JPS6289039A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS6289039A
JPS6289039A JP60227846A JP22784685A JPS6289039A JP S6289039 A JPS6289039 A JP S6289039A JP 60227846 A JP60227846 A JP 60227846A JP 22784685 A JP22784685 A JP 22784685A JP S6289039 A JPS6289039 A JP S6289039A
Authority
JP
Japan
Prior art keywords
photochemically reactive
reactive substance
molecule
micro
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60227846A
Other languages
Japanese (ja)
Inventor
Toshihiro Nishi
西 俊弘
Koichi Arishima
功一 有島
Hiroaki Hiratsuka
平塚 廣明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60227846A priority Critical patent/JPS6289039A/en
Publication of JPS6289039A publication Critical patent/JPS6289039A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a thin film and to enable multiple wavelength recording with a high hole retaining property by incorporating and dispersing a photochemically reactive substance such as a photoisomerization substance only in the micro phase in a matrix system having micro phase separative power. CONSTITUTION:In the matrix system having micro phase separative power, namely the capacity of forming a micro domain, the photochemically reactive substance which is highly compatible with the first high molecule material is used to incorporate the photochemically reactive substance only into the micro domain. For example, a hydrophilic substituent such as an amino group and an ester group is used in the polymer having a polypeptide or a hydrogen bonding side chain and ether-, ester-, amide-linkage, etc., are used as a covalent bond to be deposited on the first high molecular material. One molecule of the photochemically reactive substance per one molecule of the first high molecular material is deposited, hence the inter-molecular movement of energy can be controlled, the medium layer can be uniformized and thinned and multiple wavelength recording with a high hole retaining property can be carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極低温におけるフォトケミカルホールバーニ
ング現象を利用した波長多重記録可能な光学記録媒体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical recording medium capable of wavelength multiplexing recording using the photochemical hole burning phenomenon at extremely low temperatures.

〔従来の技術〕[Conventional technology]

従来、光学記録材料としては、メタルフリーフタロシア
ニン、メタルフリーポルフィン、キニザリンなど光にニ
ジ互変異性化反応を示す物質を、アルコール、アルカン
等の溶媒し凍結して媒体としたり、ポリメチルメタクリ
レートやポリスチレンのよりなポリマーの溶液中に上記
ゲスト′f:溶解し、キャスティングによジフイルム状
媒体とし友ものが検討されている。また、フッ化ナトリ
ウムやヨウ化ナトリウムなどアルカリハライドに電子ビ
ームやイオンピームラ照射して#集カラーセンターを作
り、媒体とする例もあるが、これは励起したエレクトロ
ンがトラップされるというメカニズムから考えて、形成
されるホールの寿命は短かく不揮発性メモリとしては適
さない。それに比べ前者は、不揮発性メモリに適してい
るが、フォトケミカルホールバーニングの原理から考え
てその持性はマトリックス材料の性1XVC極めて大き
な影hi受ける。
Conventionally, optical recording materials have been made by freezing substances such as metal-free phthalocyanine, metal-free porphine, and quinizarin that exhibit a rainbow tautomerization reaction when exposed to light in a solvent such as alcohol or an alkane, or by freezing them in a solvent such as alcohol or an alkane. It is being considered that the above guest 'f' may be dissolved in a solution of a thicker polymer and made into a difilm-like medium by casting. There are also examples of alkali halides such as sodium fluoride and sodium iodide being irradiated with electron beams or ion beams to create a color center and used as a medium, but this is based on the mechanism that excited electrons are trapped. The lifetime of the holes formed is short, making it unsuitable for use as a nonvolatile memory. In comparison, the former is suitable for non-volatile memories, but considering the principle of photochemical hole burning, its performance is extremely influenced by the properties of the matrix material.

