JPS6288547A - Thermal displacement compensating device - Google Patents

Thermal displacement compensating device

Info

Publication number
JPS6288547A
JPS6288547A JP22949885A JP22949885A JPS6288547A JP S6288547 A JPS6288547 A JP S6288547A JP 22949885 A JP22949885 A JP 22949885A JP 22949885 A JP22949885 A JP 22949885A JP S6288547 A JPS6288547 A JP S6288547A
Authority
JP
Japan
Prior art keywords
temperature
value
thermal displacement
correction
compensating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22949885A
Other languages
Japanese (ja)
Inventor
Hisafumi Hasegawa
長谷川 寿文
Keiichi Kiyooka
啓一 清岡
Yoshihiko Nishida
西田 良彦
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP22949885A priority Critical patent/JPS6288547A/en
Publication of JPS6288547A publication Critical patent/JPS6288547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)

Abstract

PURPOSE:To make possible to limit a thermal displacement to a minimum value, by receiving the output of a temperature difference measuring means at every predetermined time to compare the present value with the previously received value, and by compensating the movements of movable parts in a machine tool in accordance with a value which is calculated or selected in accordance with the result of the comparison. CONSTITUTION:When an X-axis compensating instruction is delivered, a CPU initiates time-counting, and issues a READY signal when a time-up occurs after a predetermined time elapses to store values A-D measured and delivered by a temperature difference measuring circuit 20 or temperature differences between detecting sections and the room temperature in a buffer memory. Then, comparison is made between the present delivered value and the previously delivered value to obtain a temperature variation DELTAT, and a compensating value corresponding to the temperature variation DELTAT is calculated. Then, the number of pulses corresponding to the compensating value DELTAX is transmitted from a compensating pulse generating circuit 35, and is interrupted into the interrupting section of a manual pulse generator 34 to control an X-axis drive circuit DUX for driving an X-axis servomotor 15 so that the position of the table is compensated by an amount corresponding to a thermal displacement. Accordingly, a thermal displacement may be limited to a minimum value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、工作機械等の熱変位を一定時間毎に補正でき
るようにした熱変位補正装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a thermal displacement correction device capable of correcting thermal displacement of a machine tool or the like at regular intervals.

〈従来の技術〉 一般に、工作機械の熱変位補正装置においては、数値制
御データ中に熱変位補正指令をプログラムしておき、熱
変位補正指令が読出される毎に加ニブログラムに割込ん
で可動部を温度変化に応じて補正移動させ、熱変位を補
正する方式と、検出部の温度が単位温度変化する毎に、
工作機械の可動部を単位量移動させて熱変位を補正する
方式等とがある。
<Prior art> In general, in a thermal displacement correction device for a machine tool, a thermal displacement correction command is programmed in numerical control data, and each time the thermal displacement correction command is read, it interrupts the program to control the moving parts. A method that corrects thermal displacement by moving the sensor according to temperature changes, and a method that corrects thermal displacement every time the temperature of the detection section changes by unit temperature.
There is a method of correcting thermal displacement by moving the movable part of the machine tool by a unit amount.

〈発明が解決しようとする問題点〉 しかしながら、前者の方式においては、数値制御データ
の要所要所に熱変位補正指令をプログラムする必要があ
るばかりでなく、1ブロツクのプログラムの実行時間が
長い場合には、その途中で熱変位を補正できないことか
ら、熱変位補正をりィムリーに実施できない問題がある
<Problems to be Solved by the Invention> However, in the former method, it is not only necessary to program thermal displacement correction commands at key points in the numerical control data, but also when the execution time of one block of programs is long. Since thermal displacement cannot be corrected during the process, there is a problem that thermal displacement correction cannot be immediately performed.

