JPS628900B2 - - Google Patents

Info

Publication number
JPS628900B2
JPS628900B2 JP54041299A JP4129979A JPS628900B2 JP S628900 B2 JPS628900 B2 JP S628900B2 JP 54041299 A JP54041299 A JP 54041299A JP 4129979 A JP4129979 A JP 4129979A JP S628900 B2 JPS628900 B2 JP S628900B2
Authority
JP
Japan
Prior art keywords
stainless steel
softening temperature
battery
layer
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54041299A
Other languages
Japanese (ja)
Other versions
JPS55133755A (en
Inventor
Shinzo Sugai
Koichi Tejima
Haruka Machitori
Masato Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP4129979A priority Critical patent/JPS55133755A/en
Publication of JPS55133755A publication Critical patent/JPS55133755A/en
Publication of JPS628900B2 publication Critical patent/JPS628900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電池蓋を改良したボタン電池用電池缶
に関する。 従来この種の電池缶は、第1図に示すようにス
テンレス鋼からなる芯層1の外面に純ニツケルか
らなる外層2を、内面に純銅からなる内層3をそ
れぞれ圧着して三層クラツド材を形成し、該クラ
ツド材を熱間においてプレス加工して電池蓋4と
したものが多く用いられている。 これは純ニツケルは耐食性が良く、外部端子と
の接触抵抗が低い性質を有しており、電池蓋4の
外側の素材としてきわめて好適であるためであ
る。また純銅はアマルガム化し易く、陰極活物質
との電気的接触が良好であるという性質を有して
おり、電池蓋4の内側の素材としてきわめて好適
であるという理由によるものである。さらにステ
ンレス鋼は強度が高く、プレス加工時の加工硬化
により優れたばね性を有しており、芯層として好
適であるためである。 ところで電池蓋4は、プレス加工により周辺部
4aを略180゜密着曲げし、頭部4bを2段に90
゜折曲げて形成されるため、素材に対して極端に
過酷な加工条件となつている。しかも電池蓋4は
耐漏液性を向上するために、パツキング5を介し
て筒状ケース6に圧着する構造となつているため
素材に高い強度とばね性が必要である。 しかし、この電池蓋を形成する純銅−ステンレ
ス鋼−純ニツケルの組合せの三層クラツド材は、
これを所定形状にプレス加工した際に、純銅及び
純ニツケルの個所に極端な肌荒れや、クラツクが
発生しやすい。このことは電池蓋の品質が低下
し、電池の外観を損うのみならず、電池蓋の耐食
性を低下させ、とくにステンレス鋼が露出して電
池寿命が低下し、ついにはガス発生による漏液、
電池の破裂を招いてしまう問題があつた。 このため、本発明者は、肌荒れや、クラツクの
発生原因について鋭意研究を行つた結果、三層ク
ラツド材を製造する際におこなう焼鈍工程におい
て、その焼鈍温度が純銅、純ニツケルにとつて適
当な温度ではなく、過焼鈍となつて結晶粒が粗大
化するためであることを見出した。 すなわち、第2図の線図に示すように純ニツケ
ル(曲線a′軟化温度約500℃)、純銅(曲線b′軟化
温度約250℃)の焼鈍軟化温度は、SUS304ステン
レス鋼(曲線c1軟化温度約950℃)、SUS430ステ
ンレス鋼(曲線c2軟化温度850℃)とは異なり、
SUS304ステンレス鋼と純銅又は純ニツケルとの
軟化温度の差は約700℃又は約450℃もある。従つ
て、SUS304ステンレス鋼に合せて焼鈍すると純
銅及び純ニツケルが過焼鈍となり、これに起因し
て肌荒れやクラツクが発生することが判明した。 なお、ここで前記各金属および合金の軟化温度
とは、金属および合金が熱間におけるプレス加工
を損なわない程度まで充分に軟化し、プレス加工
時に異方性を生じない状態になる温度を云う。す
なわち、電池蓋は熱間におけるプレス加工により
折曲げて成形する。このことから電池蓋に用いる
金属材料は、熱間におけるプレス加工を行なう時
に、このプレス加工を損なわないように充分軟化
し且つ異方性を異じないようにすることが必要で
あり、この軟化状態になる時の温度を軟化温度と
している。例えばSUS430ステンレス鋼は、温度
750℃の段階ではプレス加工の前加工である冷間
圧延による圧延加工組織が残るので、プレス加工
時に異方性を生じプレス加工を損なう。これに対
して温度850℃の段階ではプレス加工時に異方性
を生じない。このため、SUS430ステンレス鋼は
温度850℃をもつて軟化温度とする。 本発明はこの点に着目してなされたもので、プ
レス加工時に肌荒れやクラツクが発生せず、もつ
て電池特性を優れたものとすることができる電池
蓋を備えた電池缶を提供することを目的とする。 すなわち、本発明の電池缶は、ステンレス鋼か
らなる芯層の一面に該ステンレス鋼と軟化温度を
近似させたニツケル基合金、例えば4重量%W−
Ni合金、3重量%Mo−Ni合金からなる外層を、
また前記芯層の他面にステンレス鋼と軟化温度を
近似させた銅基合金、例えば0.6重量%Cr−0.33
重量%Zr−0.03重量%Si−Cu合金、0.65重量%Cr
−0.3重量Zr−0.02重量%Ge−Cu合金からなる内
層をそれぞれ形成した三層クラツド材で、電池蓋
を形成してなるものである。 以下本発明を図面を参照して説明する。第3図
は電池缶の断面図で、この電池缶は筒状ケース1
1の開口部にパツキング12を介して電池蓋13
を施蓋している。この電池蓋13は、第4図に示
すようにステンレス鋼からなる芯層14の外面に
該銅と軟化温度を近似させたニツケル基合金から
なる外層15を、又内面に該銅と軟化温度を近似
させた銅基合金からなる内層16をそれぞれ被着
した三層クラツド材で構成されている。なお、こ
こで軟化温度とは材料が熱間におけるプレス加工
を損なわない程度にまで充分に軟化し、プレス加
工時に異方性を生じさせない状態になる温度をい
う。上記芯層14としてはSUS304、SUS430等の
ステンレス鋼がある。これらステンレス鋼は加工
により硬化する性質を有し、強度が高いとともに
優れたばね性を有している。また、上記ニツケル
基合金からなる外層15として、例えばタングス
テン又はモリブデンの一方又は両方を2〜15重量
%含むニツケル合金が挙げられる。ここで、タン
グステン又はモリブデンの添加量を限定した理由
は、この範囲とすることにより、軟化温度が上昇
して芯層14の軟化温度に近ずき、しかも純ニツ
ケルと同様に耐食性が良好で、外部端子との接触
抵抗が低い性質を有しているためである。この場
合、タングステン又はモリブデンが2重量%より
少ないと、ステンレス鋼との軟化温度の差が大き
すぎ、また15重量%を越えると素材の加工性が悪
くなり、また経済的にも不利となる。例えばタン
グステンを4重量%含むニツケル合金は、第2図
の曲線aで示すように軟化温度が約700℃で、
SUS304ステンレス鋼の軟化温度約950℃との軟化
温度の差が約250℃と少なく、又モリブデンを3
重量%含むニツケル合金(曲線aと同様の曲線と
なる)においても軟化温度差が約230℃と極めて
少ない。(なお、第2図においてNi−4%Wの曲
線とNi−3%Moの曲線とを1個の曲線aで示し
ている。Ni−4%Wの曲線とNi−3%Moの曲線
は全く同一となるわけではないが、両方の曲線を
図面上で描くと略重なり合い不明瞭となるため、
あえて同一曲線として示している。)これに対
し、純ニツケルでは曲線a′に示すように軟化温度
が約500℃で、SUS304ステンレス鋼の軟化温度約
950℃との軟化温度差が450℃と極めて大きい。
SUS304ステンレス鋼との軟化温度の差は約300℃
以下であれば、Ni合金、Cr合金の結晶粒大化を
防止でき使用上充分である。 さらに、上記銅合金からなる内層16として、
クロム0.3〜1.0重量%と、ジルコニウム0.2〜0.5
重量%と、シリコン、ゲルマニウム、マグネシウ
ムの一種又は二種以上を0.005〜0.1重量%添加し
た銅合金が挙げられる。ここで添加元素の添加範
囲を限定した理由は、この範囲とすることによ
り、軟化温度がステンレス鋼に近似し、しかも純
銅と同様にアマルガム化し易く、陰極活物質との
電気的接触が良好であるためである。この場合各
添加元素がそれぞれ所定の添加範囲より少ないと
ステンレス鋼との軟化温度の差が大きすぎ、また
上記範囲を越えると、ステンレス鋼との軟化温度
に差違が生じるとともに、アマルガム化や電気的
接触性などが劣化するためである。例えばクロム
0.6重量%、ジルコニウム0.3重量%、シリコン
0.03重量%含む銅合金は、第2図の曲線bで示す
ように軟化温度が約700℃でSUS304ステンレス鋼
との軟化温度の差が約250℃と極めて少ないのに
対し、純銅では曲線b′で示すように該ステンレス
鋼との軟化温度の差が約700℃と大きい。さらに
クロム0.2重量%、ジルコニウム0.1重量%を含む
銅合金(第2図にて図示せず)はSUS304ステン
レス鋼との軟化温度の差が約600℃と大きい。 このような三層クラツド材からなる電池蓋13
は各板を冷間圧着した後、所望の板厚となるまで
冷間圧延し、次いで焼鈍を行なう。この焼鈍温度
はステンレス鋼の軟化温度に合せておこない、例
えばSUS304ステンレス鋼の場合は約950℃で焼鈍
する。次にこの三層クラツド材は第3図に示すよ
うに、周辺部を180゜密着曲げし、頭部を2段に
90゜曲げて加工し、パツキング12を介してケー
ス11に圧入嵌合する。 このような構造の電池蓋13は、ニツケル基合
金からなる外層15及び銅基合金からなる内層1
6がステンレス鋼からなる芯層14の軟化温度と
近似した軟化温度を有しているので、焼鈍時に外
層15及び内層16が適正温度で焼鈍され、従来
のように過焼鈍されない。このため、外層15お
