JPS628870A - Four wheel steering device for vehicle - Google Patents

Four wheel steering device for vehicle

Info

Publication number
JPS628870A
JPS628870A JP15067085A JP15067085A JPS628870A JP S628870 A JPS628870 A JP S628870A JP 15067085 A JP15067085 A JP 15067085A JP 15067085 A JP15067085 A JP 15067085A JP S628870 A JPS628870 A JP S628870A
Authority
JP
Japan
Prior art keywords
steering
vehicle
wheel steering
car
damping force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15067085A
Other languages
Japanese (ja)
Other versions
JPH0649464B2 (en
Inventor
Hirotaka Kanazawa
金澤 啓隆
Shigeki Furuya
古谷 茂樹
Teruhiko Takatani
高谷 輝彦
Yoshihiro Sato
佐藤 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15067085A priority Critical patent/JPH0649464B2/en
Publication of JPS628870A publication Critical patent/JPS628870A/en
Publication of JPH0649464B2 publication Critical patent/JPH0649464B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels

Abstract

PURPOSE:To prevent a car from being rolled even if the car is transversally accelerated when the car is running while a steering angle ratio between a front and a rear wheel is in an antiphase by configurating a device in such a way that, when the car is running at a low speed while the steering angle ratio between the front and rear wheels is in the antiphase, the rolling stiffness of the car is increased by means of a stiffness changing means. CONSTITUTION:A variable damping force controller 36 is actuated based on a signal from a controller 25 is such a way that a rolling stiffness changing means is switched in response to a change of a steering angle ratio K affected by its inphase or antiphase. The rolling stiffness changing means is composed of an air spring type suspension, and the suspension 38 consists of a shock absorber 39, a coil spring 40, and an air spring chamber 41. And the shock absorber 39 is equiped with a step motor 42, in which a damping force is switched into two steps: a large and a small step. The actuation of the step motor 42 is controlled by a signal from the variable damping force controller 36 allowing the stiffness of the shock absorber to be changed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、前輪の転舵に応じて後輪をも転舵する、よう
にした車両の4輪操舵装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a four-wheel steering system for a vehicle that steers the rear wheels in response to the steering of the front wheels.

(従来の技術) 従来より、この種の車両の4輪操舵装置として、例えば
特開昭55−91457号公報に開示されるように、前
輪を転舵する前輪転舵機構と、後輪を転舵する後輪転舵
機構とを備え、前輪の転舵角および車速に応じて後輪の
転舵角を変化させ、低速時では前輪と後輪とを逆位相”
に、高速時では同位相にすることにより、車輪の横すべ
りを防止して走行安定性を向上させるとともに、低速時
での小廻り性の向上を図り得るようにしたものは知られ
ている。
(Prior Art) Conventionally, as a four-wheel steering system for this type of vehicle, a front wheel steering mechanism that steers the front wheels and a front wheel steering mechanism that steers the rear wheels have been used, for example, as disclosed in Japanese Patent Laid-Open No. 55-91457. It is equipped with a rear wheel steering mechanism that changes the steering angle of the rear wheels according to the steering angle of the front wheels and the vehicle speed, and at low speeds, the front and rear wheels are in opposite phases.
Furthermore, it is known that the wheels are in the same phase at high speeds to prevent wheels from slipping and improve running stability, as well as to improve maneuverability at low speeds.

(発明が解決しようとする問題点) ところが、前、後輪の転舵比が逆位相にある場合には、
回転性が良くなって旋回時の小回り性が良好になるが、
旋回時等に車幅方向に大きな加速度が加わるとロールし
易くなるので、運転者にロールによる不快感を与える。
(Problem to be solved by the invention) However, when the steering ratios of the front and rear wheels are in opposite phases,
The rotation performance is improved and the tight turning ability when turning is improved, but
When a large acceleration is applied in the width direction of the vehicle, such as when turning, the vehicle tends to roll, causing discomfort to the driver.

特に、車両はその運動に追従してロールするため、旋回
時等に不安定なロール振動を生じ易く、逆位相による走
行時のロール感が悪いという問題があった。
In particular, since the vehicle rolls following its motion, unstable roll vibrations tend to occur when turning or the like, and there is a problem in that the anti-phase nature of the vehicle results in poor roll feel when driving.

本発明は、上記の点に鑑みてなされたものであり、その
目的とするところは、前、後輪の転舵比が逆位相にある
場合には、車両のロール剛性を高めるようにすることに
より、逆位相で走行スル時のロール感を向上させ、乗り
心地を良くすることにある。
The present invention has been made in view of the above points, and its purpose is to increase the roll rigidity of a vehicle when the steering ratios of the front and rear wheels are in opposite phases. The purpose of this is to improve the roll feeling when driving in reverse phase and improve ride comfort.