また後者の方式においては、温度が単位量上昇した場合
には子方向の補正を行い、温度が単位量低下した場合に
は一方向の補正を行うものであるので、運転中において
生じた温度変化による熱変位の補正はできても、運転停
止時に温度変化が生じたような場合には、特別な手段を
講じない限り運転開始時に停止中に生じた熱変位を補正
することができなく、しかも検出部の温度のみでは室温
等の影響によって適正な熱変位補正ができない問題があ
る。
In addition, in the latter method, if the temperature increases by a unit amount, correction is performed in the child direction, and if the temperature decreases by a unit amount, correction is performed in one direction, so the temperature change that occurs during operation is corrected. Even if it is possible to correct the thermal displacement caused by the stoppage, if a temperature change occurs when the operation is stopped, it will not be possible to correct the thermal displacement that occurred during the stoppage at the start of operation unless special measures are taken. There is a problem in that proper thermal displacement correction cannot be performed using only the temperature of the detection section due to the influence of room temperature and the like.

く問題点を解決するための手段〉 本発明は上記した従来の問題点に鑑みてなされたもので
、その構成は、工作機械等の検出部の温度と室温もしく
は工作機械等のベース温度との温度差を測定する温度差
測定手段を設け、熱変位補正指令が与えられた場合に、
前記温度差測定手段の出力を一定時間毎に入力して前回
入力との比較演算を行う比較演算手段を設け、この比較
演算手段による比較演算結果に基づいて補正値を算出も
しくは選択する補正値算出手段を設け、この補正値算出
手段にて算出もしくは選択された補正値に応じて工作機
械等の可動部を補正移動させる補正移動手段を設けたも
のである。
Means for Solving the Problems> The present invention has been made in view of the above-mentioned conventional problems, and its configuration is such that the temperature of the detection part of a machine tool etc. and the room temperature or the base temperature of the machine tool etc. A temperature difference measuring means is provided to measure the temperature difference, and when a thermal displacement correction command is given,
Comparison calculation means is provided for inputting the output of the temperature difference measuring means at regular time intervals and performing a comparison calculation with the previous input, and a correction value calculation for calculating or selecting a correction value based on the comparison calculation result by the comparison calculation means. A correction moving means is provided for correctively moving a movable part of a machine tool or the like in accordance with the correction value calculated or selected by the correction value calculating means.

く作用〉 上記構成により、熱変位補正指令が与えられると、一定
時間毎に温度差測定手段にて測定された温度差が入力さ
れ、前回入力された温度差と比較演算されて変化温度Δ
Tが求められる。この変化温度に基づいて補正値が算出
もしくは選択され、この補正値に対応したパルスが割込
み処理によりサーボモータに与えられ、工作機械等の可
動部が補正移動される。しかしてかかる補正動作は補正
完了指令が与えられるまで一定時間毎に実行され、熱変
位がインプロセス補正される。
With the above configuration, when a thermal displacement correction command is given, the temperature difference measured by the temperature difference measuring means is input at fixed time intervals, and compared with the previously input temperature difference, the change temperature Δ is calculated.
T is required. A correction value is calculated or selected based on this temperature change, and a pulse corresponding to this correction value is given to a servo motor by interrupt processing, and a movable part of a machine tool or the like is moved for correction. Such a correction operation is executed at regular intervals until a correction completion command is given, and the thermal displacement is corrected in-process.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図および第2図は本発明を適用する数値制御工作機
械を示し、この工作機械のベッド10上にはテーブル1
1およびコラム12が互いに直交するX軸(左右)方向
およびZ軸(前後)方向にそれぞれ移動可能に装架され
ている。コラム12には主軸ヘッド13がY軸(上下)
方向に移動可能に装架され、この主軸ヘッド13に工具
を着脱可能に装着する主軸(図示せず)が2軸に平行な
水平軸線りまわりに回転可能に軸承されている。しかし
て前記テーブル11、主軸ヘッド13およびコラム12
はサーボモータ15.16.17により各軸方向に送り
制御され、主軸に装着された工具によりテーブル11上
のワークを加工するようになっている。
1 and 2 show a numerically controlled machine tool to which the present invention is applied, and a table 1 is mounted on the bed 10 of this machine tool.
1 and a column 12 are mounted so as to be movable in the X-axis (left-right) direction and the Z-axis (front-back) direction, which are perpendicular to each other. The spindle head 13 is attached to the column 12 on the Y axis (up and down)
A main shaft (not shown) on which a tool is removably attached to the main shaft head 13 is rotatably supported around a horizontal axis parallel to the two axes. Therefore, the table 11, the spindle head 13 and the column 12
is controlled to feed in each axial direction by servo motors 15, 16, and 17, and the workpiece on the table 11 is machined by a tool attached to the main shaft.

