JPS6287809A - Method for measuring multidirectional distance - Google Patents

Method for measuring multidirectional distance

Info

Publication number
JPS6287809A
JPS6287809A JP22783385A JP22783385A JPS6287809A JP S6287809 A JPS6287809 A JP S6287809A JP 22783385 A JP22783385 A JP 22783385A JP 22783385 A JP22783385 A JP 22783385A JP S6287809 A JPS6287809 A JP S6287809A
Authority
JP
Japan
Prior art keywords
matter
measured
reflected
distance
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22783385A
Other languages
Japanese (ja)
Other versions
JPH0610615B2 (en
Inventor
Masahiro Tanmachi
反町 誠宏
Toru Jinguji
神宮司 徹
Shigeru Yamada
茂 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60227833A priority Critical patent/JPH0610615B2/en
Publication of JPS6287809A publication Critical patent/JPS6287809A/en
Priority to US07/306,248 priority patent/US5033845A/en
Publication of JPH0610615B2 publication Critical patent/JPH0610615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the measurement of the distance up to a multidirectional matter, by allowing luminous flux to be incident on a rotary flat reflective mirror and scanning matter to be measured while the reflected luminous flux thereof is projected to said matter to be measured and reflecting the reflected luminous flux from the matter to be measured by the flat reflective mirror to form an image. CONSTITUTION:The parallel luminous flux emitted from a light source 1 is converged to the focal position of a convex lens 5 by a convex lens 2 are reflected by a flat reflective mirror 3 and a rotary flat reflective mirror 4 and the reflected luminous flux passes through the lens 5 to be converted to parallel luminous flux which is, in turn, incident on matter to be measured to be reflected therefrom. A part of the reflected luminous flux from said matter passes through the lens 5 and reflected by the mirror 4 to form an image on a photoelectric converter element 6. The image forming positions A, B are determined by the distance up to the matter. Therefore, if the relation between the image forming position on the element 6 and the distance up to the matter is preliminarily calculated, the distance up to the matter can be immediately detected from the output of the element 6. The mirror 4 has six flat reflective surfaces and, by succeedingly rotating the mirror 4 around a rotary shaft, the distance up to the matter present in a predetermined angular range can be repeatedly and continuously measured at a high speed successively using adjacent reflective surfaces.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は距離測定方法に関し、特に多方向にある物体ま
での距離を光学的に測定するための方法に関する。この
様な方法は自走ロゲット用の視覚センサや自動車の衝突
防止装置用の障害物検知センサとして利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a distance measuring method, and more particularly to a method for optically measuring distances to objects in multiple directions. Such a method is used as a visual sensor for a self-propelled robot and an obstacle detection sensor for a collision prevention device of an automobile.

〔従来の技術及びその問題さ〕[Conventional technology and its problems]

自走ロコ、トにおいては、周囲環境認識のための手段と
して多方向にわたって周囲の物体までの距離を測定する
ことが行なわれ、かくして得られた距離情報に基づき物
体への衝突を避けながら走行することができる。
In self-propelled locomotives, the distance to surrounding objects is measured in multiple directions as a means of recognizing the surrounding environment, and based on the distance information obtained in this way, the vehicle moves while avoiding collisions with objects. be able to.

また、自動車の衝突防止装置においては、障害物検知の
ための手段として多方向にわたって周囲の物体までの距
離を測定することが行なわれ、かくして得られた距離情
報に基づき他の自動車または壁等の物体に対し所定の距
離よシも近づいた時に運転者に対し警告を発するかある
いは自動車を停止または減速させるための指示を発する
ことがなされる。
In addition, in collision prevention systems for automobiles, distances to surrounding objects are measured in multiple directions as a means of detecting obstacles, and based on the distance information obtained in this way, it is possible to detect obstacles such as other cars or walls. When the vehicle approaches an object by a predetermined distance, a warning is issued to the driver or an instruction to stop or decelerate the vehicle is issued.

以上の様な多方向の距離測定のための手段としては、従
来よシ、被測定物体に対し超音波を発射して反射によシ
戻ってくる超音波を解析して距離を求めるという方法が
用いられている。
The conventional method for measuring distances in multiple directions as described above is to emit ultrasonic waves at the object to be measured and analyze the reflected ultrasonic waves to determine the distance. It is used.