上記目的を達成するため、本発明の解決手段は、ハンド
ル操舵に応じて前輪を転舵する前輪転舵機構と、この前
輪の転舵に応じて所定の前後輪転舵比特性で後輪を転舵
する後輪転舵機構とを備え、これに加えて、車両のロー
ル剛性を可変にする可変手段を設け、・さらに、上記前
後輪転舵比が逆位相にあるとき、上記可変手段により車
両のロール剛性を高めるよう上記可変手段を制御する制
御手段を設ける構成としたものである。
In order to achieve the above object, the solution of the present invention includes a front wheel steering mechanism that steers the front wheels in response to steering wheel steering, and a front wheel steering mechanism that steers the front wheels in response to steering of the steering wheel, and a front wheel steering mechanism that steers the rear wheels with a predetermined front and rear wheel steering ratio characteristic in response to the steering of the front wheels. and a rear wheel steering mechanism for steering the vehicle; in addition to this, a variable means for varying the roll stiffness of the vehicle is provided; furthermore, when the front and rear wheel steering ratios are in opposite phases, the variable means controls the roll stiffness of the vehicle; The structure includes a control means for controlling the variable means to increase the rigidity.

(作用) 上記の構成により、前、後輪の転舵比が逆位相にある場
合には、可変手段によって車両のロール剛性が高められ
ることによって、車幅方向に加速度が作用しても車両が
大きくロールするのを防止できることになる。
(Function) With the above configuration, when the steering ratios of the front and rear wheels are in opposite phases, the roll stiffness of the vehicle is increased by the variable means, so that even if acceleration is applied in the width direction of the vehicle, the vehicle This will prevent a large roll.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の第1実施例に係る車両の4輪操舵装置
の全体構成を示し、1は左右の前輪2L。
FIG. 1 shows the overall configuration of a four-wheel steering system for a vehicle according to a first embodiment of the present invention, where 1 indicates left and right front wheels 2L.

2Rを転舵する前輪転舵機構であって、該前輪転舵機構
1は、ステアリングハンドル3と、該ステアリングハン
ドル3の回転運動を直線運動に変換するラック&ピニオ
ン機構4と、該ラック&ピニオン機構4の作動を前輪2
L、2Rに伝達してこれらを左右に転舵させる左右のタ
イロッド5.5およびナックルアーム6.6とからなる
2R, the front wheel steering mechanism 1 includes a steering handle 3, a rack and pinion mechanism 4 that converts rotational motion of the steering handle 3 into linear motion, and the rack and pinion. The operation of mechanism 4 is controlled by the front wheel 2.
It consists of left and right tie rods 5.5 and knuckle arms 6.6 that transmit information to L and 2R and steer them left and right.

7は左右の後輪8L、8Rを転舵する後輪転舵機構であ
って、咳後輪転舵機構7は、両端が左右の後輪8L、8
Rにタイロッド9.9およびナックルアーム10.10
を介して連結された車幅方向に延びる後輪操作ロッド1
1を備えている。該後輪操作ロッド11にはうツク12
が形成され、該ラック12に噛合するビニオン13がパ
ルスモータ14により一対の傘歯車15.16およびピ
ニオン軸17を介して回転されることにより、上記パル
スモータ14の回転方向および回転量に対応して後輪8
L、8Rが左右に転舵されるように構成されている。
Reference numeral 7 denotes a rear wheel steering mechanism that steers the left and right rear wheels 8L, 8R, and both ends of the cough rear wheel steering mechanism 7 steer the left and right rear wheels 8L, 8.
Tie rod 9.9 and knuckle arm 10.10 on R
Rear wheel operating rod 1 extending in the vehicle width direction and connected via
1. The rear wheel operating rod 11 is fitted with a hook 12.
is formed, and the pinion 13 meshing with the rack 12 is rotated by the pulse motor 14 via a pair of bevel gears 15, 16 and the pinion shaft 17, thereby corresponding to the direction and amount of rotation of the pulse motor 14. rear wheel 8
The L and 8R are configured to be steered left and right.

また、上記後輪操作ロッド11には、該ロッド11を操
作ロッドとするパワーシリンダ18が接続されている。
Further, a power cylinder 18 is connected to the rear wheel operating rod 11, using the rod 11 as an operating rod.

該パワーシリンダ18は、後輪操作ロッド11に固着し
たピストン18aにより車幅方向に仕切られた左転用油
圧室18bおよび右転用油圧室18cを有しているとと
もに、該8油圧室18b、18cはそれぞれ油圧通路1
9a。
The power cylinder 18 has a left-turning hydraulic chamber 18b and a right-turning hydraulic chamber 18c partitioned in the vehicle width direction by a piston 18a fixed to the rear wheel operating rod 11, and the eight hydraulic chambers 18b, 18c are Hydraulic passage 1 each
9a.