かかる構成の数値制御工作機械には、可動部の温度を検
出するために、前記主軸ベンド13先端の両側2か所に
サーミスタSA、SBが取付けられ、またコラム12の
前面と後面の2か所にサーミスタSC,SDが取付けら
れている。また加工部から離れたベッド10の後面には
室温(ベース温度)検出用のサーミスタSEが取付けら
れている。これら検出部に取付けられた各サーミスタ5
A−SDと室温検出用サーミスタSEとは互いに結線さ
れてそれらの温度差が測定される。
In a numerically controlled machine tool having such a configuration, thermistors SA and SB are installed at two locations on both sides of the tip of the spindle bend 13 in order to detect the temperature of the movable part, and thermistors SA and SB are installed at two locations on the front and rear surfaces of the column 12. Thermistors SC and SD are attached to the. Further, a thermistor SE for detecting room temperature (base temperature) is attached to the rear surface of the bed 10, which is away from the processing section. Each thermistor 5 attached to these detection parts
A-SD and room temperature detection thermistor SE are connected to each other and the temperature difference therebetween is measured.

第3図は前記サーミスタSAが取付けられた検出部の温
度TAと室温TEとの温度差を測定する温度差測定回路
20を示すもので、検出部の温度TAを検出するサーミ
スタSAを組込んだ温度検出回路21と、室温TEを検
出するサーミスタSEを組込んだ温度検出回路22と、
これら温度検出回路21.22の再出力を入力して減算
処理を行う差動増幅器23とによって構成され、この差
動増幅器23の出力はAD変換器24によりAD変換さ
れ、数値制御装置30よりREADY信号が出力された
際に数値制御装置30に入力されるようになっている。
FIG. 3 shows a temperature difference measuring circuit 20 that measures the temperature difference between the temperature TA of the detection section to which the thermistor SA is attached and the room temperature TE. a temperature detection circuit 21; a temperature detection circuit 22 incorporating a thermistor SE that detects room temperature TE;
A differential amplifier 23 inputs the re-outputs of these temperature detection circuits 21 and 22 and performs subtraction processing, and the output of the differential amplifier 23 is AD converted by an AD converter 24, and then read When the signal is output, it is input to the numerical control device 30.

同様な構成の温度差測定回路が、サーミスタSBにて検
出される検出部の温度TBと室温TEとの温度差(TB
−TE) 、サーミスタSCにて検出される検出部の温
度TCと室温TEとの温度差(TC−TE)ならびにサ
ーミスタSDにて検出される検出部の温度TDと室温T
Eとの温度差(TD−TE)をそれぞれ測定するために
設けられている。
A temperature difference measurement circuit with a similar configuration is used to measure the temperature difference (TB
-TE), the temperature difference (TC-TE) between the temperature TC of the detection part detected by the thermistor SC and the room temperature TE, and the temperature TD of the detection part detected by the thermistor SD and the room temperature T
They are provided to measure the temperature difference (TD-TE) with E.

なお、以下の説明においては、サーミスタSAにて検出
される検出部の温度TAとサーミスタSEにて検出され
る室温TEとの温度差(T A −TE)を測定値Aと
称し、同様に検出部温度TB。
In the following explanation, the temperature difference (TA - TE) between the temperature TA of the detection section detected by the thermistor SA and the room temperature TE detected by the thermistor SE will be referred to as the measured value A, and Part temperature TB.