メモリ媒体として望まれる点は、形成したホールが狭く
多M度が上げられること、書キ込み・読み出しが高速に
できることは言うまでもないが、更に媒体の膜厚が十分
な空間密度を確保できるほど薄いこと、また、昇温に伴
うホール保持性、すなわち沓き込み温度より温度が上が
り再度書き込み温度に戻したときのホールの回復性が良
好なことがメモリの信頼性の点から極めて重要である。
It goes without saying that what is desired as a memory medium is that the holes formed are narrow and the multiplicity can be increased, and that writing and reading can be done at high speed.In addition, the film thickness of the medium is thin enough to ensure sufficient spatial density. In addition, it is extremely important from the point of view of memory reliability that hole retention as the temperature rises, that is, hole recovery performance when the temperature rises above the pumping temperature and then returns to the writing temperature is good.

媒体厚は、省き込み・読み出し時の光学的ボケを小さく
するために少なくともスポット径1μm以下、望ましく
は媒体での反射を防ぐため照射レーザ波長の4分の1の
厚さが良い。この工5な条件金満たしながら更に感度を
確保するには元異注化分子を高濃度にする必要がめる。
The medium thickness is preferably at least 1 μm or less in spot diameter in order to reduce optical blurring during recording and reading, and preferably one-fourth the wavelength of the irradiated laser to prevent reflection on the medium. In order to further ensure sensitivity while satisfying these five conditions, it is necessary to increase the concentration of the original conjugated molecule.

例えば、媒体厚を1μm1スポツト径全直径1μm1波
長多重度を10”とすると、1ホール当ジの分子数全1
04個確保するには光異性化分子の濃度i0.17モル
/lとする必要がある。
For example, if the medium thickness is 1 μm, the total spot diameter is 1 μm, and the wavelength multiplicity is 10”, the total number of molecules per hole is 1
In order to secure 0.04 molecules, it is necessary to set the concentration of photoisomerizable molecules to i0.17 mol/l.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、従来のポリマーに分散しただけの材料系では
このような高濃度化を行った場合、光異性化分子の凝縮
に=すPHB現象そのものが起り維くなる欠点があった
However, in the conventional material system simply dispersed in a polymer, when such a high concentration is carried out, there is a drawback that the PHB phenomenon itself, which is caused by condensation of photoisomerized molecules, tends to occur.

また、ホール保持性も昇温に伴う格子振動にエクサイト
が変化し温度に対する信頼性が不十分であった。
In addition, the hole retention property was insufficiently reliable with respect to temperature because the excite changed due to lattice vibration as the temperature increased.

本発明は、ゲスト分子の凝集を抑制しながら、扁濃度化
し、且つ昇温に伴うマトリックスの不可逆変化を抑制す
るために、高分子間のミクロ相分離全利用するものでお
り、その目的は薄膜で且つホール保持性の藁い波長多重
記録可能な光学記録媒体を提供することにある。
The present invention makes full use of the microphase separation between polymers in order to increase the concentration while suppressing aggregation of guest molecules, and to suppress irreversible changes in the matrix due to temperature rise. It is an object of the present invention to provide an optical recording medium which is capable of wavelength multiplexing recording and has hole retention properties.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明は光学記録媒体に関する発
明でろって、マトリックスが、ミクロ相分離能を有する
第1高分子材料あるいは該iI高分子材料を包含する第
2高分子材料より底ジ、光化学反応性物質が該ミクロ相
中に存在していることを特徴とする。
To summarize the present invention, the present invention relates to an optical recording medium, and the present invention relates to an optical recording medium, in which the matrix is made of a first polymeric material having microphase separation ability or a second polymeric material containing the iI polymeric material. , characterized in that a photochemically reactive substance is present in the microphase.

本発明において、ミクロ相分離能とは、ミクロ相、例え
ばミクロドメインを形成する能力全意味する。しかしな
がら、前記第1り1分子材料がそれ単独ではミクロドメ
イン全形放しなくても、第2高分子材料中でミクロドメ
イン全形成するものも不発明に含まれる。以下、ミクロ
相の代表例としてミクロドメインを例にと9本発明?説
明するが本発明はこれに限定されるものではない。
In the present invention, microphase separation ability refers to the entire ability to form microphases, such as microdomains. However, even if the first monomolecular material does not release all the microdomains by itself, it is also included in the non-invention that the first monomolecular material forms all the microdomains in the second polymeric material. Below, we will use microdomains as a representative example of microphases. Although explained, the present invention is not limited to this.