しかるに、この方法では被測定物体が小さい場合には測
定が困難であシ、また分解能が比較的低く、更に遠方の
物体までの距離測定に時間がかかるという問題点がある
However, this method has problems in that it is difficult to measure when the object to be measured is small, the resolution is relatively low, and it takes time to measure the distance to a distant object.

多方向の距離測定を光学的に行なう方法として、スリッ
ト状の光束を被測定物体に投射して、該投射方向と異な
る方向から物体表面上の輝線形状を測定して、該形状か
ら演算により距離を求めるという方法が提案されている
As a method for optically measuring distances in multiple directions, a slit-shaped light beam is projected onto the object to be measured, the shape of the bright line on the object surface is measured from a direction different from the direction of projection, and the distance is calculated from the shape. A method has been proposed to find the .

しかるに、この方法では輝線形状の入力及びその後の演
算に比較的多くの時間を要するという問題点がある。
However, this method has a problem in that it takes a relatively long time to input the emission line shape and perform subsequent calculations.

更に、光学的方法としてステレオ法がある。Furthermore, there is a stereo method as an optical method.

しかるに、ステレオ法では測定方向の分解能を向上させ
ることが困難であるという問題点がある。
However, the stereo method has a problem in that it is difficult to improve the resolution in the measurement direction.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、以上の如き従来技術の問題点を解決す
るものとして、光源からの光束を平面反射鏡に入射させ
、該平面反射鏡をその反射面と平行な方向の回転軸のま
わシに回転または回動させ、かくして該反射鏡からの反
射光束を被測定物体に投射しながら走査し、該被測定物
体からの反射光束を前記平面反射鏡により反射させ且つ
集光レンズを通過させて結像させ、該結像位置を測定す
ることを特徴とする、多方向距離測定方法が提供される
According to the present invention, in order to solve the problems of the prior art as described above, a light beam from a light source is made incident on a plane reflecting mirror, and the plane reflecting mirror is rotated about a rotation axis in a direction parallel to the reflecting surface. The reflector is rotated or pivoted to scan the object to be measured while projecting the reflected light beam from the reflecting mirror onto the object to be measured, and the reflected light beam from the object to be measured is reflected by the plane reflecting mirror and passed through the condenser lens. A multidirectional distance measuring method is provided, which comprises forming an image and measuring the position of the image.

〔実施例〕〔Example〕

以下、図面を参照しながら本発明の具体的実施例を説明
する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

第1図(!L) 、 (b)は本発明方法の第1の実施
例を示す概略側面図であフ、第2図及び第3図はその概
略平面図である。これらの図面において、1は光源であ
シ、該光源としては発光部に発光ダイオードや半導体レ
ーデ等を用いたものを使用することができる。該光源1
は発光部の発光光束をコリメートするためのコリメータ
レンズを内蔵している。
1(!L) and (b) are schematic side views showing a first embodiment of the method of the present invention, and FIGS. 2 and 3 are schematic plan views thereof. In these drawings, reference numeral 1 denotes a light source, and a light source using a light emitting diode, a semiconductor radar, or the like as a light emitting part can be used as the light source. The light source 1
has a built-in collimator lens for collimating the luminous flux of the light emitting section.

2は凸レンズであり、3は平面反射鏡である。4は回転
平面反射鏡であり、第1図(a) 、 (b)において
はその平面反射面のみが図示されている。尚、第1図(
a) 、 (b)は該反射面により反射される光路を展
開して示したものである。第2図及び第3図に示される
様に、回転平面反射鏡4は6つの平面反射面を有する。
2 is a convex lens, and 3 is a flat reflecting mirror. Reference numeral 4 denotes a rotating plane reflecting mirror, and only its plane reflecting surface is shown in FIGS. 1(a) and 1(b). Furthermore, Figure 1 (
(a) and (b) are expanded views of the optical path reflected by the reflecting surface. As shown in FIGS. 2 and 3, the rotating plane reflecting mirror 4 has six plane reflecting surfaces.