TC,TDと室温TEとの各温度差(TB−TE。Each temperature difference between TC, TD and room temperature TE (TB-TE).

TC−TE、TD−TE)を測定値B、 C,Dと称す
ることにする。
TC-TE, TD-TE) will be referred to as measured values B, C, and D.

ここで工作機械の熱変位として、測定値AとBの温度差
による主軸ヘッド13の傾きによってX軸方向の熱変位
が生じ、測定値CとDの温度差によるコラム12の倒れ
によってY軸およびZ軸方向の熱変位が生じ、また測定
値AとBとの絶対値に基づいてZ軸方向の熱変位が生じ
、測定値CとDとの絶対値に基づいてY軸方向の熱変位
が生じるため、以下の実施例においては、下記表に基づ
いてX軸、Y軸、Z軸の熱変位を補正する例について述
べる。
Here, thermal displacement of the machine tool occurs in the X-axis direction due to the tilt of the spindle head 13 due to the temperature difference between measured values A and B, and thermal displacement in the Y-axis direction and due to the tilt of the column 12 due to the temperature difference between measured values C and D. A thermal displacement occurs in the Z-axis direction, a thermal displacement occurs in the Z-axis direction based on the absolute value of measured values A and B, and a thermal displacement in the Y-axis direction occurs based on the absolute value of measured values C and D. Therefore, in the following embodiment, an example will be described in which the thermal displacement of the X-axis, Y-axis, and Z-axis is corrected based on the table below.

第4図は前記数値制御工作機械を制御する数値制御装置
30の構成を示すもので、この数値制御装置30は、マ
イクロプロセッサMPUと、続出専用メモリROMと、
ランダムアクセスメモリRAMとからなる中央処理装置
CPUによって主に構成され、この中央処理装置CPU
には、前述した各軸サーボモータ15.16.17をそ
れぞれ駆動する駆動回路DUX、DUY、DUZに指令
パルスを供給するパルス発生回路31がインタフェイス
32を介して接続されている。また中央処理装置CPU
には、前記温度差測定回路20の出力をAD変換するA
D変換器24がインタフェース33を介して接続されて
いるとともに、手動パルス発生器34および補正パルス
発生回路35がインタフェース36を介して接続されて
いる。
FIG. 4 shows the configuration of a numerical control device 30 that controls the numerically controlled machine tool, and this numerical control device 30 includes a microprocessor MPU, a continuous memory ROM,
It is mainly composed of a central processing unit CPU consisting of a random access memory RAM, and this central processing unit CPU
A pulse generating circuit 31 is connected via an interface 32 to supply command pulses to drive circuits DUX, DUY, and DUZ that respectively drive the aforementioned servo motors 15, 16, and 17 for each axis. Also, the central processing unit CPU
A for AD converting the output of the temperature difference measuring circuit 20.
A D converter 24 is connected via an interface 33, and a manual pulse generator 34 and a correction pulse generating circuit 35 are also connected via an interface 36.

前記ランダムアクセスメモリRAMには、第5図に示す
ように前記温度差測定回路20にて測定された測定値A
、B、C,Dの各データを一時記憶するデータエリアT
AA、TBA、TCA、TDAと、数値制御プログラム
を記憶するデータエリアNCDAとが形成されている。
The random access memory RAM stores the measured value A measured by the temperature difference measuring circuit 20 as shown in FIG.
, B, C, and D data area T for temporarily storing each data.
AA, TBA, TCA, TDA, and a data area NCDA for storing a numerical control program are formed.

次に数値制御実行ルーチンを第6図および第7図に基づ
いて説明する。
Next, the numerical control execution routine will be explained based on FIGS. 6 and 7.