19bを介して、パワーシリンダ18への油供給方向お
よび油圧を制御するコントロールバルブ20に連通し、
該コントロールバルブ20には油供給通路21および油
戻し路22を介して油圧ポンプ23が接続されており、
該油圧ポンプ23はモータ24によって回転駆動される
。上記コントロールバルブ20は、ピニオン軸17の回
転方向を検出して後輪8L、8Rの左方向転舵(図中反
時計方向への転舵)時には油供給通路21を左転用油圧
室18bに連通しかつ右転用油圧室18cを油戻し路2
2に連通ずる一方、後輪81.8Rの右方向転舵(図中
時計方向への転舵)時には上記とは逆の連通状態とし、
同時に油圧ポンプ2 a hkらの油圧をピニオン軸1
7の回転ノコに応じた圧力に減圧するものであり、パル
スモータ14により傘歯車15,16、ピニオン軸17
、ピニオン13およびラック12を介して後輪操作ロッ
ド11が軸方向(車幅方向)に移動されるときにはパワ
ーシリンダ18への圧油供給により上記後輪操作ロッド
11の移動を助勢するようにしている。
19b, communicates with a control valve 20 that controls the oil supply direction and oil pressure to the power cylinder 18,
A hydraulic pump 23 is connected to the control valve 20 via an oil supply passage 21 and an oil return passage 22.
The hydraulic pump 23 is rotationally driven by a motor 24. The control valve 20 detects the rotational direction of the pinion shaft 17 and communicates the oil supply passage 21 with the left rotation hydraulic chamber 18b when the rear wheels 8L and 8R are steered to the left (counterclockwise in the figure). In addition, the right diversion hydraulic chamber 18c is connected to the oil return path 2.
On the other hand, when the rear wheel 81.8R is steered to the right (clockwise in the figure), the communication state is opposite to the above,
At the same time, the hydraulic pressure of hydraulic pump 2 a hk etc. is applied to pinion shaft 1.
The pressure is reduced to the pressure corresponding to the rotary saw 7, and the bevel gears 15, 16 and the pinion shaft 17 are reduced by the pulse motor 14.
When the rear wheel operating rod 11 is moved in the axial direction (vehicle width direction) via the pinion 13 and the rack 12, pressure oil is supplied to the power cylinder 18 to assist the movement of the rear wheel operating rod 11. There is.

そして、上記パルスモータ14および油圧ポンプ23の
駆動用モータ24は、後輪転舵機構7の制御部たるコン
トローラ25から出力される制御信号によって作動制御
される。上記コントローラ25には、前輪転舵機構1に
おけるステアリングハンドル3の操舵量等から前輪転舵
角を検出する舵角センサ26からの舵角信号と、車速を
検出する車速センサ27ふらの車速信号とがそれぞれ入
力されているとともに、バッテリ電源29が接続されて
いる。
The operation of the pulse motor 14 and the drive motor 24 of the hydraulic pump 23 is controlled by a control signal output from a controller 25 that is a control section of the rear wheel steering mechanism 7. The controller 25 receives a steering angle signal from a steering angle sensor 26 that detects the front wheel steering angle from the steering amount of the steering wheel 3 in the front wheel steering mechanism 1, and a vehicle speed signal from a vehicle speed sensor 27 that detects the vehicle speed. They are each input, and the battery power source 29 is connected.

上記、コントローラ25は、第2図に示すように、舵角
センサ26からの舵角信号および車速センサ27からの
車速信号を受け、特性記憶部30に記憶された転舵比特
性から前輪転舵角および車速に対応する後輪の目標転舵
角を演算する目標転舵角演算部31と、該目標転舵角演
算部31で演算された目標転舵角に対応するパルス信号
を出力するパルスジェネレータ32と、該パルスジェネ
レータ32からのパルス信号を受けてパルスモータ14
および油圧ポンプ23の駆動用モータ24を駆動する駆
動パルス信号に変換するドライバ33とを備え、これら
によって前輪転舵角に対する後輪転舵角の比(転舵比)
を所定の転舵比特性に従って可変として後輪転舵角が目
標転舵角となるようにパルスモータ14および油圧ポン
プ23の駆動用モータ24をIIJ!#Jする転舵比可
変手段34が構成されている。
As shown in FIG. 2, the controller 25 receives the steering angle signal from the steering angle sensor 26 and the vehicle speed signal from the vehicle speed sensor 27, and steers the front wheels based on the steering ratio characteristic stored in the characteristic storage section 30. a target steering angle calculating section 31 that calculates a target turning angle of the rear wheels corresponding to the angle and vehicle speed; and a pulse outputting a pulse signal corresponding to the target turning angle calculated by the target turning angle calculating section 31. A generator 32 and a pulse motor 14 receiving a pulse signal from the pulse generator 32.
and a driver 33 that converts into a drive pulse signal that drives the drive motor 24 of the hydraulic pump 23, and the ratio of the rear wheel steering angle to the front wheel steering angle (steering ratio)
is variable according to a predetermined steering ratio characteristic, and the pulse motor 14 and the drive motor 24 of the hydraulic pump 23 are set so that the rear wheel steering angle becomes the target steering angle. #J steering ratio variable means 34 is configured.

ここで、上記特性記憶部30に記憶された転舵比特性A
は、第3図に示すように、車速に応じて後輪が前輪に対
し逆位相に転舵される逆位相領域(負の領域)と、後輪
が前輪に対し同位相に転舵される同位相領域(正の領域
)とに亘って前後輪の転舵比kが変化するようになって
おり、車速が低速から高速に上押するに従って転舵比k
が負方向の逆位相で大きな値から零に近づくように移行
し、中速域にて転舵比kが正方向の同位相に変わり、高
速域では転舵比kが同位相で大きくなるように設定され
ている。
Here, the steering ratio characteristic A stored in the characteristic storage section 30 is
As shown in Figure 3, there is an anti-phase region (negative region) in which the rear wheels are steered in the opposite phase to the front wheels depending on the vehicle speed, and a negative region in which the rear wheels are steered in the same phase as the front wheels. The steering ratio k of the front and rear wheels changes over the same phase region (positive region), and as the vehicle speed increases from low to high speed, the steering ratio k changes.
The steering ratio k changes from a large value to approach zero in the opposite phase in the negative direction, and in the medium speed range, the steering ratio k changes to the same phase in the positive direction, and in the high speed range, the steering ratio k increases with the same phase. is set to .