該反射鏡4は回転軸4aのまわりに駆動回転せしめられ
、各反射面は該回転軸4aに関し対称的に位置する。図
において、5は凸レンズであシ、6は光電変換素子であ
る。該光電変換素子は光スポットの入射する位置に応じ
て出力信号の変化するいわゆるIジションセンサであり
、上記平面反射鏡3から回転平面反射鏡4に至る光路の
延長上に位置している。該光電変換素子6はシーに材6
&により保獲されている。該シール材6aは山形形状を
なしており、その斜面に斜めに入射する光束を反射を減
少させ効率よく光電変換素子6へと導く作用をも行なう
。尚、以上の光学系において、凸レンズ2の焦点位置と
凸レンズ5の焦点位置とは一致している。
The reflecting mirror 4 is driven to rotate around a rotation axis 4a, and each reflecting surface is positioned symmetrically with respect to the rotation axis 4a. In the figure, 5 is a convex lens, and 6 is a photoelectric conversion element. The photoelectric conversion element is a so-called I-position sensor whose output signal changes depending on the incident position of the light spot, and is located on an extension of the optical path from the flat reflecting mirror 3 to the rotating flat reflecting mirror 4. The photoelectric conversion element 6 is made of a material 6
It has been retained by &. The sealing material 6a has a chevron shape, and also has the function of reducing reflection of the light beam incident obliquely on its slope and efficiently guiding it to the photoelectric conversion element 6. In the above optical system, the focal position of the convex lens 2 and the focal position of the convex lens 5 coincide.

光源1から発せられた平行光束は凸レンズ2により凸レ
ンズ5の焦点位置に集束せしめられ、平面反射鏡3及び
回転平面反射鏡4により反射せしめられた後に凸レンズ
5を通過し平行光束となる。
A parallel beam of light emitted from a light source 1 is focused by a convex lens 2 to the focal point of a convex lens 5, reflected by a plane reflecting mirror 3 and a rotating plane reflecting mirror 4, and then passes through the convex lens 5 to become a parallel beam.

この平行光束は被測定物体の表面にて反射され、その一
部が上記凸レンズ5を通9回転平面反射鏡4により反射
せしめられて結像する。この際の結像位置は被測定物体
までの距離によって異なる。
This parallel light beam is reflected by the surface of the object to be measured, and a part of it passes through the convex lens 5 and is reflected by the 9-turn flat reflector 4 to form an image. The imaging position at this time differs depending on the distance to the object to be measured.

第1図(、)は被測定物体(図示せず)が比較的近距離
にある場合を示しておシ、この場合には反射鏡4から比
較的離れた位置Aにおいて光電変換素子6上に結像する
。第1図(b)は被測定物体(図示せず)が比較的遠距
離にある場合を示しておシ、この場合には反射鏡4から
比較的近い位置Bにおいて光電変換素子6上に結像する
FIG. 1(,) shows a case where the object to be measured (not shown) is located relatively close to each other. Form an image. FIG. 1(b) shows a case where the object to be measured (not shown) is located at a relatively long distance. Image.

従って、予め光電変換素子6上の結像位置と被測定物体
までの距離との関係を求めておけば、光電変換素子6の
出力から直ちに被測定物体までの距離を得ることができ
る。
Therefore, if the relationship between the imaging position on the photoelectric conversion element 6 and the distance to the object to be measured is determined in advance, the distance to the object to be measured can be immediately obtained from the output of the photoelectric conversion element 6.

以上の様な関係は反射鏡4を回転軸4aのまわシに回転
させてもほぼ同様に保たれる。BIJち、第2図に示さ
れる様に、光源1から発せられた光束は、反射鏡4が実
線で示される回転位置にあるときには該反射鏡による反
射の後に実線で示される方向に投射され、反射鏡4が点
線で示される回転位置にあるときには該反射鏡による反
射の後に点線で示される方向に投射される。また、かく
して被測定物体に投射され、該物体によシ反射された光
束は、第3図に示される様に、反射鏡4が実線で示され
る回転位置にあるときには実線で示される様に凸レンズ
5及び反射鏡4を経て光電変換素子6上に結像せしめら
れ、反射鏡4が点線で示される回転位置にあるときには
点線で示される様に凸レンズ5及び反射鏡4を経て光電
変換素子6上に結像せしめられる。かくして1回転反射
!4による光束投射の方向によらず被測定物体からの反
射光束の一部は光電変換素子6上に結像せしめられる。
The above relationship is maintained almost the same even if the reflecting mirror 4 is rotated around the rotation axis 4a. BIJ, as shown in FIG. 2, when the reflecting mirror 4 is in the rotational position shown by the solid line, the light beam emitted from the light source 1 is projected in the direction shown by the solid line after being reflected by the reflecting mirror, When the reflecting mirror 4 is in the rotational position shown by the dotted line, the light is reflected by the reflecting mirror and then projected in the direction shown by the dotted line. Furthermore, as shown in FIG. 3, when the reflecting mirror 4 is in the rotational position shown by the solid line, the light beam projected onto the object to be measured and reflected by the object passes through the convex lens as shown by the solid line. When the reflecting mirror 4 is in the rotational position shown by the dotted line, the image is formed on the photoelectric conversion element 6 via the convex lens 5 and the reflecting mirror 4 as shown by the dotted line. image is formed. Thus, one rotation reflection! A part of the reflected light beam from the object to be measured is imaged on the photoelectric conversion element 6, regardless of the direction of the light beam projection by 4.