加工開始指令が与えられると、中央処理装置CPUは、
第6図に示すようにランダムアクセスメモリRAMの数
値制御データエリアNCDAに記憶された数値制御デー
タを1ブロツクずつ読出し、これに応じて補助機能等の
処理を行うと同時に、各軸に対するパルス分配を行い、
加工を制御する。
When a processing start command is given, the central processing unit CPU,
As shown in Fig. 6, the numerical control data stored in the numerical control data area NCDA of the random access memory RAM is read out one block at a time, and auxiliary functions are processed accordingly, while at the same time pulse distribution for each axis is performed. conduct,
Control processing.

ここで熱変位の補正に関する補助機能として、rM80
JはX軸補正指令を、rM81JはY軸補正指令を、r
M82JはZ軸補正指令を、「M2S、」は同時3軸補
正指令を、またrM84Jは補正完了指令を示し、数値
制御データ中に加工内容に応じて選択的にプログラムさ
れるようになっている。
Here, as an auxiliary function regarding correction of thermal displacement, rM80
J is the X-axis correction command, rM81J is the Y-axis correction command, r
M82J indicates a Z-axis correction command, "M2S," indicates a simultaneous 3-axis correction command, and rM84J indicates a correction completion command, which are selectively programmed in the numerical control data according to the machining content. .

しかして第6図に示す数値制御実行ルーチンにおいて、
読出された1ブロツクの数値制御データ中に補助機能M
80〜M83があると、Mコード処理として第7図に示
す数値制御実行ルーチンが実行される。以下−例として
X軸補正指令M80が指令された場合の実行ルーチンに
ついて説明する。
However, in the numerical control execution routine shown in FIG.
Auxiliary function M is included in one block of numerical control data read out.
80 to M83, the numerical control execution routine shown in FIG. 7 is executed as M code processing. Below, as an example, an execution routine when the X-axis correction command M80 is issued will be described.

X軸補正指令M80が与えられると、中央処理装置CP
Uは第7図に示すように、ステップ50においてタイム
カウントを開始し、一定時間が経過してタイムアツプす
ると、ステップ51においてREADY信号を出力する
。次いでステップ52において、温度差測定回路20に
て測定された測定値A−D、すなわち各検出部と室温と
の温度差(TA−TE、 TB−TE、 TC−TE、
 TD−TE)が入力され、回路のバッファメモリにそ
れぞれ記憶される。続いてステップ53において前回入
力された測定値との比較演算が行われ、変化温度ΔTが
求められる。ここで前記ステップ52における入力が最
初の場合には、前回の入力は初期値Oとなって演算結果
は入力値となり、また前記ステップ52における入力が
n回目の場合には、変化温度ΔTは以下のように演算処
理される。
When the X-axis correction command M80 is given, the central processing unit CP
As shown in FIG. 7, the U starts time counting in step 50, and when the time is up after a certain period of time has elapsed, it outputs a READY signal in step 51. Next, in step 52, the measured values A-D measured by the temperature difference measuring circuit 20, that is, the temperature difference between each detection section and the room temperature (TA-TE, TB-TE, TC-TE,
TD-TE) are input and stored in the buffer memory of the circuit, respectively. Subsequently, in step 53, a comparison calculation with the previously input measured value is performed to determine the temperature change ΔT. Here, if the input in step 52 is the first time, the previous input becomes the initial value O, and the calculation result becomes the input value, and if the input in step 52 is the nth time, the temperature change ΔT is as follows. It is calculated as follows.