第1図及び第S図は、本発明媒体の基本構造を示す模式
図であり、第2図は第1図の部分拡大図であって、その
主たる構成は、光化学反応性物質とそれ金ミクロドメイ
ン中に直接包含する第1昼分子材料あるいは該第1高分
子材料及びミクロドメイン構造有する第2高分子材料か
らなる。光化学反応性物質の例としては、具体的にはメ
タルフリーフタロシアニン、メタルフリーポルフィン、
メタルフリークロリンやそれらの誘導体などグロトン移
動形互変異性化物質、またキニザリン及びその誘導体な
ど分子内・分子間の水素結合変換形の物質、更にジメチ
ル−〇−テトラジン、ジエチル−〇−テトラジンなど光
分解反応性物質などが挙げられる。他方、本発明の主眼
であるマトリックス材料は、ミクロドメイン構造を形成
する2種類の高分子材料から厄ジ、相溶性から上記元化
学反IC註物質がミクロドメインを形成する第1高分子
材料中にのみ分散する構造金持ち、更に光化学反応性物
質に対する曹き込み波長領域と光吸収領域が異なってい
れば何でも工い。また、光の吸収効率全土けるためには
、常温はもちろん冷却凍結時に白化しないことが望まし
い。
FIG. 1 and FIG. S are schematic diagrams showing the basic structure of the medium of the present invention, and FIG. 2 is a partially enlarged view of FIG. It consists of a first polymeric material directly included in the domain, or the first polymeric material and a second polymeric material having a microdomain structure. Examples of photochemically reactive substances include metal-free phthalocyanine, metal-free porphine,
Metal-free chlorin and its derivatives, groton transfer tautomerized substances, intramolecular and intermolecular hydrogen bond conversion substances such as quinizarine and its derivatives, and photosensitive substances such as dimethyl-〇-tetrazine and diethyl-〇-tetrazine. Examples include decomposition-reactive substances. On the other hand, the matrix material, which is the main focus of the present invention, has two types of polymer materials that form a microdomain structure, and due to compatibility, the above-mentioned chemical anti-IC substance is in the first polymer material that forms microdomains. Any structure can be used as long as it has a structure that disperses only in the light, and the absorption wavelength range and light absorption range for photochemically reactive substances are different. In addition, in order to maximize the light absorption efficiency, it is desirable that the material does not turn white when cooled or frozen, as well as at room temperature.

これらミクロドメインは、ランダムコイル、α−ヘリッ
クス、ラメラ、球状等の種々の構造を取り得るが、本発
明では特に水素結合等により強固なミクロ構造中に光化
学反応性913質全孤立させることによ9次の2つの目
的を達放した。
These microdomains can have various structures such as random coils, α-helices, lamellas, and spherical shapes, but in the present invention, the photochemically reactive 913 substance is completely isolated in a strong microstructure through hydrogen bonds, etc. 9 Achieved the following two objectives.

すなわち、マトリックスの微視的状態の不可逆変化を抑
制しホール保持性を高め、また、光化学反応性物質の凝
集を抑制しながら効果的に高濃度分散し媒体の薄膜化が
可能になった。
In other words, it has become possible to suppress irreversible changes in the microscopic state of the matrix and improve hole retention, and to effectively disperse photochemically reactive substances at high concentrations while suppressing their aggregation, thereby making it possible to thin the medium.

具体的には、ポリペグチド分子鎖、ブロック共重合体、
水溶性ポリマー等のミクロドメインを形成し得る第1高
分子材料とこれを分散しうる各槌肩機ポリマーと全混合
したマトリックスを用いることができる。また、ミクロ
ドメイン中にのみ光化学反応性物質全含有させる方法と
しては光化学反応性物質と相溶性の良好な第1高分子材
料金使用するか、あるいは第1高分子材料に共有結合で
直接担持させる方法がある。
Specifically, polypeptide molecular chains, block copolymers,
A matrix can be used that is a complete mixture of a first polymeric material capable of forming microdomains, such as a water-soluble polymer, and a respective hammered polymer in which it can be dispersed. In addition, as a method for fully containing the photochemically reactive substance only in the microdomains, gold is used as the first polymer material having good compatibility with the photochemically reactive substance, or gold is directly supported on the first polymer material by covalent bonding. There is a way.