そして、このような転舵比特性Aに従って前後輪の転舵
比kが転舵比可変手段34により可変されるに当り、そ
の転舵比にの同位相領域と逆位相領域との間での変化は
、コントローラ25内に設けられた位相判別部35にお
いて転舵比可変手段34の目標転舵角演算部31からの
出力信号に基づいて判別され、該位相判別部35から検
出信号として出力信号が車両のロール剛性を可変にする
ロール剛性可変手段37を制御する制御手段としての減
衰力可変コントローラ36に出力される。
When the steering ratio k of the front and rear wheels is varied by the steering ratio variable means 34 according to the steering ratio characteristic A, the difference between the same phase region and the opposite phase region of the steering ratio is determined. The change is determined by a phase determination section 35 provided in the controller 25 based on the output signal from the target steering angle calculation section 31 of the steering ratio variable means 34, and an output signal is output from the phase determination section 35 as a detection signal. is output to a variable damping force controller 36 as a control means for controlling a roll stiffness variable means 37 that varies the roll stiffness of the vehicle.

該減衰力可変コントローラ36は、転舵比にの同位相・
逆位相の変化に対応してロール剛性可変手段37を切換
えるように作動し、第4図に示すように、転舵比kが逆
位相にあるときには可変手段37を車両のロール剛性を
高めるように切換えて作動させ、転舵比kが同位相にあ
るときには可変手段37を車両のロール剛性を低下させ
るように切換えて作動させるようになっている。
The variable damping force controller 36 has the same phase and
It operates to change the roll stiffness variable means 37 in response to a change in the opposite phase, and as shown in FIG. 4, when the steering ratio k is in the opposite phase, the variable means 37 is operated to increase the roll stiffness of the vehicle. When the steering ratio k is in the same phase, the variable means 37 is switched and operated so as to reduce the roll stiffness of the vehicle.

上記可変手段37は、具体的には第5図に示すように車
体を懸架する懸架特性を可変にするエアバネ式サスペン
ション38によって構成されており、該各サスペンショ
ン38は、いずれも減衰力可変式のショックアブソーバ
39と、その周りに配置されたコイルバネ40と、エア
バネ室41とを有し、上記ショックアブソーバ39には
その減。
Specifically, the variable means 37 is constituted by an air spring type suspension 38 that changes the suspension characteristics for suspending the vehicle body, as shown in FIG. The shock absorber 39 includes a shock absorber 39, a coil spring 40 disposed around the shock absorber 39, and an air spring chamber 41.

衰力を大小2段階に切り換えるためのステップモータ4
2が具備されている。また、上記エアバネ室41はバイ
ブ43を介してアキュムレータ44に接続されていると
ともに、上記バイブ43の途中にはエアバネ室41とア
キュムレータ44とを連通または連通遮断する電磁弁4
5が配設されている。そして、上記電磁弁45およびス
テップモータ42は、減衰力可変コントローラ36に接
続されており、該減衰力可変コントローラ25により電
磁弁45を開閉制御してエアバネ室41のエア量を増減
制御するとともに、ステップモータ42を駆動制御して
ショックアブソーバ39の減衰力を切換制御することに
より、サスペンション38の懸架特性をソフト又はハー
ドな状態に切り換えるように構成されている。
Step motor 4 for switching the damping force into two levels, large and small.
2 is provided. The air spring chamber 41 is connected to an accumulator 44 via a vibrator 43, and a solenoid valve 4 is provided in the middle of the vibrator 43 to communicate or cut off communication between the air spring chamber 41 and the accumulator 44.
5 are arranged. The solenoid valve 45 and the step motor 42 are connected to a variable damping force controller 36, and the variable damping force controller 25 controls the opening and closing of the solenoid valve 45 to increase or decrease the amount of air in the air spring chamber 41. The suspension characteristic of the suspension 38 is switched between a soft state and a hard state by driving and controlling the step motor 42 to switch and control the damping force of the shock absorber 39.

