JPS6287691A - Rotary compressor - Google Patents

Rotary compressor

Info

Publication number
JPS6287691A
JPS6287691A JP22818285A JP22818285A JPS6287691A JP S6287691 A JPS6287691 A JP S6287691A JP 22818285 A JP22818285 A JP 22818285A JP 22818285 A JP22818285 A JP 22818285A JP S6287691 A JPS6287691 A JP S6287691A
Authority
JP
Japan
Prior art keywords
suction
discharge
passage
pressure
refrigerant gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22818285A
Other languages
Japanese (ja)
Other versions
JPH0419396B2 (en
Inventor
Kazutomo Asami
浅見 和友
Fumiaki Sano
文昭 佐野
Tomio Wada
和田 富美夫
Koji Ishijima
石嶋 孝次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22818285A priority Critical patent/JPS6287691A/en
Publication of JPS6287691A publication Critical patent/JPS6287691A/en
Publication of JPH0419396B2 publication Critical patent/JPH0419396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps

Abstract

PURPOSE:To improve running efficiency of a refrigerating cycle, by providing in a closed vessel a valve operable by a pressure differential between a discharge pressure and a suction pressure and adapted to block channels in a suction pipe and a discharge pipe both extending out of the vessel. CONSTITUTION:A cylindrical member 22 is vertically arranged in a closed vessel 11. A discharge pipe 36 and a suction pipe 34 are connected to a side wall of the cylindrical member 22. A discharge passage 35 is connected to the cylindrical member 22 in such a manner as to be opposed to an opening portion of the discharge pipe 36, while a suction passage 32 is connected to the cylindrical member 22 in such a manner as to be opposed to an opening portion of the suction pipe 34. There is provided in the cylindrical member 22 a valve 23 adapted to block channels of the suction side and the discharge side. A discharge pressure is applied to one end portion of the valve 23, and an elastic force of a spring 29 and a suction pressure are applied to the other end portion. When a compressor is stopped, the valve 23 is moved upwardly because of a decrease in the discharge pressure and the application of the elastic force. As a result, the communication between the discharge pipe 34 and the closed vessel 11 and between the suction pipe 36 and the closed vessel 11 is blocked to thereby prevent a refrigerant gas from flowing to a refrigerating cycle.

Description

【発明の詳細な説明】 (韮菓上の利用分野〕 この発明は、電動機で回転される圧縮要素により冷媒ガ
スを圧縮する圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application for Pieces) The present invention relates to a compressor that compresses refrigerant gas using a compression element rotated by an electric motor.

〔従来の技術〕[Conventional technology]

第8図は例えば特開昭58−2115117号公報に示
された従来の冷凍サイクルの構成図である。
FIG. 8 is a block diagram of a conventional refrigeration cycle disclosed in, for example, Japanese Unexamined Patent Publication No. 58-2115117.

図中、(1)は回転式圧縮機、(2)は凝縮器、(3)
は電磁弁、(4)は毛細管 (5)は蒸発器、(6)は
逆上弁である。
In the diagram, (1) is a rotary compressor, (2) is a condenser, and (3)
is a solenoid valve, (4) is a capillary tube, (5) is an evaporator, and (6) is a reverse valve.

従来の冷凍サイクルは上記のように構成され。A conventional refrigeration cycle is configured as described above.

圧縮機(1)が運転されると、圧縮された冷媒ガスは図
の矢印で示す方向へ導かれ、凝縮器(21で凝縮され、
蒸発器(5)で蒸発して冷凍作用を行い、再び圧縮機(
1)に戻る。そして、圧縮機(1)が停止すると。
When the compressor (1) is operated, the compressed refrigerant gas is guided in the direction shown by the arrow in the figure, and is condensed in the condenser (21).
It evaporates in the evaporator (5) to perform a freezing action, and then goes to the compressor (5) again.
Return to 1). Then, when the compressor (1) stops.