ポリペプチドとしては、特に限定しないが、例えばγ−
メチルーL−グルタメート、γ−ベンジルーL−グルタ
メート等のL−アミノ酸全単独重合又は共重合させるこ
とにより得られるポリマー等を第1高分子材料として用
いることができる。これらの高分子材料のキャスト膜は
力学的な強度を十分持つため、第2商分子材料は必ずし
も必要ないが、例えばクロロホルム等のキャスト溶媒に
可溶のポリメチルメタクリレート等のポリマーを第2高
分子材料として用いることができる。
The polypeptide is not particularly limited, but for example, γ-
Polymers obtained by homopolymerizing or copolymerizing L-amino acids such as methyl-L-glutamate and γ-benzyl-L-glutamate can be used as the first polymer material. Cast films made of these polymeric materials have sufficient mechanical strength, so a second polymeric material is not necessarily required. It can be used as a material.

ブロック共1合体としては、特に限定しないが、ブタジ
ェン、イソプレン、スチレン等のビニルモノマーあるい
はγ−メチルーL−グルメメート、γ−ベンジルーL−
グルタノート等のL−アミノ酸を基本単位とするAB型
あるいはABA型ブロック共1合体を第1高分子材料と
して用いることができる。このような第1高分子材料に
対する第2高分子材料としては、先に述べたポリペプチ
ドに対する第2高分子材料と同様必ずしも必要ないが、
例えばクロロホルム等のキャスト溶媒に可溶のポリメタ
クリレート等のポリマーを用いることができる。
Examples of block comonomers include, but are not limited to, vinyl monomers such as butadiene, isoprene, styrene, γ-methyl-L-glumemate, γ-benzyl-L-
AB type or ABA type block combinations having L-amino acids as basic units such as glutanaute can be used as the first polymer material. As the second polymer material for such a first polymer material, it is not necessarily necessary as in the case of the second polymer material for the polypeptide described above, but
For example, a polymer such as polymethacrylate that is soluble in a casting solvent such as chloroform can be used.

水溶性ポリマーとしてな、特に限定しないが、例えばポ
リビニルアルコール、ポリオキシエチレン、ポリオキシ
エチレン、ポリアクリル酸、ポリメタクリル酸、ポリア
クリルアミド、ポリ−2−ヒドロキシエチルメタクリレ
ート等が用いられる。仁れら水溶性ポリマーは単独では
ミクロドメイン全形放しないので、適当な第2高分子材
料が必要になる。第2高分子材料としてはポリ酢酸ビニ
ル、ポリメチルメタクリレート等の第1高分子材料との
相溶性が比較的低く且つ第1高分子材料と共通のM媒を
持つ筒分子材料なら何でも良い。
Examples of water-soluble polymers that can be used include, but are not particularly limited to, polyvinyl alcohol, polyoxyethylene, polyoxyethylene, polyacrylic acid, polymethacrylic acid, polyacrylamide, poly-2-hydroxyethyl methacrylate, and the like. Since these water-soluble polymers alone do not release all the microdomains, a suitable second polymeric material is required. The second polymer material may be any cylindrical material, such as polyvinyl acetate or polymethyl methacrylate, which has relatively low compatibility with the first polymer material and has the same M medium as the first polymer material.