ここで、第6図および第7図により、上記ショックアブ
ソーバ39の具体的構造を詳細に説明すると、該シミツ
クアブソーバ39は弾性体46を介して車体に取付けら
れる上部ケース47と、該上部ケース47に対して相対
的に上下動可能に設けられ、且つブラケット49を介し
て車輪に取付けられる下部ケース48とを有する。そし
て、上記上部ケース47の下端部と下部ケース48の上
端部とはローリングダイヤフラム50を介して連結され
ているとともに、両ケース47.48内はシール部材5
1によって仕切られて、上部ケース47内に密閉された
エアバネ室41が構成されている。尚、このエアバネ室
41は上記のようにバイブ43及び電磁弁45を介して
アキュムレータ44に接続されており、また上部ケース
47と下部ケース48とには夫々バネ受は部材52.5
3が固設されて上記コイルバネ40が装着されている。
Here, the specific structure of the shock absorber 39 will be explained in detail with reference to FIGS. 6 and 7. The stain absorber 39 consists of an upper case 47 attached to the vehicle body via an elastic body 46, and an upper case 47. The lower case 48 is provided to be movable up and down relative to the lower case 47 and is attached to a wheel via a bracket 49. The lower end of the upper case 47 and the upper end of the lower case 48 are connected via a rolling diaphragm 50, and a seal member 5 is provided inside both cases 47 and 48.
An air spring chamber 41 that is partitioned off by 1 and sealed within an upper case 47 is configured. The air spring chamber 41 is connected to the accumulator 44 via the vibrator 43 and the electromagnetic valve 45 as described above, and the upper case 47 and the lower case 48 each have a spring support member 52.5.
3 is fixedly installed, and the coil spring 40 is attached thereto.

また、上記下部ケース48は外筒54と内筒55とから
なり、内筒55内には上部ケース47から垂下されたピ
ストンロッド56が上下方向に摺動可能に挿通され、該
ピストンロッド56の下端に設けたメインバルブ57に
より内筒55内が上部油室58と下部油室59とに仕切
られている。
The lower case 48 is composed of an outer cylinder 54 and an inner cylinder 55, and a piston rod 56 hanging from the upper case 47 is inserted into the inner cylinder 55 so as to be slidable in the vertical direction. The interior of the inner cylinder 55 is partitioned into an upper oil chamber 58 and a lower oil chamber 59 by a main valve 57 provided at the lower end.

また、内筒55の下端部にはボトムバルブ60が設けら
れていると共に、該内筒55と外筒54との間の空間は
リザーバ室61に構成されている。
Further, a bottom valve 60 is provided at the lower end of the inner cylinder 55, and a space between the inner cylinder 55 and the outer cylinder 54 is configured as a reservoir chamber 61.

更に、上記メインバルブ57は、第7図に拡大詳示する
ように、逆止弁62によって上部油室58から下部油室
59側へ向かう方向にのみ作動流体を通過させるように
設けられた伸び側オリフィス63と、逆に逆止弁64に
よって下部油室59から上部油室58へ向かう方向にの
み作動流体を通過させるにうに設けられた縮み側オリフ
ィス65とを有する。また、メインバルブ57は、内部
が通孔66aを介して上記上部油室58に通過するとと
もに下部油室59に直接連通するスリーブ66と、該ス
リーブ66内に回動自在に嵌装され、スリーブ66の通
孔66aに連通可能な通孔67aを有する弁体67とか
らなるオリフィス弁68をも有し、上記オリフィス弁6
8の弁体67は上記ピストンロッド56内に挿通せしめ
たコントロールロッド69を介して上記ステップモータ
42に駆動連結されており、図示のようにスリーブ66
における通孔66aと弁体67における通孔67aとが
一致した時に上部油室58と下部油室59とを連通させ
るようになされている。よって、上記上部油室58、下
部油室59及びメインバルブ57により、ステップモー
タ42の作動に応じて、両独室58.59がオリフィス
63又は65によってのみ連通された減衰力の大きいハ
ード状態と、これらに加えてオリフィス弁68によって
も連通された減衰力の小さいソフト状態とに切り換えら
れるようにした減衰力可変式ショックアブソーバ39が
構成される。
Furthermore, as shown in enlarged detail in FIG. 7, the main valve 57 has an elongated check valve 62 that allows the working fluid to pass only in the direction from the upper oil chamber 58 to the lower oil chamber 59 side. It has a side orifice 63 and a contraction side orifice 65 which is provided to allow the working fluid to pass only in the direction from the lower oil chamber 59 to the upper oil chamber 58 by means of a check valve 64 . The main valve 57 also includes a sleeve 66 whose interior passes through the upper oil chamber 58 through a through hole 66a and which communicates directly with the lower oil chamber 59, and a sleeve 66 that is rotatably fitted into the sleeve 66. It also has an orifice valve 68 consisting of a valve body 67 having a through hole 67a that can communicate with the through hole 66a of the orifice valve 66.
The valve body 67 of No. 8 is drivingly connected to the step motor 42 via a control rod 69 inserted into the piston rod 56, and as shown in the figure, the valve body 67 is
When the through hole 66a in the valve body 67 and the through hole 67a in the valve body 67 match, the upper oil chamber 58 and the lower oil chamber 59 are communicated with each other. Therefore, according to the operation of the step motor 42, the upper oil chamber 58, the lower oil chamber 59, and the main valve 57 create a hard state in which the two chambers 58, 59 are communicated only through the orifice 63 or 65 and have a large damping force. In addition to these, a variable damping force type shock absorber 39 is configured which can be switched to a soft state with a small damping force communicated by an orifice valve 68.

