JPS6287764A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS6287764A
JPS6287764A JP60226728A JP22672885A JPS6287764A JP S6287764 A JPS6287764 A JP S6287764A JP 60226728 A JP60226728 A JP 60226728A JP 22672885 A JP22672885 A JP 22672885A JP S6287764 A JPS6287764 A JP S6287764A
Authority
JP
Japan
Prior art keywords
heat exchanger
compressor
circuit
outdoor heat
bypass circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226728A
Other languages
Japanese (ja)
Inventor
孝 佐野
羽有 一宏
上杉 秀史
康治 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60226728A priority Critical patent/JPS6287764A/en
Publication of JPS6287764A publication Critical patent/JPS6287764A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はヒートポンプ式窒気調和機に係り、特にその除
霜方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat pump nitrogen conditioner, and particularly to a defrosting method thereof.

〔発明の背景〕[Background of the invention]

ヒートポンプ式インバータ駆動の空気調和機に関する除
霜方式としては実開昭55−15813号公報に示され
るように、四方弁の切換をせずに、圧縮機回転数をイン
バータにより低下させ、冷凍サイクルにおける冷媒循環
′tを低減し、暖房運転時の室外側熱交換器の蒸発能力
を低くすることによる室外側熱交換器の着霜を防止し、
すでに付着している霜を自然消滅させる方法がある。こ
の方法では暖房時の除霜運転を実施しないので、室内側
熱交換器から冷風を吹出さないので、快適性の向上を図
ることができるが、冷媒循環量を低下させ室外側熱交換
器の着霜を防止するのでは完全な除霜が実施できない、
ならびに除霜時間が長時間になりその間暖房能力が著し
く低下する為室内温度が低下するという問題があった。
As shown in Japanese Utility Model Application Publication No. 55-15813, a defrosting method for heat pump inverter-driven air conditioners uses an inverter to reduce the compressor rotation speed without switching the four-way valve. Preventing frost formation on the outdoor heat exchanger by reducing refrigerant circulation 't and lowering the evaporation capacity of the outdoor heat exchanger during heating operation,
There is a way to naturally eliminate frost that has already formed. This method does not perform defrosting operation during heating, so it does not blow cold air from the indoor heat exchanger, so it can improve comfort, but it reduces the amount of refrigerant circulation and Complete defrosting cannot be achieved by preventing frost formation.
In addition, there was a problem that the defrosting time was long and the heating capacity was significantly reduced during that time, resulting in a drop in indoor temperature.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、暖房運転時室外熱交換器の霜を除去す
るために冷房運転を行う除霜運転を実施することなく、
かつ室外側熱交換器に付着する霜を確実にかつ短時間で
除霜ならしめ、室内側熱交換器からの冷風を吹出さない
快適性に優れた空気調和機を提供することにある。
The purpose of the present invention is to remove frost from an outdoor heat exchanger during heating operation without performing a defrosting operation that performs cooling operation.
Moreover, it is an object of the present invention to provide an air conditioner which is excellent in comfort and can defrost frost adhering to an outdoor heat exchanger reliably and in a short time, and does not blow out cold air from the indoor heat exchanger.

〔発明の概要〕[Summary of the invention]