よび内層16に結晶粗大化がなく、プレス成形時
の肌荒れやクラツクが発生を防止することがで
き、さらに硬さが極端に低下しないため取扱い疵
の発生を防止することができる。またクラツクの
発生がないので、電池蓋13は外層15や内層1
6を薄くすることができ、強度も向上する。 次に本発明の実施例を説明する。 実施例 外層、芯層、内層として、第1表に示す素材及
び板厚のものを用い、これら板を冷間圧着して三
層クラツド材を作成した。この三層クラツド材を
板厚0.3mmまで冷間加工した後950℃の還元雰囲気
中で焼鈍した。 このように焼鈍された三層クラツド材の硬さと
平均結晶粒径を測定した。その結果を第1表に示
す。 次にこの三層クラツド材をプレス加工して第4
図に示すような電池蓋13を作製し、外層15の
肌荒れの程度、内層16のクラツク発生数をそれ
ぞれ調べた。その結果を第1表に示す。また、こ
の電池蓋13を用いてJIS−G13タイプの酸化銀
電池を作成し、これを常温、常湿で1年間放置後
漏液の有無を調べた。その結果を第1表に示す。 比較例 純ニツケル板(外層)、ステンレス鋼板(芯
層)、銅基合金板(内層)からなる三層クラツド
材を作成し、上記実施例と同様に焼鈍して、硬さ
と平均結晶粒径を測定した。その結果を第1表に
併記する。またこの三層クラツド材をプレス加工
して電池蓋を作製し、この電池蓋外層の肌荒れの
程度、内層のクラツク発生数をそれぞれ調べて、
その結果を第1表に併記する。さらにこの電池蓋
を用いて酸化銀電池を作成し、実施例と同様に漏
液の有無を調べた。
The present invention relates to a battery can for button batteries with an improved battery lid. Conventionally, this type of battery can has a three-layer cladding material, as shown in Fig. 1, by bonding an outer layer 2 made of pure nickel to the outer surface of a core layer 1 made of stainless steel, and an inner layer 3 made of pure copper to the inner surface. The battery lid 4 is often used by forming the cladding material and hot pressing the cladding material. This is because pure nickel has good corrosion resistance and low contact resistance with external terminals, making it extremely suitable as the material for the outside of the battery cover 4. Further, pure copper has the properties of being easily amalgamated and having good electrical contact with the cathode active material, and is therefore extremely suitable as a material for the inside of the battery lid 4. Furthermore, stainless steel has high strength and excellent spring properties due to work hardening during press working, making it suitable for the core layer. By the way, the battery cover 4 has the peripheral part 4a bent by approximately 180 degrees by press working, and the head part 4b is bent in two stages by 90 degrees.
Because it is formed by bending it, the processing conditions are extremely harsh on the material. Moreover, since the battery cover 4 has a structure in which it is pressure-bonded to the cylindrical case 6 via the packing 5 in order to improve leakage resistance, the material needs to have high strength and spring properties. However, the three-layer clad material of pure copper, stainless steel, and pure nickel that forms the battery lid is
When this is pressed into a predetermined shape, extreme roughness and cracks tend to occur in the pure copper and pure nickel parts. This not only deteriorates the quality of the battery lid and spoils the appearance of the battery, but also reduces the corrosion resistance of the battery lid, especially exposing the stainless steel, reducing battery life, and eventually causing leakage due to gas generation.
There was a problem that caused the battery to explode. Therefore, as a result of intensive research into the causes of surface roughness and cracks, the present inventor determined that the annealing temperature is appropriate for pure copper and pure nickel in the annealing process performed when manufacturing three-layer clad materials. It was discovered that this is not due to temperature, but to overannealing, which causes crystal grains to become coarse. In other words, as shown in the diagram in Figure 2, the annealing softening temperature of pure nickel (curve a' softening temperature approximately 500℃) and pure copper (curve b' softening temperature approximately 250℃) is the same as that of SUS304 stainless steel (curve c 1 softening temperature). temperature about 950℃), unlike SUS430 stainless steel (curve C 2 softening temperature 850℃),
The difference in softening temperature between SUS304 stainless steel and pure copper or pure nickel is about 700℃ or about 450℃. Therefore, it has been found that pure copper and pure nickel become over-annealed when annealed to suit SUS304 stainless steel, resulting in rough skin and cracks. Here, the softening temperature of each metal and alloy refers to the temperature at which the metal and alloy are sufficiently softened to the extent that hot press working is not impaired and anisotropy does not occur during press working. That is, the battery lid is bent and formed by hot press working. Therefore, when the metal material used for the battery lid is hot pressed, it is necessary to soften it sufficiently so as not to damage the press work and to maintain the anisotropy. The temperature at which this state is reached is the softening temperature. For example, SUS430 stainless steel has temperature