電磁弁(3)によフ上記冷凍サイクルの高圧側回路の一
部を遮断し、逆上弁(6)によ夕餘圧側回路の一部を遮
断する。これは2圧縮機(1)の停止中に、密閉容器内
の多量の高温高圧ガスが、凝縮器(2)2毛細管(4)
、蒸発器(5)と流れると共に、密閉容器内の圧縮要素
各部品のシール部分を通して、シリンダ内。
The solenoid valve (3) shuts off a portion of the high pressure side circuit of the refrigeration cycle, and the reversal valve (6) shuts off a portion of the evening pressure side circuit. This is because when the 2 compressors (1) are stopped, a large amount of high temperature and high pressure gas in the closed container is transferred to the condenser (2), 2 capillary tubes (4).
, in the cylinder through the evaporator (5) and the sealing part of each part of the compression element in the closed container.

吸入管、蒸発器(5)と流れる(回路内の圧力・温度が
平衡を保とうとして)ため、冷凍サイクルの熱負荷が増
大し、冷凍サイクルの効率が低下するのを抑制する次め
である。
Since it flows through the suction pipe and the evaporator (5) (trying to keep the pressure and temperature in the circuit in equilibrium), this increases the heat load on the refrigeration cycle and prevents the efficiency of the refrigeration cycle from decreasing.

第9図は第8図と同様の動作を逆止弁(6)の前後の圧
力差変化を利用して行うもので1図中、 (70’!逆
上弁(6)の両側に接続された信号’1(8i、 (9
1の圧刃傷“号によ〕動作する差圧弁で1通常内部圧ダ
・イアフラムが用いられている。差圧弁(7)は高圧側
圧力信号(吐出側〕と低圧側圧力信号(吸入側ごとを検
知し、特に低圧側圧′f′1(圧縮機(1)と逆止弁(
6)間圧力〕が圧縮機(1)の停止後に上昇I7て、ダ
イヤプラム高圧側圧力とほぼ平衡することから、このダ
イヤスラムの変位を利用し5て、高圧[側及び低圧側そ
れぞれの回路内に設けられた弁体を作動させろものでお
る。
In Figure 9, the same operation as in Figure 8 is performed using the pressure difference change before and after the check valve (6). signal '1 (8i, (9
1 Normally, an internal pressure diaphragm is used in the differential pressure valve that operates according to the pressure knife number 1. The differential pressure valve (7) has a high pressure side pressure signal (discharge side) and a low pressure side pressure signal (each suction side). is detected, especially the low pressure side pressure 'f'1 (compressor (1) and check valve (
6) After the compressor (1) stops, the diaphragm pressure] rises and is almost in equilibrium with the diaphragm high pressure side pressure. Therefore, using this diaphragm displacement, the high pressure side and low pressure side circuits are Activate the valve body provided inside.

第10図も同様の機能を持つ回路で、差圧弁内圧逆止弁
を一体に設置、すた一体形差圧弁(11を用いたもので
ある。
FIG. 10 shows a circuit having a similar function, in which a differential pressure valve and an internal pressure check valve are installed integrally, and a lid-integrated differential pressure valve (11) is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の冷凍ンイーン“ル゛rl″は9圧扁
観(1)の停止時冷媒の逆流防止のため、電磁弁(3)
、差圧弁(7)又は一体形差圧弁顛を用いている。その
ため、′Jl磁弁(3)を使用し几場合は、電磁弁自体
が電力を消費して効率を低下させてしまう。また、差圧
弁(7)又は一体形差圧弁員を使用した場合でも。
The conventional refrigeration engine "RL" as described above has a solenoid valve (3) to prevent the refrigerant from flowing back when the refrigeration system (1) is stopped.
, using a differential pressure valve (7) or an integrated differential pressure valve mechanism. Therefore, if the 'Jl solenoid valve (3) is used, the solenoid valve itself consumes electric power, reducing efficiency. Also, even when using a differential pressure valve (7) or an integrated pressure differential valve member.

信号配管及び作動構造の複雑さによる動作不良。Malfunction due to complexity of signal piping and operating structure.

溶接箇所の増加による漏れ等、信頼性の低下は避けられ
ない。これら制御弁の価格及び組立費用が高価になる等
の問題点がある。
Deterioration in reliability due to leakage due to an increase in the number of welded parts is unavoidable. There are problems such as the cost and assembly cost of these control valves being high.