一方、ミクロドメイン中にのみ光化学反応性物質を含有
させる方法としては、第1高分子材料と相溶性の良好な
光化学反応性物質を用いるか、あるいは第1高分子材料
に共有結合により担持させる方法がある。相溶性の良好
な光化学反応性物質は使用する第1高分子材料によりそ
れぞれ多少異なるが、例えばポリペプチドあるいは水素
結合性側鎖全持つポリマーに対してはアミノ基、ヒドロ
キシル基、カルボキシル基、アミド基、エステル基等の
親水性置換基を有すれば良い。また、第1高分子材料に
担持する共有結合としては、特に限定しないが、例えば
エーテル、エステル、アミド等が利用できる。この場合
、第1高分子材料1分子当り好ましくは光化学反応性物
質を1分子担持させると分子間エネルギー移動が抑制で
き本発明の目的の1つである均−且つ媒体層の薄い膜が
作製可能となる。
On the other hand, methods for containing a photochemically reactive substance only in microdomains include using a photochemically reactive substance that has good compatibility with the first polymeric material, or having it supported by a covalent bond on the first polymeric material. There is. Photochemically reactive substances with good compatibility vary somewhat depending on the first polymer material used, but for example, for polypeptides or polymers with all hydrogen-bonding side chains, amino groups, hydroxyl groups, carboxyl groups, and amide groups are preferred. , as long as it has a hydrophilic substituent such as an ester group. Further, the covalent bond supported on the first polymer material is not particularly limited, but for example, ether, ester, amide, etc. can be used. In this case, if one molecule of the photochemically reactive substance is supported per molecule of the first polymer material, intermolecular energy transfer can be suppressed and a film with a uniform and thin medium layer, which is one of the objects of the present invention, can be produced. becomes.

媒体の作表法は、特に限定されないが、媒体中に光化学
反応性物質が10−6〜10−1モル/lの濃度になる
ように分散させ、ガラス基板上等にキャストにより作製
する。
The method of tabulating the medium is not particularly limited, but the photochemically reactive substance is dispersed in the medium to a concentration of 10-6 to 10-1 mol/l, and the medium is produced by casting onto a glass substrate or the like.

ホール保持性の評価は、通常のフォトケミカルホールバ
ーニング法により4.2にでゼロフォノ/バンドに単一
波長のパワー密度S、 OmVI/cnr”CW レー
ザ元を照射し、吸収スペクトルに深さDh(4,27の
ホール全形成した後、80Kまで昇温し再度4.2x″
1で冷却したときの回復したホールの深さfi−Dh(
80)とするとき、その比Dh(80)/Dh (4,
2)の値の大きさによった。
Evaluation of hole retention was performed by irradiating the zero phono/band at 4.2 with a single wavelength power density S, OmVI/cnr”CW laser source using the usual photochemical hole burning method, and measuring the absorption spectrum with a depth Dh ( After all 4.27 holes were formed, the temperature was raised to 80K and the temperature was increased to 4.2x'' again.
The depth of the recovered hole when cooling at step 1 fi-Dh (
80), the ratio Dh(80)/Dh (4,
It depends on the magnitude of the value of 2).

〔実施例〕〔Example〕

以下本発明を実施例によジ更に具体的に説明するが本発
明はこれら実施例に限定されない。
The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

なお、実施例及び比較例には媒体試料の作製法のみを記
し、ホール形成に用いた波長、媒体の吸光度及びDh(
80)/Dh(4,2)は第1表にまとめて示した。
In addition, in Examples and Comparative Examples, only the preparation method of the medium sample is described, and the wavelength used for hole formation, the absorbance of the medium, and Dh (
80)/Dh(4,2) are summarized in Table 1.

比較例1 ポリメタクリル酸メチルのクロロホルム溶液中にメタル
フリーテトラフェニルポルフィンを乾燥時の1度が10
−1モル/lとなるように加えた後ガラス矢基板上にキ
ャストし、厚さ1μmのフィルム試料を得た。
Comparative Example 1 Metal-free tetraphenylporphine in a chloroform solution of polymethyl methacrylate was dried at a temperature of 10
-1 mol/l and then cast on a glass arrow substrate to obtain a film sample with a thickness of 1 μm.