本発明は、除霜検知のサーミスタを室外熱交換器のパイ
プおよび、室外熱交換器の外気吸入口に取付、パイプ表
面温度と外気吸入空気温度信号を温度検出回路に送り除
霜運転の必要の有無を判断する。上記温度発生回路が除
霜の必要を判断した際に、周波数発生回路を介してイン
バータ回路に最高周波数の出力を指示し圧縮機出口配管
から室外側熱交換器の暖房運転時入口部に配設された分
配器に連通ずるバイパス回路に、該バイパス回路上の電
磁弁を開くことにより圧縮機出口の高温冷媒を室外熱交
換器中に導びくことにより除霜を行う空気調和機である
The present invention installs a defrost detection thermistor on the pipe of an outdoor heat exchanger and the outside air intake port of the outdoor heat exchanger, and sends pipe surface temperature and outside air intake air temperature signals to a temperature detection circuit to detect the need for defrosting operation. Determine the presence or absence. When the above temperature generation circuit determines the need for defrosting, it instructs the inverter circuit to output the highest frequency via the frequency generation circuit, which is installed from the compressor outlet piping to the inlet of the outdoor heat exchanger during heating operation. This air conditioner performs defrosting by guiding high-temperature refrigerant at the outlet of the compressor into an outdoor heat exchanger by opening a solenoid valve on the bypass circuit that communicates with the distributor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図に示す。三相交流it
源は電磁接触器1を介してインバータ回路2に接続して
いる。このインバータ回路2け周波数制御回路3からの
制御信号により任意の周波数および電圧を発生し、圧縮
機4中に設置される圧縮機駆動用3相モータ5に接続さ
れている。よ−〉て上記インバータ回路2の発生周波数
および発生電圧の変化することにより、圧縮機4のモー
タ5の回転数が変化することになる。また冷凍サイクル
は圧縮機4、四方弁6、室内側熱交換器7、膨張弁8、
分配器10、分岐管13、室外側熱交換器9を順次連結
し、四方弁6の切換えによって冷媒の流れを逆転させ、
冷房運転と暖房運転を行うヒートポンプサイクルを形し
ている。更に上記EE圧縮機の吐出側と分配器10をバ
イパス回路11に連結しており、該バイパス回路11上
には、冷媒の流れを通ずる電磁弁12が配設されている
An embodiment of the present invention is shown in FIG. 1 below. three phase AC IT
The source is connected to an inverter circuit 2 via a magnetic contactor 1 . An arbitrary frequency and voltage is generated by a control signal from this two-inverter circuit frequency control circuit 3, and is connected to a compressor driving three-phase motor 5 installed in the compressor 4. Therefore, as the frequency and voltage generated by the inverter circuit 2 change, the rotational speed of the motor 5 of the compressor 4 changes. In addition, the refrigeration cycle includes a compressor 4, a four-way valve 6, an indoor heat exchanger 7, an expansion valve 8,
The distributor 10, the branch pipe 13, and the outdoor heat exchanger 9 are connected in sequence, and the flow of the refrigerant is reversed by switching the four-way valve 6.
It has a heat pump cycle that performs cooling and heating operations. Furthermore, the discharge side of the EE compressor and the distributor 10 are connected to a bypass circuit 11, on which a solenoid valve 12 is disposed to allow the flow of refrigerant.

一方、バイパス回路11と分配器10との連結は第2図
に示す通り、オリフィス14と分岐管130間に挿入さ
れる構成としている。
On the other hand, the bypass circuit 11 and the distributor 10 are connected to each other by being inserted between the orifice 14 and the branch pipe 130, as shown in FIG.

また、サーミスタ15とサーミスタ16は室外熱交換器
90着霜状態を検知するセンサーであり、サーミスタ1
5は室外側熱交換器9のパイプ表面温度を検知し、サー
ミスタ16は室外側熱交換器の空気吸入温度を検知する
。(両サーミスタの取付状態は図示せず。)両サーミス
タ15.16の温度差およびサーミスタ14の温度によ
り、温度検出回路17け着霜の有無を判断し、周波数制
御回路3に除霜開始出力信号を伝送する。周波数制御回
路3けインバータ回路2に所定の最大周波数を出力する
信号を伝送するとともに、電磁弁12を開状態とする信
号を送る制御としている。通常電磁弁12は、周波数制
御回路3からの信号がなければ閉状態である。
Further, the thermistor 15 and thermistor 16 are sensors that detect the frosting state of the outdoor heat exchanger 90, and the thermistor 1
5 detects the pipe surface temperature of the outdoor heat exchanger 9, and the thermistor 16 detects the air intake temperature of the outdoor heat exchanger. (The mounting condition of both thermistors is not shown.) Based on the temperature difference between both thermistors 15 and 16 and the temperature of the thermistor 14, the temperature detection circuit 17 determines the presence or absence of frost formation, and sends a defrost start output signal to the frequency control circuit 3. to transmit. The frequency control circuit transmits a signal to output a predetermined maximum frequency to the three-piece inverter circuit 2, and also sends a signal to open the solenoid valve 12. Normally, the solenoid valve 12 is in a closed state unless there is a signal from the frequency control circuit 3.