この発明は、上記問題点を解決するためになされたもの
で、構造が簡単で信頼性が高(2しかも安価である弁装
置を有し、冷凍サイクルの運転効率を高めることができ
る回転式圧縮機を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and is a rotary compressor that has a simple structure and high reliability (2) and has an inexpensive valve device, and can improve the operating efficiency of the refrigeration cycle. The purpose is to provide a machine.

また、この発明の別の発明は、上記目的に加えて弁装置
の動作をいっそう確突にした回転式圧縮機を提供するこ
とを目的とする。
Another object of the present invention is to provide a rotary compressor in which the valve device operates more reliably in addition to the above object.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る回転式圧縮機は、密閉容器の内部又は外
部に、一端が密閉容器内に連通し他端には吸入通路に連
通ずる連通路を有し、吸入通路及び吐出通路にそれぞれ
挿入されt筒状体を設け。
The rotary compressor according to the present invention has a communication passage inside or outside the hermetic container, one end of which communicates with the inside of the hermetic container and the other end of which communicates with the suction passage, and the rotary compressor is inserted into the suction passage and the discharge passage. A cylindrical body is provided.

この筒状体内に弁体を設け、その一端が冷媒ガスの吐出
圧力で押圧されると吸入通路間及び吐出通路間がそれぞ
れ連通し、他端が冷媒ガスの逆流圧力及びばね圧力て押
圧さむると吸入通路間及び吐出通路間がそれぞれ閉塞す
るよう産したものである。
A valve body is provided in this cylindrical body, and when one end is pressed by the discharge pressure of the refrigerant gas, the suction passage and the discharge passage are communicated with each other, and the other end is pressed by the backflow pressure of the refrigerant gas and the spring pressure. This is because the suction passageway and the discharge passageway are respectively closed.

ま几、この発明の別の発明は、上記のものにおいて、吸
入通路に冷媒ガスの反吸込男向への流:nを防止する逆
a阻止体を設けたものである3、〔作用〕 この発明πおいては、圧蒲機運転時は筒状体内の弁体は
吐出圧力で押IJさズ)て吸入通路間及び14出通路間
はそれぞれ連通しているが、圧帰機停止1−8時は冷媒
ガスが逆流して弁体曲端の圧力が上列1.。
Another invention of the present invention is that, in the above-mentioned thing, a reverse a blocking body is provided in the suction passage to prevent the flow of refrigerant gas in the anti-suction direction. 3. [Function] This In the invention π, when the pressurizer is in operation, the valve body in the cylindrical body is pressed by the discharge pressure (IJ), and the suction passages and the outlet passages 14 are in communication with each other, but when the pressurizer is stopped 1- At 8 o'clock, the refrigerant gas flows backwards and the pressure at the bent end of the valve body increases to 1. .

かつばね力が加わって弁体が移動し吸入jb N・す1
11及び吐出通路間はぞハそ、tL閉閉戸7二ざノ1,
7・。
The valve body moves due to the spring force and suction jb N・S1
11 and the discharge passage, there is a tL closing door 7, 1,
7.

まfclこの発明の別の発明にふ・(、八て;バエ、圧
1.1楢磯停止・時の吸入通路の逆流抵抗は増加ノイ)
 7N:λ′・T −’P体他端部の圧力は急速に上昇
し、弁体の移動は更に迅速になる。
Another invention of this invention...
7N: λ'·T -'The pressure at the other end of the P body rises rapidly, and the valve body moves even more rapidly.

〔実施例〕〔Example〕

第1図〜第4図はこの発明の一実施例を示す図で、第1
図は圧縮機の破断側面図、第2図及び第3図は弁装置の
動作説明図、第4図は冷凍サイクル構成図であシ、 f
il 、 (2+ 、 (41、(51は上記従来装置
と同様のものである。
Figures 1 to 4 are diagrams showing one embodiment of the present invention.
The figure is a cutaway side view of the compressor, Figures 2 and 3 are explanatory diagrams of the operation of the valve device, and Figure 4 is a configuration diagram of the refrigeration cycle.
il, (2+, (41, (51) are the same as in the conventional device described above.