実施例1 4−カルボキシフェニルトリフェニルポルフィンとγ−
(4−ヒドロキシベンジルλ−L−グルタメートとを当
1p−)ルエンスルホン酸の存在下で反応させてテトラ
フェニルポルフィン(TPP)lfi持グルタメートを
合成し、このグルタメート誘導体がポリマー鎖当り1分
子量1れる工うr−ベンジル−し−グルタメートとNC
A法VCより共重合させ分子量約1万のポリペプチドを
得た。これをクロロホルムに溶解シガラス基板上にキャ
ストし、厚さ1μmのフィルム試料全得た。
Example 1 4-carboxyphenyltriphenylporphine and γ-
Tetraphenylporphine (TPP) lfi-bearing glutamate is synthesized by reacting (4-hydroxybenzyl λ-L-glutamate) in the presence of 1p-)luenesulfonic acid, and this glutamate derivative has a molecular weight of 1 per polymer chain. Engineering benzyl-glutamate and NC
A polypeptide with a molecular weight of about 10,000 was obtained by copolymerization using Method A VC. This was dissolved in chloroform and cast on a glass substrate to obtain a 1 μm thick film sample.

実施例2 4−カルボキシフェニルトリフェニルポルフィンと4−
ヒドロキシスチレンと?エステル化反応させ、テトラフ
ェニルポルフィン担持スチレンモノマー全合成し、この
スチレン誘導体をポリマー鎖当シ1分子含む分子量約5
千のポリスチレンをリビング重合により得た。通常の方
法により上記ポリスチレンの両末端をアミン化し、別途
合成したr−ベンジル−L−グルタメートをアミノ酸単
位とするポリペプチドを反応させABA型ブロック共重
合体を得念。実施例1と同様な方法で厚さ1μmのフィ
ルム試料を得た。
Example 2 4-carboxyphenyltriphenylporphine and 4-
With hydroxystyrene? The styrene monomer supported on tetraphenylporphine is completely synthesized by esterification reaction, and this styrene derivative has a molecular weight of approximately 5, containing one molecule per polymer chain.
1,000 polystyrene was obtained by living polymerization. Both terminals of the polystyrene were aminated using a conventional method, and a separately synthesized polypeptide having r-benzyl-L-glutamate as an amino acid unit was reacted with the polypeptide to obtain an ABA type block copolymer. A film sample with a thickness of 1 μm was obtained in the same manner as in Example 1.

実施例5 テトラ(4−カルボキシフェニル)ポルフィンを過剰の
塩化チオニルと反応させテトラ(4−カルボキシクロラ
イドフェニル)ポルフィンとした後、このジメチルホル
ムアミド(DMF )溶液をポリビニルアルコール(分
子量5千)・DMF希薄浴液にゆつくり滴加し、テトラ
フェニルポルフィン担持ボリビニルアルコールヲ得た。
Example 5 Tetra(4-carboxyphenyl)porphine was reacted with excess thionyl chloride to obtain tetra(4-carboxychloride phenyl)porphine, and this dimethylformamide (DMF) solution was diluted with polyvinyl alcohol (molecular weight 5,000) and DMF. It was slowly added dropwise to the bath solution to obtain tetraphenylporphine-supported polyvinyl alcohol.

上記ポリビニルアルコールとポリメチルメタクリレート
とを重量比1:2でクロロホルム・メタノール(容素/
容量=1/1)混合溶媒にm解しキャストにより厚さ1
μmの薄膜試料を得へ第 1 表 〔発明の効果〕 以上説明したように、本発明に工れば、ミクロ相分離能
を有するマ) IJツクス糸に光異性化物質等の光化学
反応性物質を該ミクロ相内にのみ@有分散させることに
より、フォトケミカルホールバーニング法によシ形成さ
れたスペクトルホールの昇温に伴うホール保持性が著し
く改善され、同時に元化字反応性物質全均−に高濃度に
分散できるので、高性能、高信頼性、薄膜の光学記録媒
体を得ることができた。
The above polyvinyl alcohol and polymethyl methacrylate were mixed in a weight ratio of 1:2 in chloroform/methanol (volume/methanol).
Volume = 1/1) Thickness 1 by dissolving in mixed solvent and casting
Table 1 [Effects of the Invention] As explained above, if the present invention is applied, a photochemically reactive substance such as a photoisomerizable substance can be added to the IJTx yarn. By dispersing the spectral holes only in the microphase, the hole retention of the spectral holes formed by the photochemical hole burning method as the temperature rises is significantly improved, and at the same time, the overall uniformity of the original reactive substance is improved. Because it can be dispersed in a high concentration, a high-performance, highly reliable, and thin-film optical recording medium can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学記録媒体の1例の基本構造を示す
模式図、第2図は第1図の部分拡大図、第6図は本発明
の光学記録媒体の他の基本構造金示す模式図である。
FIG. 1 is a schematic diagram showing the basic structure of one example of the optical recording medium of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 6 is a schematic diagram showing another basic structure of the optical recording medium of the present invention. It is a schematic diagram.