ΔTA= An−A(n−+) =TAn−TEn −(TA (n−+)−TE (n
−+))ΔTB= On−B(n−r) = TBn −TEn −(TB (n−+)−TE 
(n−+ )  )ΔTC=Cn−C(n−+) = TCn −TEn −(TC(n−+)−TE (
n−+ )  )ΔTD= On−D(n−+ン =TDn−THn −(TD cn−+)−TH(n−
+ ) )かかる比較演算の後、前記ランダムアクセス
メモリRAMのデータエリアTAA、TBA、TCA。
ΔTA= An-A(n-+) =TAn-TEn-(TA(n-+)-TE(n
-+))ΔTB= On-B(n-r) = TBn -TEn -(TB (n-+)-TE
(n-+)) ΔTC=Cn-C(n-+) = TCn-TEn-(TC(n-+)-TE (
n-+))ΔTD=On-D(n-+on=TDn-THn-(TD cn-+)-TH(n-
+)) After such a comparison operation, the data areas TAA, TBA, TCA of said random access memory RAM.

TDAには前回の入力値に替わって今回の入力値が書込
まれる。
The current input value is written to TDA in place of the previous input value.

次いでステップ54においては、前述したように演算さ
れた変化温度ΔTに対応する補正値が算出される。この
補正値はX軸補正の場合には下記式より求められる。
Next, in step 54, a correction value corresponding to the changed temperature ΔT calculated as described above is calculated. In the case of X-axis correction, this correction value is obtained from the following formula.

ΔX=kt(ΔTA−ΔTB) ここでに、は予め実験によって求められた定数もしくは
関数である。
ΔX=kt(ΔTA−ΔTB) Here, is a constant or function determined in advance through experiments.

次いでステップ55において補正値ΔXに対応したパル
ス数を補正パルス発生回路35より発信して手動パルス
発生器34の割込み部へ割込ませ、これによってX軸駆
動回路DUXが制御されてX軸サーボモーター5が駆動
され、テーブル11を主軸ヘッド13の熱変位分だけ補
正移動する。続いてステップ56において補正完了指令
M84が出力されているかどうかが判別され、補正完了
指令M84が出力されていない場合には、最初のステッ
プ50に戻って上述した熱変位補正動作を一定時間間隔
で実行する。なお、時間間隔は任意に設定できるが、加
工に伴う温度変化による熱変化が大きくならない範囲で
設定するのがよく、−例として30秒間隔程度が適当で
ある。
Next, in step 55, the number of pulses corresponding to the correction value ΔX is transmitted from the correction pulse generation circuit 35 to the interrupt section of the manual pulse generator 34, thereby controlling the X-axis drive circuit DUX and driving the X-axis servo motor. 5 is driven to correct the movement of the table 11 by the amount of thermal displacement of the spindle head 13. Subsequently, in step 56, it is determined whether the correction completion command M84 has been output, and if the correction completion command M84 has not been output, the process returns to the first step 50 and the above-mentioned thermal displacement correction operation is performed at fixed time intervals. Execute. Although the time interval can be set arbitrarily, it is best to set it within a range that does not cause large thermal changes due to temperature changes during processing, and for example, an interval of about 30 seconds is appropriate.

上記においてはX軸補正についで述べたが、X軸補正(
MB2)もしくはZ軸補正(MB2)の場合には、前記
ステップ54における補正値ΔYもしくはΔZの算出式
は下記のようになる。
In the above, I talked about the X-axis correction, but the X-axis correction (
MB2) or Z-axis correction (MB2), the formula for calculating the correction value ΔY or ΔZ in step 54 is as follows.

ここでに2〜に5は前記に、と同様に予め実験によって
求められた定数もしくは関数である。
Here, 2 to 5 are constants or functions determined in advance through experiments in the same way as described above.

なお上記実施例においては、補正値を定数もしくは関数
を用いて計算によ、って算出する例について述べたが、
続出専用メモリROMに変化温度ΔTに応じた補正値を
登録しておき、変化温度ΔTに応じてその変化温度に対
応した補正値を読出して熱変位を補正することもできる
In the above embodiment, an example was described in which the correction value was calculated using a constant or a function.
It is also possible to register a correction value corresponding to the temperature change ΔT in the read-only memory ROM, and read out the correction value corresponding to the temperature change ΔT in order to correct the thermal displacement.