図中、 (111は密閉容器、鰺は密閉容器U内圧収納
された電動機、(13は電動機α2により駆動されるク
ランク軸、 aaはシリンダ(15)及びピストンαe
からなる圧縮要素で、シリンダα9は密閉容器α1)K
固定されピストン(10はクランク軸圓に形成された偏
心部分に嵌装されシリンダ領内で偏心回転するように構
成されている。iた。シリンダ(19にはこれを貫通す
るベーン(図示しない)が設けられ、一端が押ばね(図
示しな匹〕により押圧さnて他端がピストンFilの外
周に接触し、ピストンOf9の回転により往復運動して
いる。aη、鰺はそれぞれ圧縮要素α4に固定されクラ
ンク軸0を支持する軸受、α9は軸受(1ηに設けられ
た吐出弁、■は吐出弁を少うようにして設けられた吐出
マフラ、Ql)は圧縮要素性局と密閉容器αυの間に配
置さnた弁装置、@は弁装置(2Dの本体を形成する円
筒状の筒状体で、二つの貫通穴(22a)、 (22b
)を有し9それぞれ吸入通路及び吐出通路の一部を形成
している。(22e)、 (22d)は筒状体@の端部
に形成された吸入弁体側空間及び吐出弁体側空間、(ハ
)は筒状体(至)内に摺動可能に設けられ吸入側弁体(
財)と吐出側弁体四からなる弁体で、吸入側弁体@はつ
づみ状の連通部(24a)と円柱状の閉塞部(241)
)からなり、吐出側弁体(至)は同じく連通部(25a
、)と閉塞部(251))からなフ、弁体(至)、@は
互いに連結棒翰で連接されている。(イ)は筒状体(社
)内に固着さj、吐出側弁体(ト)の下限位置を規制す
る円環体の制止片、@は制止片@の吐出側弁体(ハ)側
端面に固着されたパツキン、0リング等の封止材、囚は
吸入弁体側空間(220)に設けられ吸入側弁体(2)
の端部を押圧する押ばね、(至)は筒状体@の吸入弁体
側端面を閉塞するプラグ、0ηは向じく吐出弁体側端面
に設けられた穴付プラグ。
In the figure, (111 is a closed container, mackerel is an electric motor housed in a closed container U, (13 is a crankshaft driven by electric motor α2, aa is a cylinder (15) and a piston αe
A compression element consisting of cylinder α9 is a closed container α1)K
The piston (10) is fixed and configured to be fitted into an eccentric portion formed in the crankshaft circle and rotate eccentrically within the cylinder area.The cylinder (19 has a vane (not shown) passing through it). One end is pressed by a compression spring (not shown), and the other end contacts the outer periphery of the piston Fil, and is reciprocated by the rotation of the piston Of9. α9 is the bearing (discharge valve installed at 1η, ■ is the discharge muffler installed with fewer discharge valves, Ql) is the bearing between the compression element station and the closed vessel αυ. The valve device is placed in the valve device (a cylindrical body forming a 2D main body, with two through holes (22a), (22b)
) forming part of the suction passage and the discharge passage, respectively. (22e) and (22d) are the suction valve body side space and the discharge valve body side space formed at the end of the cylindrical body @, and (c) is the suction side valve slidably provided in the cylindrical body (to). body(
The valve body consists of a valve body on the discharge side and a valve body on the discharge side, and the valve body on the suction side @ has a thread-like communication part (24a) and a cylindrical blocking part (241).
), and the discharge side valve body (to) also has a communication part (25a
, ) and the closing part (251)), the valve body (to), and @ are connected to each other by a connecting rod. (A) is a restraining piece of an annular body that is fixed in the cylindrical body (J) and regulates the lower limit position of the discharge side valve body (G), @ is a restraining piece @ on the discharge side valve body (C) side A sealing material such as a gasket or an O-ring fixed to the end face is provided in the suction valve body side space (220), and the sealing material such as an O-ring is fixed to the end face of the suction side valve body (2).
0η is a plug with a hole provided on the opposite end face of the discharge valve body.