At the 750°C stage, the rolled structure from cold rolling, which is a pre-processing process for pressing, remains, which causes anisotropy during pressing and impairs pressing. On the other hand, at a temperature of 850°C, no anisotropy occurs during press working. For this reason, SUS430 stainless steel has a softening temperature of 850°C. The present invention has been made with attention to this point, and an object of the present invention is to provide a battery can equipped with a battery lid that does not cause roughness or cracks during press processing and can provide excellent battery characteristics. purpose. That is, in the battery can of the present invention, one surface of the core layer made of stainless steel is coated with a nickel-based alloy having a softening temperature similar to that of the stainless steel, for example, 4% by weight W-
The outer layer is made of Ni alloy and 3% by weight Mo-Ni alloy.
The other surface of the core layer is made of a copper-based alloy whose softening temperature is similar to that of stainless steel, such as 0.6 wt% Cr-0.33.
wt% Zr-0.03 wt% Si-Cu alloy, 0.65 wt% Cr
The battery cover is made of a three-layer clad material, each with an inner layer of -0.3% by weight Zr and 0.02% by weight Ge-Cu alloy. The present invention will be explained below with reference to the drawings. Figure 3 is a cross-sectional view of the battery can, which is shown in the cylindrical case 1.
Insert the battery cover 13 into the opening of 1 through the packing 12.
is covered. As shown in FIG. 4, this battery lid 13 has a core layer 14 made of stainless steel, an outer layer 15 made of a nickel-based alloy whose softening temperature approximates that of the copper, and an inner layer 15 made of a nickel-based alloy whose softening temperature is similar to that of the copper. It consists of a three-layer cladding material each coated with an inner layer 16 of an approximated copper-based alloy. Note that the softening temperature herein refers to the temperature at which the material is sufficiently softened to the extent that hot press working is not impaired and anisotropy does not occur during press working. The core layer 14 is made of stainless steel such as SUS304 and SUS430. These stainless steels have the property of being hardened by processing, and have high strength and excellent spring properties. Further, as the outer layer 15 made of the above-mentioned nickel-based alloy, for example, a nickel alloy containing 2 to 15% by weight of one or both of tungsten and molybdenum can be used. Here, the reason why the amount of tungsten or molybdenum added is limited is that by setting it within this range, the softening temperature increases and approaches the softening temperature of the core layer 14, and also has good corrosion resistance like pure nickel. This is because the contact resistance with external terminals is low. In this case, if the content of tungsten or molybdenum is less than 2% by weight, the difference in softening temperature from stainless steel will be too large, and if it exceeds 15% by weight, the workability of the material will be poor and it will also be economically disadvantageous. For example, a nickel alloy containing 4% by weight of tungsten has a softening temperature of about 700°C, as shown by curve a in Figure 2.
The difference in softening temperature from the softening temperature of SUS304 stainless steel, which is approximately 950°C, is as small as approximately 250°C, and molybdenum
Even in the case of a nickel alloy containing % by weight (curve similar to curve a), the softening temperature difference is extremely small at about 230°C. (In Fig. 2, the Ni-4%W curve and the Ni-3%Mo curve are shown as one curve a.The Ni-4%W curve and the Ni-3%Mo curve are Although they are not exactly the same, if you draw both curves on the drawing, they will almost overlap and become unclear, so
They are deliberately shown as the same curve. ) On the other hand, pure nickel has a softening temperature of about 500℃, as shown in curve a′, and SUS304 stainless steel has a softening temperature of about 500℃.
The difference in softening temperature from 950℃ is extremely large at 450℃.
The difference in softening temperature with SUS304 stainless steel is approximately 300℃
If it is below, the grain size of Ni alloy and Cr alloy can be prevented and is sufficient for use. Furthermore, as the inner layer 16 made of the above copper alloy,
0.3-1.0% by weight of chromium and 0.2-0.5% of zirconium