また上記実施例においては、X軸、Y軸、Z軸の3軸の
補正が可能な例について述べたが、勿論補正軸が1軸の
ものにも通用でき、補正値の算出においても、1つの温
度差測定回路の変化温度に基づいて補正値を算出あるい
は読出すようにすることも可能である。
In addition, in the above embodiment, an example was described in which correction is possible on three axes: It is also possible to calculate or read the correction value based on the changing temperature of the two temperature difference measuring circuits.

さらに上記実施例においては、工作機械の熱変位補正に
ついて述べたが、測定機の熱変位補正にも適用できるこ
とは勿論である。
Further, in the above embodiment, the thermal displacement correction of a machine tool was described, but it goes without saying that the present invention can also be applied to thermal displacement correction of a measuring machine.

〈発明の効果〉 以上述べたように本発明は、熱変位補正指令が与えられ
た場合に、温度差測定手段の出力を一定時間毎に入力し
て前回入力と比較演算して変化温度を求め、この変化温
度に基づいて補正値を算出して熱変位補正を行う構成で
あるので、数値制御データの1ブロツクのプログラムの
実行時間が長いような場合にも、そのプログラムの実行
中に一定時間毎に熱変位を補正することができ、熱変位
を最少に抑えることができる効果がある。
<Effects of the Invention> As described above, the present invention, when a thermal displacement correction command is given, inputs the output of the temperature difference measuring means at regular intervals and calculates the change in temperature by comparing it with the previous input. Since the configuration is such that thermal displacement correction is performed by calculating a correction value based on this temperature change, even if the execution time of a program for one block of numerical control data is long, a certain period of time during the execution of the program The thermal displacement can be corrected at each time, which has the effect of minimizing the thermal displacement.

しかも本発明は、工作機械の検出部の温度と室温もしく
は工作機械のベース温度との温度差の変位に基づいて熱
変位を補正するものであるので、熱変位を室温等の変化
に拘らず正確に補正できる効果も併せて奏せられる。 
 。
Furthermore, the present invention corrects thermal displacement based on the temperature difference between the temperature of the detection part of the machine tool and the room temperature or the base temperature of the machine tool, so the thermal displacement can be accurately calculated regardless of changes in the room temperature, etc. An effect that can be corrected is also produced.
.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は数値制御
工作機械の概要を示す正面図、第2図は同側面図、第3
図は温度差測定回路を示す図、第4図は数値制御装置の
構成を示すブロック図、第5図はメモリへのデータの記
憶状態を示す図、第6図は加工制御の実行ルーチンを示
すフローチャート、第7図は熱変位補正の実行ルーチン
を示す図である。 15.16.17・・・サーボモータ、20・・・温度
差測定回路、30・・・数値制御装置。
The drawings show an embodiment of the present invention, and FIG. 1 is a front view showing an outline of a numerically controlled machine tool, FIG. 2 is a side view of the same, and FIG.
The figure shows the temperature difference measurement circuit, Figure 4 is a block diagram showing the configuration of the numerical control device, Figure 5 shows the state of data storage in the memory, and Figure 6 shows the processing control execution routine. The flowchart, FIG. 7, is a diagram showing an execution routine for thermal displacement correction. 15.16.17... Servo motor, 20... Temperature difference measuring circuit, 30... Numerical control device.

Claims (2)