従って1反射鏡4を回転させることによシ所定の角度範
囲内にある被測定物体までの距離を測定することができ
る。尚、反射鏡4を回転させると、被測定物体からの反
射光が該反射鏡の反射面に到達するまでの時間内圧反射
鏡自体がある角度回転しているので、結像位置は厳密に
は第1図における紙面に垂直の方向にずれるのであるが
、反射鏡回転の角速度が一定の場合にはこのずれ童は予
め算出可能であシ、光電変換素子6を適宜移動させたり
更に平面反射鏡を介在きせ適宜回動させたシすることに
より光電変換素子6上に結像させる補正を行なうことが
できる。
Therefore, by rotating one reflecting mirror 4, the distance to the object to be measured within a predetermined angular range can be measured. Note that when the reflecting mirror 4 is rotated, the internal pressure reflecting mirror itself is rotated by a certain angle during the time it takes for the reflected light from the object to be measured to reach the reflecting surface of the reflecting mirror, so strictly speaking, the imaging position is The deviation occurs in the direction perpendicular to the plane of the paper in FIG. By appropriately rotating the intervening pattern, it is possible to correct the image formation on the photoelectric conversion element 6.

本実施例によれば、反射鏡4の回転を継続することによ
フ、順次隣接反射面を用いて所定角度範囲にある被測定
物体までの距離測定を高速にて繰返し連続的に行なうこ
とができる。
According to this embodiment, by continuing to rotate the reflecting mirror 4, it is possible to repeatedly and continuously measure the distance to the object to be measured within a predetermined angular range by sequentially using adjacent reflecting surfaces at high speed. can.

第4図(a) 、 (b)は本発明方法の第2の実施例
を示す概略側面図であシ、第5図はその概略平面図であ
る。これらの図面において、上記第1〜3図におけると
同様の部材には同一の符号が付されておシ、これらにつ
いてはここでは説明を省略する。
4(a) and 4(b) are schematic side views showing a second embodiment of the method of the present invention, and FIG. 5 is a schematic plan view thereof. In these drawings, the same members as in FIGS. 1 to 3 are designated by the same reference numerals, and the explanation thereof will be omitted here.

図において、7は凸シリンドリカルレンズであシ、その
円筒軸方向は第4図における紙面と垂直の方向である。
In the figure, 7 is a convex cylindrical lens, the cylindrical axis direction of which is perpendicular to the plane of the paper in FIG.

また、・8は凸シリンドリカルレンズであり、その円筒
軸方向は第4図における紙面と垂直の方向である。9は
凸レンズであシ、1゜は光電変換素子である。該光電変
換素子10は上記光電変換素子6と同様なポジションセ
ンナである。該凸レンズ9及び光電変換素子10は、光
源1から凸シリンドリカルレンズ7を経て回転反射鏡4
に至る光路の真下の位置に存在している。尚、この光学
系において、凸シリンドリカルレンズ7の焦線位置と凸
シリンドリカルレンズ8o焦a位置とは一致している。
8 is a convex cylindrical lens, and its cylindrical axis direction is perpendicular to the plane of the paper in FIG. 9 is a convex lens, and 1° is a photoelectric conversion element. The photoelectric conversion element 10 is a position sensor similar to the photoelectric conversion element 6 described above. The convex lens 9 and the photoelectric conversion element 10 are connected to the rotating reflecting mirror 4 from the light source 1 through the convex cylindrical lens 7.
It is located directly below the optical path leading to . In this optical system, the focal line position of the convex cylindrical lens 7 and the focal a position of the convex cylindrical lens 8o coincide.