Examples include copper alloys to which 0.005 to 0.1 weight % of one or more of silicon, germanium, and magnesium are added. The reason for limiting the range of addition of the additive elements is that by setting the range of addition to this range, the softening temperature is close to that of stainless steel, and it is also easy to amalgamize like pure copper, and has good electrical contact with the cathode active material. It's for a reason. In this case, if each additive element is less than the specified addition range, the difference in softening temperature with stainless steel will be too large, and if it exceeds the above range, there will be a difference in softening temperature with stainless steel, and it will cause amalgamation and electrical damage. This is because the contact properties etc. deteriorate. For example chrome
0.6% by weight, 0.3% by weight of zirconium, silicon
Copper alloy containing 0.03% by weight has a softening temperature of approximately 700°C, as shown by curve b in Figure 2, and the difference in softening temperature from SUS304 stainless steel is extremely small at approximately 250°C, whereas pure copper has a softening temperature of approximately 250°C, as shown by curve b' in Figure 2. As shown in , the difference in softening temperature between stainless steel and stainless steel is as large as approximately 700°C. Furthermore, a copper alloy containing 0.2% by weight of chromium and 0.1% by weight of zirconium (not shown in FIG. 2) has a large softening temperature difference of about 600°C from that of SUS304 stainless steel. Battery cover 13 made of such a three-layer cladding material
After cold-pressing each plate, the plates are cold-rolled to a desired thickness, and then annealed. The annealing temperature is adjusted to the softening temperature of stainless steel; for example, SUS304 stainless steel is annealed at about 950°C. Next, as shown in Figure 3, this three-layer cladding material is closely bent at 180° around the periphery, and the head section is divided into two stages.
It is bent 90 degrees and press-fitted into the case 11 via the packing 12. The battery lid 13 having such a structure includes an outer layer 15 made of a nickel-based alloy and an inner layer 1 made of a copper-based alloy.
6 has a softening temperature similar to that of the core layer 14 made of stainless steel, so the outer layer 15 and the inner layer 16 are annealed at an appropriate temperature during annealing and are not over-annealed as in the conventional case. Therefore, there is no crystal coarsening in the outer layer 15 and the inner layer 16, and it is possible to prevent surface roughness and cracks from occurring during press molding, and furthermore, since the hardness does not decrease extremely, it is possible to prevent handling flaws from occurring. . In addition, since there is no cracking, the battery cover 13 has an outer layer 15 and an inner layer 1.
6 can be made thinner and its strength is also improved. Next, embodiments of the present invention will be described. Example The materials and thicknesses shown in Table 1 were used as the outer layer, core layer, and inner layer, and these plates were cold-pressed to create a three-layer cladding material. This three-layer clad material was cold worked to a thickness of 0.3 mm and then annealed in a reducing atmosphere at 950°C. The hardness and average grain size of the three-layer clad material thus annealed were measured. The results are shown in Table 1. Next, this three-layer cladding material is pressed into a fourth layer.
A battery lid 13 as shown in the figure was prepared, and the degree of roughness in the outer layer 15 and the number of cracks in the inner layer 16 were examined. The results are shown in Table 1. Further, a JIS-G13 type silver oxide battery was prepared using this battery lid 13, and after being left at room temperature and humidity for one year, the presence or absence of leakage was examined. The results are shown in Table 1. Comparative Example A three-layer clad material consisting of a pure nickel plate (outer layer), a stainless steel plate (core layer), and a copper-based alloy plate (inner layer) was created and annealed in the same manner as in the above example to improve hardness and average grain size. It was measured. The results are also listed in Table 1. In addition, a battery cover was made by pressing this three-layer clad material, and the degree of roughness on the outer layer of the battery cover and the number of cracks in the inner layer were investigated.
The results are also listed in Table 1. Furthermore, a silver oxide battery was prepared using this battery lid, and the presence or absence of leakage was examined in the same manner as in the examples.