次に、上記第1実施例の作用・効果について説明するに
、接輪転舵機構7のコントローラ25においては、特性
記憶部30に記憶された転舵比特性Aは車速に応じて逆
位相領域から同位相領域に亘って変化しており、該転舵
比特性へに基づいて転舵比可変手段34の目標転舵角演
算部31で目標転舵角が演算されることにより、前輪転
舵角に対する後輪転舵角の転舵比が上記転舵比特性Aに
従って可変制御され、後輪8L、8Rは、低速時では前
輪2L、2Rと逆位相に転舵され、高速時では前輪2L
、2Rと同位相に転舵される。
Next, to explain the operation and effect of the first embodiment, in the controller 25 of the wheel-contact steering mechanism 7, the steering ratio characteristic A stored in the characteristic storage section 30 is changed from the opposite phase region according to the vehicle speed. The front wheel steering angle changes over the same phase region, and the target steering angle is calculated by the target steering angle calculation unit 31 of the steering ratio variable means 34 based on the steering ratio characteristic. The steering ratio of the rear wheel steering angle is variably controlled according to the above-mentioned steering ratio characteristic A, and the rear wheels 8L and 8R are steered in the opposite phase to the front wheels 2L and 2R at low speeds, and the front wheels 2L and 2R are steered at high speeds.
, 2R are steered in the same phase.

この場合、上記転舵比にの同位相領域と逆位相領域との
間での変化は、コントローラ25内の位相判別部35に
より判別され、該位相判別部35から検出信号として出
力信号が車両のロール剛性を可変にする可変手段37を
制御する減衰力可変コントローラ36に出力される。そ
して、上記位相判別部35からの出力信号を受けた減衰
力可変コントローラ36により可変手段37が作動して
車両のロール剛性の高低の切換えが転舵比にの同位相・
逆位相の変化に対応して行われ、転舵比kが逆位相に変
化したときには車両のロール剛性を高めるように切換え
られ、転舵比kが同位相に変化したときには車両のロー
ル剛性を低下させるように切換えられる。
In this case, the change in the steering ratio between the in-phase region and the anti-phase region is determined by the phase discriminator 35 in the controller 25, and the phase discriminator 35 outputs an output signal as a detection signal to the vehicle. The damping force variable controller 36 controls the variable means 37 that varies the roll stiffness. Then, the variable means 37 is activated by the variable damping force controller 36 which receives the output signal from the phase discriminator 35, and the switching between high and low roll stiffness of the vehicle is performed in the same phase as the steering ratio.
This is done in response to changes in the opposite phase, and when the steering ratio k changes to the opposite phase, it is switched to increase the roll stiffness of the vehicle, and when the steering ratio k changes to the same phase, it reduces the roll stiffness of the vehicle. It can be switched to

すなわち、転舵比kが逆位相に変化したときには、減衰
力可変コントローラ36から電磁弁45に同信号が送ら
れてエアバネ室41にエアが供給されるとともに、ステ
ップモータ42に駆動信号が送られ、サスペンション3
8の懸架特性がハードな状態となる。これにより、車両
のロール剛性は、第4図に示すように高くなるので、旋
回時等に大きな車幅方向の加速度が車両に加わっても大
きくロールすることがなく、また、車両が旋回してもそ
の運動に追従してロールすることがなくなり、よって、
ロール感の向上を図ることができる。
That is, when the steering ratio k changes to the opposite phase, the same signal is sent from the variable damping force controller 36 to the solenoid valve 45 to supply air to the air spring chamber 41, and at the same time, a drive signal is sent to the step motor 42. , suspension 3
8, the suspension characteristics are in a hard state. As a result, the roll stiffness of the vehicle increases as shown in Figure 4, so even when a large acceleration in the vehicle width direction is applied to the vehicle during a turn, the vehicle does not roll significantly. will no longer follow that movement and roll, so
It is possible to improve the roll feeling.

一方、転舵比kが同位相に変化したときには、サスペン
ション38の懸架特性はソフトな状態を保持して車両の
ロール剛性は第4図に示すように低くなるが、逆位相の
ときのように車両は大きく旋回しないので、車両には車
幅方向に大きな加速度が加わらず良好なロール感を得る
ことができる。
On the other hand, when the steering ratio k changes to the same phase, the suspension characteristic of the suspension 38 remains soft and the roll stiffness of the vehicle decreases as shown in FIG. Since the vehicle does not make a large turn, no large acceleration is applied to the vehicle in the vehicle width direction, and a good roll feeling can be obtained.

尚、上記実施例では、可変手段37としてサスペンショ
ン38のショックアブソーバ39を用いたが、スタビラ
イザやスプリング等のばね定数を可変にしても上記第1
実施例と同様の作用、効果を奏し得るのはもとよりであ
る。
In the above embodiment, the shock absorber 39 of the suspension 38 is used as the variable means 37, but even if the spring constant of the stabilizer, spring, etc. is made variable, the first
It goes without saying that the same actions and effects as in the embodiment can be achieved.

さらに、第8図は本発明の第2実施例に係る車両の4輪
操舵装置の全体構成を示し、この4輪操舵装置における
後輪転舵機構7′は、第1実施例の4輪操舵装置におけ
る後輪転舵機構7の如くパルスモータ14の作動により
後輪8L、8Rを電気的に転舵する代わりに、前輪転舵
機構1の操舵力を利用して後輪8L、8Rを機械的に転
舵するようにしたものである。
Furthermore, FIG. 8 shows the overall configuration of a four-wheel steering system for a vehicle according to a second embodiment of the present invention, and the rear wheel steering mechanism 7' in this four-wheel steering system is similar to that of the four-wheel steering system of the first embodiment. Instead of electrically steering the rear wheels 8L and 8R by the operation of the pulse motor 14 as in the rear wheel steering mechanism 7 shown in FIG. It was designed to turn the steering wheel.