光源1から発せられた平行光束は凸シリンドリカルレン
ズ7によシ凸シリンドリカルレンズ8の焦線位置に第4
図の紙面に沿う方向に関してのみ集束せしめられ、回転
平面反射鏡4により反射せしめられた後に凸シリンドリ
カルレンズ8に入射し、該レンズによシ第4図の紙面に
沿う方向に関してのみ集束作用を受は平行光束となる。
The parallel light beam emitted from the light source 1 is transmitted to the fourth focal line position of the convex cylindrical lens 8 by the convex cylindrical lens 7.
It is focused only in the direction along the plane of the paper in the figure, and after being reflected by the rotating plane reflector 4, it enters the convex cylindrical lens 8, and the lens receives a focusing action only in the direction along the plane of the paper in Figure 4. is a parallel beam of light.

尚1本実施例において、上記凸シリンドリカルレンズ7
の光軸及び凸シリンドリカルレンズ8の光軸を含み水平
な平面(第4図において紙面に垂直な平面)Sのことを
、以下、基準平面ということにする。
In this embodiment, the convex cylindrical lens 7
A horizontal plane S (a plane perpendicular to the plane of the paper in FIG. 4) that includes the optical axis of the convex cylindrical lens 8 and the optical axis of the convex cylindrical lens 8 will hereinafter be referred to as a reference plane.

かくして、凸シリンドリカルレンズ8を出た平行光束は
被測定物体の表面にて反射され、その一部が上記凸シリ
ンドリカルレンズ8を通過し集束作用を受けて結像せし
められる。この際の結像位置は被測定物体までの距離に
よって異なる。第4図(&)は被測定物体(図示せず)
が比較的近距離にある場合を示しておシ、この場合には
反射鏡4の反射面から比較的離れた位置Cに結像する。
In this way, the parallel light beam exiting the convex cylindrical lens 8 is reflected on the surface of the object to be measured, and a part of it passes through the convex cylindrical lens 8 and is focused and formed into an image. The imaging position at this time differs depending on the distance to the object to be measured. Figure 4 (&) is the object to be measured (not shown)
In this case, the image is formed at a position C that is relatively far from the reflecting surface of the reflecting mirror 4.

第4図(b)は被測定物体(図示せず)が比較的遠距離
にある場合を示しておシ、この場合には反射鏡4の反射
面に比較的近い位置りに結像する。これら結像位置C,
Dはいづれも基準平面S上にある。尚、これら結像は上
下方向に関してのみ行なわれる。
FIG. 4(b) shows a case where the object to be measured (not shown) is located at a relatively long distance, and in this case, the image is formed at a position relatively close to the reflecting surface of the reflecting mirror 4. These imaging positions C,
Both D are on the reference plane S. Note that these images are formed only in the vertical direction.

従って、像は水平方向に長い線状のものとなる。Therefore, the image becomes a long linear image in the horizontal direction.

上記凸レンズ9は上記基準平面Sの所定の部分(即ち、
上記結像位置C,Dを含み、測定すべき距離範囲内にあ
る被測定物体からの反射光束が結像する範囲内の全位置
をカバーする部分)Qを光電変換素子10上に結像させ
る。即ち、該光電変換素子10は凸レンズ9に関し上記
基準平面Sの所定の部分Qと共役の位置に配置されてお
シ、更に被測定物体から上記凸シリンドリカルレンズ8
を通って反射鏡4の反射面に入射して反射し上記所定部
分Q内に結像せしめられた光束は凸レンズ9を通って光
電変換素子10に入射せしめられる。
The convex lens 9 is located at a predetermined portion of the reference plane S (i.e.,
A portion Q that includes the image formation positions C and D and covers all positions within the image formation range of the reflected light beam from the object to be measured within the distance range to be measured is imaged on the photoelectric conversion element 10. . That is, the photoelectric conversion element 10 is disposed at a position conjugate with a predetermined portion Q of the reference plane S with respect to the convex lens 9, and furthermore, the photoelectric conversion element 10 is located at a position conjugate with the predetermined portion Q of the reference plane S, and furthermore, the convex cylindrical lens 8
The light beam passes through the convex lens 9, enters the reflecting surface of the reflecting mirror 4, is reflected, and forms an image within the predetermined portion Q, and then enters the photoelectric conversion element 10 through the convex lens 9.