【表】 第1表から明らかなように、本発明によれば、
電池蓋を構成する三層クラツド材の各素材がそれ
ぞれ近似した軟化温度を有しているので、ニツケ
ル基合金からなる外層や銅基合金からなる内層が
過焼鈍されることなく、結晶粒の粗大化を防止で
きる。この結果、電池蓋を製作するに際して、プ
レス加工時に内層や外層に肌荒れやクラツクの発
生がなく、良質な電池蓋を得ることができる。従
つて、本発明の電池缶は電池を長寿命化できると
ともに、漏液を防止できるなど顕著な効果を奏す
る。
[Table] As is clear from Table 1, according to the present invention,
Since each material of the three-layer cladding material that makes up the battery lid has a similar softening temperature, the outer layer made of a nickel-based alloy and the inner layer made of a copper-based alloy are not over-annealed and the crystal grains become coarse. can be prevented from occurring. As a result, when manufacturing a battery lid, a high-quality battery lid can be obtained without roughening or cracking of the inner layer or outer layer during press working. Therefore, the battery can of the present invention has remarkable effects such as extending the life of the battery and preventing leakage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電池缶の断面図、第2図は本発
明に係る電池蓋に用いるニツケル基合金、銅基合
金、及びステンレス鋼の軟化特性を従来の素材と
ともに示した特性図、第3図は本発明の一実施例
を示す電池缶の断面図、第4図は同電池缶の電池
蓋を示す断面図である。 13……電池蓋、14……芯層、15……外層
(ニツケル基合金板)、16……内層(銅基合金
板)。
Fig. 1 is a cross-sectional view of a conventional battery can, Fig. 2 is a characteristic diagram showing the softening properties of the nickel-based alloy, copper-based alloy, and stainless steel used for the battery lid according to the present invention, together with conventional materials. The figure is a cross-sectional view of a battery can showing an embodiment of the present invention, and FIG. 4 is a cross-sectional view showing a battery lid of the battery can. 13...Battery lid, 14...Core layer, 15...Outer layer (nickel-based alloy plate), 16...Inner layer (copper-based alloy plate).