上記サイクル構成において、該制御を実施すれば圧縮機
4の高温ガスは、バイパス回路11を介して分配器10
中に通じて、分岐管13より、室外側熱交換器9中に流
入し、高温ガスの熱量により、室外側熱交換器9に着霜
した霜を除去する。
In the above cycle configuration, if the control is executed, the high temperature gas of the compressor 4 will be transferred to the distributor 10 via the bypass circuit 11.
The high-temperature gas flows into the outdoor heat exchanger 9 through the branch pipe 13, and the frost formed on the outdoor heat exchanger 9 is removed by the calorific value of the high-temperature gas.

なお、分配器10中には、通常暖房運転時に冷媒の流れ
分布を均一にするため、絞り金行うオリフィス14が設
置されているが、高温ガス全多量に流す方式のため、圧
力損失が犬きくなるため、バイパス回路11の流入口は
、オリフィス14を通過しない位tVc配設し、バイパ
ス回路力圧力損失増加を防止している。
Note that an orifice 14 is installed in the distributor 10 in order to make the flow distribution of the refrigerant uniform during normal heating operation, but since it is a method that allows the entire amount of high-temperature gas to flow, the pressure loss is extremely high. Therefore, the inlet of the bypass circuit 11 is arranged at tVc such that it does not pass through the orifice 14 to prevent an increase in pressure loss due to the bypass circuit.

一方上記バイパス回路13が開いても、四方弁6を切換
しないので暖房運転は通常通り室内熱交換器7、膨張弁
8、室内熱交換器11、圧縮機4と連通され実施可能で
あり、圧縮@4の回転数が最大となっており、バイパス
回路11に循環させも てミ、暖房能力全確保し、室内温度の低下を防止できる
On the other hand, even if the bypass circuit 13 is opened, the four-way valve 6 is not switched, so heating operation can be carried out as usual by communicating with the indoor heat exchanger 7, expansion valve 8, indoor heat exchanger 11, and compressor 4. The rotation speed of @4 is the maximum, and the air is circulated through the bypass circuit 11, ensuring full heating capacity and preventing a drop in indoor temperature.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、除霜時に圧縮機能力を最大とする周波
数により運転し、冷凍サイクル中の冷媒循環tを増大し
、その一部を室外Ill熱交換器に高温ガスで送るバイ
パス回路の熱交換器人口に分配器のオリフィス後部に設
け、バイパス回路の圧力損失を低下させるため、バイパ
ス回路の流量を低下させることなく、安定した除霜を行
い信頼性を高めることができる。また流量低下がないの
で除霜時間を短縮でき、暖房運転に早期復帰が可能なた
め、・央適性り向上を図れるばかりでなく、圧縮機の高
速口伝時間を短縮することができ信頼性を向上できる。
According to the present invention, the heat of the bypass circuit is operated at a frequency that maximizes the compression function during defrosting, increases the refrigerant circulation t in the refrigeration cycle, and sends a part of it as high-temperature gas to the outdoor Ill heat exchanger. The exchanger is installed at the rear of the orifice of the distributor to reduce pressure loss in the bypass circuit, making it possible to perform stable defrosting and improve reliability without reducing the flow rate in the bypass circuit. In addition, since there is no drop in flow rate, defrosting time can be shortened, and early return to heating operation is possible, which not only improves central suitability, but also shortens compressor high-speed transmission time, improving reliability. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電気回路ならびに冷凍サイ
クルの概略構成図、第2図は同じく分配器の構造図であ
る。 #1・・・電磁接触器  2・・・インバータ回路3・
・・胸波数制仰回路  4・・・圧縮機  6・・・四
方弁  7・・・室内側熱交換器  9・・・室外側熱
交換器  10・・・分配器  11・・・バイパス回
路12・・・電磁弁  13・・・分岐管  14・・
・オリフィス  15・・・サーミスタ  16・・・
サーミスタ。 17・・・温度検出回路。
FIG. 1 is a schematic configuration diagram of an electric circuit and a refrigeration cycle according to an embodiment of the present invention, and FIG. 2 is a structural diagram of a distributor. #1...Magnetic contactor 2...Inverter circuit 3.
...Chest frequency control circuit 4...Compressor 6...Four-way valve 7...Indoor heat exchanger 9...Outdoor heat exchanger 10...Distributor 11...Bypass circuit 12 ...Solenoid valve 13...Branch pipe 14...
・Orifice 15...Thermistor 16...
thermistor. 17...Temperature detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、四方弁、室内熱交換器、膨脹弁、室外熱交換器
等を順次連結し形成するヒートポンプ式冷凍サイクルを
備えた空気調和機において、上記室外熱交換器の暖房時
冷媒流入口部、分配器中のオリフィス後と圧縮機出口配
管とを連通するバイパス回路を配設し、暖房運転中の除
霜時に開状態とする電磁弁を上記バイパス回路上に設け
た冷凍サイクル系統を有し、かつ室外熱交換器の着霜状
態を検出する温度検出回路により検出した信号を電源に
接続された発生周波数、電圧を設定する周波数発生回路
に伝送し、上記周波数発生回路に接続された圧縮機モー
タを規定の回転数で運転する電気回路を具備して上記温
度検出回路が着霜を検知した場合に、バイパス回路を開
き、圧縮機をその所定の最大とすることを特徴とする空
気調和機。
In an air conditioner equipped with a heat pump refrigeration cycle formed by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, etc., the heating refrigerant inlet portion of the outdoor heat exchanger, A refrigeration cycle system is provided with a bypass circuit that communicates between the rear of the orifice in the distributor and the compressor outlet piping, and a solenoid valve that is opened during defrosting during heating operation is provided on the bypass circuit, The signal detected by the temperature detection circuit that detects the frosting state of the outdoor heat exchanger is transmitted to a frequency generation circuit connected to a power supply that sets the frequency and voltage of the compressor motor connected to the frequency generation circuit. An air conditioner comprising: an electric circuit for operating the compressor at a prescribed rotational speed; and when the temperature detection circuit detects frost formation, a bypass circuit is opened and the compressor is operated at a predetermined maximum speed.
JP60226728A 1985-10-14 1985-10-14 Air conditioner Pending JPS6287764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226728A JPS6287764A (en) 1985-10-14 1985-10-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226728A JPS6287764A (en) 1985-10-14 1985-10-14 Air conditioner

