter type internal combustion electric vehicle
JPH0613392B2 (en) AC elevator control device
JP3395124B2 (en) Control method and device for variable speed generator motor
JPH09131071A (en) Controller for power inverter
JPS6292787A (en) Control system for ac servomotor
JPH0467408B2 (en)