Claims (1)

【特許請求の範囲】 1 ステンレス鋼からなる芯層の一面に該ステン
レス鋼と軟化温度を近似させたニツケル基合金か
らなる外層を、又前記芯層の他面に前記ステンレ
ス鋼と軟化温度を近似させた銅基合金からなる内
層をそれぞれ形成した三層クラツド材で、電池蓋
を形成してなることを特徴とする電池缶。 2 外層は、タングステン又はモリブデンの一種
又は二種を2〜15重量%含むニツケル合金で形成
してなり、内層は、クロム0.3〜1.0重量%と、ジ
ルコニウム0.2〜0.5重量%と、シリコン、ゲルマ
ニウム、マグネシウムの一種又は二種以上を
0.005〜0.1重量%含む銅合金で形成してなる特許
請求の範囲第1項記載の電池缶。
[Scope of Claims] 1. An outer layer made of a nickel-based alloy having a softening temperature similar to that of the stainless steel on one surface of the core layer made of stainless steel, and an outer layer made of a nickel-based alloy having a softening temperature similar to that of the stainless steel on the other surface of the core layer. A battery can characterized in that a battery lid is formed of a three-layer cladding material, each of which has an inner layer made of a copper-based alloy. 2. The outer layer is made of a nickel alloy containing 2 to 15% by weight of one or both of tungsten or molybdenum, and the inner layer is made of a nickel alloy containing 0.3 to 1.0% by weight of chromium, 0.2 to 0.5% by weight of zirconium, silicon, germanium, One or more types of magnesium
The battery can according to claim 1, which is formed of a copper alloy containing 0.005 to 0.1% by weight.
JP4129979A 1979-04-05 1979-04-05 Cell can Granted JPS55133755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4129979A JPS55133755A (en) 1979-04-05 1979-04-05 Cell can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4129979A JPS55133755A (en) 1979-04-05 1979-04-05 Cell can