従って、光電変換素子10の出力から基準平面S上の結
像位置を知ることができ、該結像位置から被測定物体の
位置を知ることができる。かくして、予め光電変換素子
10上の結像位置と被測定物体までの距離との関係を求
めておけば、光電変換素子10の出力として直ちに被測
定物体までの距離が得られる。
Therefore, the image formation position on the reference plane S can be determined from the output of the photoelectric conversion element 10, and the position of the object to be measured can be determined from the image formation position. Thus, if the relationship between the imaging position on the photoelectric conversion element 10 and the distance to the object to be measured is determined in advance, the distance to the object to be measured can be immediately obtained as the output of the photoelectric conversion element 10.

以上の様な関係が反射鏡4を回転軸4mのまわシに回転
させてもほぼ同様に保たれることは、上記第1の実施例
の場合と同じである。ただ、本実施例においては上記の
如く基準平面S上の像は水平方向に長いので、反射鏡4
の回転によシ像位置が水平方向にずれても光電変換素子
10による結像位置の検出に実質上影響を与えない。
As in the case of the first embodiment, the relationship described above is maintained substantially the same even when the reflecting mirror 4 is rotated about the rotation axis 4m. However, in this embodiment, since the image on the reference plane S is long in the horizontal direction as described above, the reflecting mirror 4
Even if the image position shifts in the horizontal direction due to the rotation, it does not substantially affect the detection of the image position by the photoelectric conversion element 10.

上記第2の実施例においては基準平面S内の所定の部分
Q内に結像せしめられる像を更に凸レンズ9を用いて光
電変換素子10上に結像させているが、本発明において
は上記所定の部分Qに光電変換素子を配置して結像位置
の測定を行なってもよい。
In the second embodiment, the image formed within the predetermined portion Q within the reference plane S is further formed onto the photoelectric conversion element 10 using the convex lens 9, but in the present invention, the image formed within the predetermined portion Q within the reference plane The imaging position may be measured by placing a photoelectric conversion element in the portion Q of .

第6図は本発明方法の第3の実施例を示す概略側面図で
ある。本図において、上記第4図におけると同様の部材
には同一の符号が付されておシ、これらについてはここ
では説明を省略する。
FIG. 6 is a schematic side view showing a third embodiment of the method of the present invention. In this figure, the same members as in FIG. 4 are given the same reference numerals, and their explanations will be omitted here.

本実施例は上記第2の実施例の変形例である。This embodiment is a modification of the second embodiment.

本実施例においては、凸シリンドリカルレンズ11が基
準子面S近傍の部分を有しておらず、また光源1と回転
平面反射鏡4との間に凸シリンドリカルレンズは存在し
ない。そして、光源1から発せられた平行光束は回転平
面反射鏡4によシ反射せしめられた後に直ちに被測定物
体に投射される。その他は上記第2の実施例と同様であ
る。
In this embodiment, the convex cylindrical lens 11 does not have a portion near the reference element surface S, and there is no convex cylindrical lens between the light source 1 and the rotating plane reflecting mirror 4. The parallel light beam emitted from the light source 1 is reflected by the rotating plane reflector 4 and immediately projected onto the object to be measured. The rest is the same as the second embodiment.

本実施例によれば構成部品点数を少なくすることができ
る。
According to this embodiment, the number of component parts can be reduced.

上記実施例においては反射鏡は回転多面鏡からなるが、
本発明においては反射鏡は1面のみからなるものでもよ
い。1面のみからなる反射鏡の場合には、上記実施例と
同様に同一の向きに回転を継続して継続的に多方向距離
測定を行なうこともできるし、回転軸のまわシに所定の
角度範囲内で回動させて連続的に多方向距離測定を行な
うこともできる。
In the above embodiment, the reflecting mirror consists of a rotating polygon mirror,
In the present invention, the reflecting mirror may consist of only one surface. In the case of a reflecting mirror consisting of only one surface, it is possible to continuously measure distances in multiple directions by continuing to rotate in the same direction as in the above embodiment, or by rotating the rotation axis at a predetermined angle. It is also possible to continuously measure distances in multiple directions by rotating within the range.