すなわち、上記後輪転舵機構7′は、ギヤ等からなる転
舵比変更装置70を備え、該転舵比変更装置70には車
体前後方向に延びる伝達ロッド71の後端が連結され、
該伝達ロッド71の前端部には、前輪転舵i構1のラッ
ク&ビニオン機構4のラック軸4aに形成されたラック
72と噛合するビニオン73が設けられている。また、
上記転舵比変更装置70からは摺動部材74が延出され
、該囲動部材74に形成されたうツク75に対しては、
後輪操作ロッド11にラック12およびビニオン13を
介して連結されたビニオン軸17の前端部に設けたビニ
オン76が噛合している。しかして、前輪転舵機構1の
操舵力がラック&ビニオン機構4のラック軸4aから伝
達ロッド71を介して転舵比変更装置70に伝達され、
該転舵比変更装置70においてコントローラ25の制御
に従って転舵比が変更された後に操舵力が摺動部材74
およびビニオン軸17を介して後輪操作ロッド11に伝
達されることにより、後輪8L、8Rが左右に転舵され
るように構成されている。尚、4輪操舵装置のその伯の
構成は、第1実施例の4輪操舵装置と同じであり、同一
部材には同一符号を付してその説明は省略する。
That is, the rear wheel steering mechanism 7' includes a steering ratio changing device 70 made of gears or the like, and the rear end of a transmission rod 71 extending in the longitudinal direction of the vehicle body is connected to the steering ratio changing device 70.
A binion 73 is provided at the front end of the transmission rod 71 and meshes with a rack 72 formed on the rack shaft 4a of the rack and binion mechanism 4 of the front wheel steering i-structure 1. Also,
A sliding member 74 extends from the steering ratio changing device 70, and a recess 75 formed on the surrounding member 74
A binion 76 provided at the front end of a binion shaft 17 connected to the rear wheel operating rod 11 via a rack 12 and a binion 13 meshes with it. Thus, the steering force of the front wheel steering mechanism 1 is transmitted from the rack shaft 4a of the rack & pinion mechanism 4 to the steering ratio changing device 70 via the transmission rod 71,
After the steering ratio is changed in accordance with the control of the controller 25 in the steering ratio changing device 70, the steering force is applied to the sliding member 74.
The rear wheels 8L and 8R are configured to be steered left and right by being transmitted to the rear wheel operating rod 11 via the pinion shaft 17. The configuration of the four-wheel steering device is the same as that of the four-wheel steering device of the first embodiment, and the same members are given the same reference numerals and their explanations will be omitted.

そして、上記転舵比変更装置70を制御するコントロー
ラ25自体は、第1実施例の場合と同じであり、また、
それにより同様の作用・効果を奏することができるのは
勿論である。
The controller 25 itself that controls the steering ratio changing device 70 is the same as in the first embodiment, and
Of course, similar actions and effects can be achieved thereby.

(発明の効果) 以上の如く、本発明における車両の4輪操舵装置によれ
ば、車速が低く前後輪転舵比が逆位相にある場合には、
可変手段により車両ロール剛性が高められるので、逆位
相による走行中、旋回等により車両が車幅方向の加速度
を受けても大きくロールすることがなく、また、車両の
動きに追従して生じるロールを軽減でき、その結果、逆
位相による走行時のロール感が向上し、乗り心地が良好
になる。
(Effects of the Invention) As described above, according to the four-wheel steering system for a vehicle according to the present invention, when the vehicle speed is low and the front and rear wheel steering ratios are in opposite phases,
Since the vehicle roll rigidity is increased by the variable means, the vehicle does not roll significantly even when the vehicle receives acceleration in the vehicle width direction due to turning, etc. while driving in reverse phase, and also prevents roll that occurs due to following the movement of the vehicle. As a result, the roll feeling during driving due to the opposite phase is improved, and the ride comfort is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は第1実施例を示し、第1図は車両
の4輪操舵装置の全体構成図、第2図はコントローラの
ブロック構成図、第3図はコントローラの車速による転
舵比制御の場合における転舵比特性を示す図、第4図は
可減衰コントローラの車速によるロール剛性の特性を示
す図、第5図ないし第7図は可変手段を示し、第5図は
全体概略構成図、第6図は各サスペンションの要部拡大
断面図、第7図はショックアブソーバの要部拡大断面図
である。また、第8図は第2実施例を示す第1図相当図
である。 1・・・前輪転舵機構、7,7′・・・後輪転舵機構、
25・・・コントローラ、36・・・減衰力可変コント
ロ第3図 第4図 欠
1 to 7 show the first embodiment, FIG. 1 is an overall configuration diagram of a four-wheel steering system for a vehicle, FIG. 2 is a block configuration diagram of a controller, and FIG. 3 is a controller for steering based on vehicle speed. A diagram showing the steering ratio characteristics in the case of ratio control, FIG. 4 is a diagram showing the roll stiffness characteristics depending on the vehicle speed of the dampable controller, FIGS. 5 to 7 show the variable means, and FIG. 5 is an overall outline. FIG. 6 is an enlarged cross-sectional view of the main parts of each suspension, and FIG. 7 is an enlarged cross-sectional view of the main parts of the shock absorber. Moreover, FIG. 8 is a diagram corresponding to FIG. 1 showing the second embodiment. 1... Front wheel steering mechanism, 7, 7'... Rear wheel steering mechanism,
25... Controller, 36... Damping force variable control Figure 3 Figure 4 missing