Claims (1)

【特許請求の範囲】 1、マトリックスが、ミクロ相分離能を有する第1高分
子材料あるいは該第1高分子材料を包含する第2高分子
材料より成り、光化学反応性物質が該ミクロ相中に存在
していることを特徴とする光学記録媒体。 2、該光化学反応性物質が、該第1高分子材料に共有結
合により担持されている特許請求の範囲第1項記載の光
学記録媒体。
[Claims] 1. The matrix is made of a first polymeric material having microphase separation ability or a second polymeric material that includes the first polymeric material, and a photochemically reactive substance is contained in the microphase. An optical recording medium characterized by the fact that: 2. The optical recording medium according to claim 1, wherein the photochemically reactive substance is supported by a covalent bond on the first polymer material.
JP60227846A 1985-10-15 1985-10-15 Optical recording medium Pending JPS6289039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227846A JPS6289039A (en) 1985-10-15 1985-10-15 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227846A JPS6289039A (en) 1985-10-15 1985-10-15 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS6289039A true JPS6289039A (en) 1987-04-23

Family

ID=16867287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227846A Pending JPS6289039A (en) 1985-10-15 1985-10-15 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS6289039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241278A (en) * 2005-03-02 2006-09-14 Ricoh Co Ltd Organic thin film, method for producing the same and optical recording medium using the same organic thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241278A (en) * 2005-03-02 2006-09-14 Ricoh Co Ltd Organic thin film, method for producing the same and optical recording medium using the same organic thin film

Similar Documents

Publication Publication Date Title
EP0153736B1 (en) Optical recording element
US5952131A (en) Core and shell matrix compositions and processes
Ishihara et al. Photoinduced swelling control of amphiphilic azoaromatic polymer membrane
CA1166060A (en) Information recording element including a dye layer containing methyl vinyl ether-maleic anhydride copolymeric binder
JP2000514468A (en) Photo-addressable substrates and photo-addressable side-group polymers exhibiting highly induced birefringence
JPH0114879B2 (en)
KR19980018418A (en) High-sensitivity light-fastness side face polymer
Chan et al. Time-resolved fluorescence depolarization studies of naphthalene-labeled diblock copolymer micelles in aqueous media
EP0134500A2 (en) Polymeric dye
JPS6289039A (en) Optical recording medium
US7214451B2 (en) Rewriteable optical recording material having good solubility
US6743567B2 (en) Polymer for data storage, data storage media coated by the same, data storage device and method using data storage media
US4681834A (en) Optical recording element
Hisada et al. Triplet energy transfer from carbazole to bromonaphthalene in a two-dimensional chromophore plane prepared by poly (octadecyl methacrylate) Langmuir-Blodgett films
JPH0322432B2 (en)
JPS63296986A (en) Optical recording medium and recording method
Arslanov Polymer monolayers and Langmuir–Blodgett films. Polymerisation reactions in organised molecular ensembles; structural transformations and properties
US5306599A (en) Optical recording material
JP3141584B2 (en) Reversible optical recording material
JPS6085448A (en) Optical recordidng medium
JPH0231102B2 (en)
JP3781853B2 (en) Charge transfer complex polymer alternating cumulative ultrathin film and method for producing the same
JPS60188405A (en) Polymer containing photoisomerizable atomic group, and its use
KR100317294B1 (en) Polymers for storing an information, thin film coated with said polymers, apparatus and method for storing an information using said thin film
JP2708173B2 (en) Optical functional element