Publications (2)

Publication Number Publication Date
JPS55133755A JPS55133755A (en) 1980-10-17
JPS628900B2 true JPS628900B2 (en) 1987-02-25

Family

ID=12604579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4129979A Granted JPS55133755A (en) 1979-04-05 1979-04-05 Cell can

Country Status (1)

Country Link
JP (1) JPS55133755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137353A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181454A (en) * 1983-03-31 1984-10-15 Toshiba Corp Battery can and manufacturing method thereof
JP2020062731A (en) * 2018-10-19 2020-04-23 日本製鉄株式会社 Polishing device and polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137353A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery and method for manufacturing battery
JPWO2020137353A1 (en) * 2018-12-28 2021-11-18 パナソニックIpマネジメント株式会社 Batteries and battery manufacturing methods

Also Published As

Publication number Publication date
JPS55133755A (en) 1980-10-17

Similar Documents

Publication Publication Date Title
JP3041585B2 (en) Mainspring manufacturing method
US2793423A (en) Compound metal stock
JPS628900B2 (en)
JP3017029B2 (en) Nonmagnetic stainless steel for high burring forming and method for producing the same
JP2002003968A (en) Titanium sheet excellent in processability and its production method
JPS5996245A (en) Material for lead frame and its manufacture
JP2014208894A (en) Steel sheet for can excellent in processability and surface roughing resistance and manufacturing method therefor
JPH0353077B2 (en)
JP2918903B2 (en) Manufacturing method of aluminum alloy material for forming
KR20200024603A (en) Ferritic stainless steel excellent in pickling property
JPWO2018194059A1 (en) Steel sheet and method of manufacturing the same
JP3000154B2 (en) Lead frame material manufacturing method
JPS61166947A (en) Shadow mask
JP2792617B2 (en) Flute material
JPH06120405A (en) Lead frame material and manufacture thereof
JPH08332581A (en) Manufacture of clad plate excellent in formability
JPH04231418A (en) Production of lead frame material
JP3025556B2 (en) Glass sealing alloy wire
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
CN1005993B (en) Aluminum-magnesium-zinc-zirconium series superplastic alloy
JPH0681035A (en) Production of lead frame material
JPH08309561A (en) Manufacture of clad plate excellent in formability
JPH04191316A (en) Manufacture of lead frame material
JPH04221020A (en) Manufacture of lead frame
JPH075983B2 (en) Method for producing ferritic stainless steel for lead frame