Claims (1)

【特許請求の範囲】[Claims] (1)ハンドル操舵に応じて前輪を転舵する前輪転舵機
構と、この前輪の転舵に応じて所定の前後輪転舵比特性
で後輪を転舵する後輪転舵機構と、車両のロール剛性を
可変にする可変手段と、上記前後輪転舵比が逆位相にあ
るとき、車両のロール剛性を高めるよう上記可変手段を
制御する制御手段とを備えたことを特徴とする車両の4
輪操舵装置。
(1) A front wheel steering mechanism that steers the front wheels in response to steering wheel steering, a rear wheel steering mechanism that steers the rear wheels with predetermined front and rear wheel steering ratio characteristics in response to the steering of the front wheels, and vehicle roll. 4. A vehicle characterized in that it comprises a variable means for varying the stiffness, and a control means for controlling the variable means to increase the roll stiffness of the vehicle when the front and rear wheel steering ratios are in opposite phases.
Wheel steering device.
JP15067085A 1985-07-08 1985-07-08 4-wheel steering system for vehicles Expired - Lifetime JPH0649464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15067085A JPH0649464B2 (en) 1985-07-08 1985-07-08 4-wheel steering system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15067085A JPH0649464B2 (en) 1985-07-08 1985-07-08 4-wheel steering system for vehicles

Publications (2)

Publication Number Publication Date
JPS628870A true JPS628870A (en) 1987-01-16
JPH0649464B2 JPH0649464B2 (en) 1994-06-29

Family

ID=15501908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15067085A Expired - Lifetime JPH0649464B2 (en) 1985-07-08 1985-07-08 4-wheel steering system for vehicles

Country Status (1)

Country Link
JP (1) JPH0649464B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339617A2 (en) * 1988-04-27 1989-11-02 Nissan Motor Co., Ltd. Fail-safe vehicle control system
JPH01275272A (en) * 1988-04-27 1989-11-02 Nissan Motor Co Ltd Running control device for vehicle
EP0420199A2 (en) * 1989-09-27 1991-04-03 Toyota Jidosha Kabushiki Kaisha Vehicle suspension system with roll control variable according to vehicle speed
EP1659007A3 (en) * 2004-11-22 2006-09-27 Mando Corporation Air suspension and electronically controlled suspension system
EP1707407A1 (en) * 2005-03-29 2006-10-04 Mando Corporation Air suspension and electronically controlled suspension system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0339617A2 (en) * 1988-04-27 1989-11-02 Nissan Motor Co., Ltd. Fail-safe vehicle control system
JPH01275272A (en) * 1988-04-27 1989-11-02 Nissan Motor Co Ltd Running control device for vehicle
EP0420199A2 (en) * 1989-09-27 1991-04-03 Toyota Jidosha Kabushiki Kaisha Vehicle suspension system with roll control variable according to vehicle speed
EP0420199A3 (en) * 1989-09-27 1994-03-16 Toyota Motor Co Ltd
EP1659007A3 (en) * 2004-11-22 2006-09-27 Mando Corporation Air suspension and electronically controlled suspension system
EP1707407A1 (en) * 2005-03-29 2006-10-04 Mando Corporation Air suspension and electronically controlled suspension system

Also Published As

Publication number Publication date
JPH0649464B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
JPS628869A (en) Four wheel steering device for vehicle
JPS60259571A (en) 4-wheel steering apparatus for automobile
JPH0771888B2 (en) Attitude control device for vehicle
JPS61295175A (en) Four-wheel steering gear of vehicle
JPS628870A (en) Four wheel steering device for vehicle
JPS6212472A (en) Four-wheel steering device for car
JPS60166561A (en) Four wheel steering device for vehicle
JPH0649465B2 (en) 4-wheel steering system for vehicles
JP4238569B2 (en) Power steering device
JPH0525710B2 (en)
JPS638075A (en) Four wheel steering device for vehicle
JPH0468187B2 (en)
JPH0534194B2 (en)
JPS621675A (en) Four-wheel steering gear for vehicles
JP2532106B2 (en) Steering control device for four-wheel steering vehicle
JPS628866A (en) Four wheel steering device for vehicle
JPH043352B2 (en)
JPS626871A (en) Four wheel steering apparatus for vehicle
JPH0657490B2 (en) Stabilizers used in automobiles
JPH04243608A (en) Active type suspension
JPS628865A (en) Four wheel steering device for vehicle
JPS62247977A (en) Four-wheel steering device for vehicle
JPH0616858Y2 (en) 4-wheel steering system
JPH05273B2 (en)
JPS6364879A (en) Discriminating device for condition of road surface