また、本発明方法においては、外光と光源からの光束と
を区別してS/N比を上げ測定精度を向上させるために
、光源として赤外線発光素子を用い受光用光電変換素子
の前方に可視光遮断フィルタを置いたり、光源を変調発
光させ該変調に同期して光電変換素子の出力をと9出し
たシする等の方法を適用することもできる。
In addition, in the method of the present invention, in order to increase the S/N ratio and improve measurement accuracy by distinguishing between external light and the luminous flux from the light source, an infrared light emitting element is used as a light source, and visible light is emitted in front of the photoelectric conversion element for receiving light. It is also possible to apply a method such as placing a cutoff filter or modulating a light source to emit light and outputting an output from a photoelectric conversion element in synchronization with the modulation.

更に、本発明においては、集光レンズから被測定物体に
投射される光路上に平面反射鏡を配置し、該平面反射鏡
を上記回転平面反射鏡の回転軸と非平行な回転軸のまわ
シに回動させることによって2次元的に光束走査を行な
い、立体的多方向の距離測定を行なうこともできる。
Furthermore, in the present invention, a plane reflecting mirror is disposed on the optical path projected from the condensing lens to the object to be measured, and the plane reflecting mirror is rotated around a rotation axis that is non-parallel to the rotation axis of the rotating plane reflection mirror. It is also possible to perform two-dimensional light beam scanning by rotating the lens to perform three-dimensional multidirectional distance measurement.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明によれば、多方向の距離測定結果を直
ちに時系列的電気信号として得ることができ、複雑な演
算処理を必要としないため、比較的簡単な構成にて高速
で測定を行なうことができる。
According to the present invention as described above, distance measurement results in multiple directions can be immediately obtained as time-series electrical signals, and complex arithmetic processing is not required, so measurements can be performed at high speed with a relatively simple configuration. be able to.

また、本発明によれば、光学的に結像された像の位置測
定により測定結果を得ることができるので、光学系の精
度を上げることによF)W易に分解能を向上させること
ができる。
Furthermore, according to the present invention, measurement results can be obtained by measuring the position of an optically formed image, so the resolution can be easily improved by increasing the accuracy of the optical system. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は本発明方法を説明するため
の概略側面図であジ、第2図及び第3図はその概略平面
図である。 第4図(a) 、 (b)は本発明方法を説明するため
の概略側面図である。又、第5図はその概略平面図であ
る。 第6図は本発明方法を説明するための概略側面図である
。 1:光源、2,5,9:凸レンズ、3:千面反射鏡、4
:回転平面反射鏡、4a:回転軸、6゜10:光電変換
素子、7,8,11:凸シリンドリカルレンズ。 代理人  弁理士 山 下 穣 子 弟1図(G) 第1 図 (b) 第3図 第4図(0) 第4図(b) 第5図 第6 図
FIGS. 1(a) and 1(b) are schematic side views for explaining the method of the present invention, and FIGS. 2 and 3 are schematic plan views thereof. FIGS. 4(a) and 4(b) are schematic side views for explaining the method of the present invention. Moreover, FIG. 5 is a schematic plan view thereof. FIG. 6 is a schematic side view for explaining the method of the present invention. 1: Light source, 2, 5, 9: Convex lens, 3: Thousand-sided reflector, 4
: Rotating plane reflecting mirror, 4a: Rotation axis, 6°10: Photoelectric conversion element, 7, 8, 11: Convex cylindrical lens. Agent Patent Attorney Minoru Yamashita Children Figure 1 (G) Figure 1 (b) Figure 3 Figure 4 (0) Figure 4 (b) Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)光源からの光束を平面反射鏡に入射させ、該平面
反射鏡をその反射面と平行な方向の回転軸のまわりに回
転または回動させ、かくして該反射鏡からの反射光束を
被測定物体に投射しながら走査し、該被測定物体からの
反射光束を前記平面反射鏡により反射させ且つ集光レン
ズを通過させて結像させ、該結像位置を測定することを
特徴とする、多方向距離測定方法。
(1) The light flux from the light source is made incident on a plane reflecting mirror, and the plane reflecting mirror is rotated or rotated around a rotation axis in a direction parallel to the reflecting surface, and the reflected light flux from the reflecting mirror is thus measured. A multifunction device characterized in that the object is scanned while being projected onto the object, the reflected light beam from the object to be measured is reflected by the plane reflecting mirror and passed through a condensing lens to form an image, and the image forming position is measured. Directional distance measurement method.
(2)前記平面反射鏡が1つの回転軸に関し対称的に複
数個配列された反射面を有する、特許請求の範囲第1項
の多方向距離測定方法。
(2) The multidirectional distance measuring method according to claim 1, wherein the plane reflecting mirror has a plurality of reflecting surfaces arranged symmetrically about one rotation axis.
JP60227833A 1985-10-15 1985-10-15 Multi-directional distance measuring device Expired - Lifetime JPH0610615B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60227833A JPH0610615B2 (en) 1985-10-15 1985-10-15 Multi-directional distance measuring device
US07/306,248 US5033845A (en) 1985-10-15 1989-02-06 Multi-direction distance measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227833A JPH0610615B2 (en) 1985-10-15 1985-10-15 Multi-directional distance measuring device