Publications (1)

Publication Number Publication Date
JPS6287764A true JPS6287764A (en) 1987-04-22

Family

ID=16849682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226728A Pending JPS6287764A (en) 1985-10-14 1985-10-14 Air conditioner

Country Status (1)

Country Link
JP (1) JPS6287764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210022060A (en) * 2018-10-25 2021-03-02 닛폰세이테츠 가부시키가이샤 Coating liquid for forming insulating film for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet
US11756713B2 (en) 2016-09-13 2023-09-12 Jfe Steel Corporation Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11756713B2 (en) 2016-09-13 2023-09-12 Jfe Steel Corporation Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets
KR20210022060A (en) * 2018-10-25 2021-03-02 닛폰세이테츠 가부시키가이샤 Coating liquid for forming insulating film for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method of manufacturing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
KR100997284B1 (en) Air conditioner and control method thereof
CN103363709B (en) Heat pump type air conditioner
JPS59170653A (en) Air conditioner
JP2007051805A (en) Air conditioner
JPH0529830B2 (en)
CN106595181A (en) Refrigerator refrigerating system, refrigerator and thawing method
CN217541143U (en) Regenerative evaporator system
CN208544085U (en) A kind of energy-saving low-temperature heat pump air conditioner control system for electric coach
JPS6287764A (en) Air conditioner
KR100433394B1 (en) Multi-type air conditioner and method for controlling amount of bypassing refrigerent
JP2526716B2 (en) Air conditioner
EP1318364B1 (en) System and method for defrost termination feedback
CN202613831U (en) Heat pump type air conditioner
JP2001201217A (en) Air conditioner
JPS62125270A (en) Air conditioner
JP2000329443A (en) Refrigerator
CN218787637U (en) Four-pipe system, control device and air conditioner
JPH08285393A (en) Air conditioner for multi-room
CN219120664U (en) Air conditioner refrigerating system
JP4165681B2 (en) Air-conditioning and hot-water supply system and control method thereof
JPS63105372A (en) Air conditioner
JP3072761U (en) Operation control device for air conditioner
JPH01169284A (en) Freezing prevention device for air conditioner
JPH06241583A (en) Freezer device
JP2001330347A (en) Air-conditioner