【特許請求の範囲】[Claims] (1)工作機械等の検出部の温度と室温もしくは工作機
械等のベース温度との温度差を測定する温度差測定手段
と、熱変位補正指令が与えられた場合に、前記温度差測
定手段の出力を一定時間毎に入力して前回入力との比較
演算を行う比較演算手段と、この比較演算手段による比
較演算結果に基づいて補正値を算出もしくは選択する補
正値算出手段と、この補正値算出手段にて算出もしくは
選択された補正値に応じて工作機械等の可動部を補正移
動させる補正移動手段とによって構成してなる熱変位補
正装置。
(1) A temperature difference measuring means for measuring the temperature difference between the temperature of a detection part of a machine tool, etc. and the room temperature or the base temperature of the machine tool, etc.; Comparison calculation means for inputting an output at regular intervals and performing a comparison calculation with the previous input; correction value calculation means for calculating or selecting a correction value based on the comparison calculation result by the comparison calculation means; A thermal displacement correction device comprising a correction moving means for correcting and moving a movable part of a machine tool or the like according to a correction value calculated or selected by the means.
(2)前記温度差測定手段は、工作機械等の異なる検出
部との温度差を測定するために複数設けられ、これら温
度差の変化温度の差もしくは和に基づいて補正値を算出
するようにしてなる特許請求の範囲第1項に記載の熱変
位補正装置。
(2) A plurality of the temperature difference measuring means are provided to measure temperature differences between different detection parts of a machine tool, etc., and a correction value is calculated based on the difference or sum of changing temperatures of these temperature differences. A thermal displacement correction device according to claim 1.
JP22949885A 1985-10-15 1985-10-15 Thermal displacement compensating device Pending JPS6288547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22949885A JPS6288547A (en) 1985-10-15 1985-10-15 Thermal displacement compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22949885A JPS6288547A (en) 1985-10-15 1985-10-15 Thermal displacement compensating device

Publications (1)

Publication Number Publication Date
JPS6288547A true JPS6288547A (en) 1987-04-23

Family

ID=16893111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22949885A Pending JPS6288547A (en) 1985-10-15 1985-10-15 Thermal displacement compensating device

Country Status (1)

Country Link
JP (1) JPS6288547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050288A (en) * 1989-12-15 1991-09-24 The Boeing Company Dynamic dimensional control matrix system
JP2006272538A (en) * 2005-01-17 2006-10-12 Brother Ind Ltd Machine tool and displacement correction method of machine tool
JP2018079520A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5050288A (en) * 1989-12-15 1991-09-24 The Boeing Company Dynamic dimensional control matrix system
JP2006272538A (en) * 2005-01-17 2006-10-12 Brother Ind Ltd Machine tool and displacement correction method of machine tool
JP2018079520A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool

Similar Documents

Publication Publication Date Title
EP2184130B1 (en) Method for processing a workpiece in a tool machine and tool machine with behavior measurement device
JP2807461B2 (en) Three-dimensional shape processing laser device
JP3405965B2 (en) Thermal displacement compensation method for machine tools
US7245983B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JPH08132332A (en) Position shift correction method in machine tool
EP0268887B1 (en) Numerical control feed device for machine tool
JPH0698554B2 (en) Numerical control processing equipment
JPH07186003A (en) Displacement correction device for nc machine tool
JPH07266194A (en) Tool cutting edge measurement compensator
JPS592045B2 (en) Temperature compensation method and device for positioning in numerically controlled machines
JPS6288547A (en) Thermal displacement compensating device
JP3756793B2 (en) Machine tool thermal displacement compensation device
JPS6334049A (en) Method of compensating elongation of boring spindle of numerically controlled (nc) type horizontal boring machine
JPH02224949A (en) Correction of thermal displacement of machine tool
JPH05237742A (en) Correcting method for thermal displacement of machine tool
JP2965215B2 (en) Thermal displacement compensator for machine tools
JP4117950B2 (en) Machine tool thermal displacement compensation device
JP2000190168A (en) Nc machining method and its device
JP4877012B2 (en) Machine tool, thermal expansion correction control program, and storage medium
JP3495255B2 (en) Estimation method of thermal displacement of machine tool
JPS626943B2 (en)
JP2000326181A (en) Thermal deformation correcting method for machine tool
JPS60146652A (en) Tool length measuring method
JPH04261751A (en) Thermal displacement correcting device for machine tool
JP3363757B2 (en) Machine tool thermal displacement parameter calculation device, machine tool, and storage medium