Publications (2)

Publication Number Publication Date
JPS6287809A true JPS6287809A (en) 1987-04-22
JPH0610615B2 JPH0610615B2 (en) 1994-02-09

Family

ID=16867084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227833A Expired - Lifetime JPH0610615B2 (en) 1985-10-15 1985-10-15 Multi-directional distance measuring device

Country Status (1)

Country Link
JP (1) JPH0610615B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309809A (en) * 1987-06-11 1988-12-16 Rikagaku Kenkyusho Constitution of noncontact type optical distance detection probe
JP2016035411A (en) * 2014-08-01 2016-03-17 船井電機株式会社 Laser range finder
JP2016035436A (en) * 2014-08-04 2016-03-17 船井電機株式会社 Laser range finder
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125009A (en) * 1982-12-29 1984-07-19 Fujitsu Ltd Pattern detecting method
JPS59187211A (en) * 1983-04-08 1984-10-24 Hitachi Denshi Ltd Photoelectric distance measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125009A (en) * 1982-12-29 1984-07-19 Fujitsu Ltd Pattern detecting method
JPS59187211A (en) * 1983-04-08 1984-10-24 Hitachi Denshi Ltd Photoelectric distance measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63309809A (en) * 1987-06-11 1988-12-16 Rikagaku Kenkyusho Constitution of noncontact type optical distance detection probe
JP2016035411A (en) * 2014-08-01 2016-03-17 船井電機株式会社 Laser range finder
US10067222B2 (en) 2014-08-01 2018-09-04 Funai Electric Co., Ltd. Laser rangefinder
JP2016035436A (en) * 2014-08-04 2016-03-17 船井電機株式会社 Laser range finder

Also Published As

Publication number Publication date
JPH0610615B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
US7187445B2 (en) Method and apparatus for optically scanning a scene
KR102020037B1 (en) Hybrid LiDAR scanner
US7161664B2 (en) Apparatus and method for optical determination of intermediate distances
US6741082B2 (en) Distance information obtaining apparatus and distance information obtaining method
JPH09113262A (en) Scanning method using scanning range finder and range finder
JP2651093B2 (en) Shape detection method and device
JP2006276012A (en) Measuring system for obtaining six degrees of freedom of object
JPS6036908A (en) Survey system for measuring distance between point on surface of body and reference level in noncontacting manner by using measurement method based on triangulation principle
WO2017110574A1 (en) Light projection/reception unit, and radar
JPS58167902A (en) Detecting device for object
JPH11224397A (en) Vehicle measurement device
US5033845A (en) Multi-direction distance measuring method and apparatus
JPH08248133A (en) Positional-information detection device, radar, carried on vehicle, using this positional-information detection device and recognition method of obstacle on road
WO2022110210A1 (en) Laser radar and mobile platform
JPS6287809A (en) Method for measuring multidirectional distance
JPH08261753A (en) Optical radar device
JPH10170636A (en) Optical scanner
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPS6287808A (en) Method for measuring multidirectional distance
JP3204289B2 (en) Laser distance measuring device and laser distance measuring method
JP2004535602A (en) How to optically scan a scene
JP2000002521A (en) Three dimensional input device
KR20240002961A (en) object recognition system in sensing area using flash LIDAR
JPH06160527A (en) Distance/speed predicting device
JPH0618260A (en) Object observing apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term