03は圧縮要素Iの吸入側と筒状体@の貫通穴(22a
 )を接続する吸入通路、Q3は吸入通路63と筒状体
@の吸入弁体側空間(22りを連通ずる連通路、(至)
は貫通穴(22a)に接続され密閉容器上9を貫通して
蒸発器(5)に接続され吸入通路の一部を形成する吸入
管、(ト)は貫通穴(22b)に接続され密閉容器αB
内に連通する吐出通路、(7)は貫通穴(22b)に接
続され密閉容器αυを貫通して凝縮器(2)に接続され
吐出通路の一部を形成する吐出管である。なお、第8図
〜第10図に示すt磁弁(3)、差圧弁(7)又は一体
形差圧弁部は設けられ℃いない 上記のように(4成された回転形圧編機において圧縮機
(1)が運転されているときは、第2図のように弁体り
は吐出側弁体(ハ)の端面が封止は(支)に当接する故
tj!、にある。これは、筒状体0Jの吸入弁体側空間
(22りの圧力による力P1と押ばね(至)の力psと
の合力よりも、吐出弁体11Iil空間(22d)の圧
力による力P2の力が大きく、弁体時が制止片面に押圧
されるためである。このとき、弁体のの連通部(24a
)、 (25りは貫通穴(22a、)、 (22k))
の位gfJc一致し、吸入管(ロ)と吸入通路国は連通
し、吐出通路(至)と吐出管(至)は連通している。な
お、吐出側弁体(至)と封止材(至)の当接により高低
圧力は互いに遮断されている。
03 is the suction side of the compression element I and the through hole (22a
), Q3 is a communication passage connecting the suction passage 63 and the suction valve body side space (22) of the cylindrical body @ (to)
is a suction pipe that is connected to the through hole (22a) and passes through the upper part 9 of the closed container and is connected to the evaporator (5) and forms part of the suction passage; (G) is connected to the through hole (22b) and is connected to the closed container αB
The discharge passage (7) that communicates with the inside is a discharge pipe that is connected to the through hole (22b), passes through the closed container αυ, is connected to the condenser (2), and forms a part of the discharge passage. Note that the magnetic valve (3), the differential pressure valve (7), or the integrated differential pressure valve shown in FIGS. 8 to 10 are not provided. When the machine (1) is in operation, the valve body is located at tj!, where the end face of the discharge side valve body (c) is in contact with the sealing support (support) as shown in Figure 2. , the force P2 due to the pressure in the discharge valve body 11Iil space (22d) is larger than the resultant force of the force P1 due to the pressure in the suction valve body side space (22) of the cylindrical body 0J and the force ps of the pressing spring (to). This is because the valve body is pressed against one side of the stopper.At this time, the communication part (24a) of the valve body
), (25 is a through hole (22a, ), (22k))
The positions gf and Jc match, the suction pipe (b) and the suction passage are in communication, and the discharge passage (to) and the discharge pipe (to) are in communication. Note that the high and low pressures are isolated from each other by the contact between the discharge side valve body (to) and the sealing material (to).

次に、圧縮機(1)が停止すると、上述のように密閉容
器(11)内の高圧高温の冷媒ガスは圧縮要素側の各部
品の気密部分1例えば上記ベーンとシリンダ(至)のベ
ーン案内貫通穴の隙間からシリンダ値e内部を経て吸入
通路(至)に逆流する。この圧力は連通路(ト)によっ
て伝達されるので、吸入弁体側空間(22C)の圧力が
上昇し、この圧力による力P1とはね翰の力Pθとの合
力が、吐出側弁体(至)の端面に作用する力P2よpも
犬になり、弁体@は吐出側弁体(ハ)側へ移動し、第3
図のようπ吸入側弁体(財)の連接側端面が制止片(財
)に当接した位置で停止する。
Next, when the compressor (1) stops, the high-pressure, high-temperature refrigerant gas in the closed container (11) is transferred to the airtight areas 1 of each component on the compression element side, such as the vane guide of the vane and the cylinder (toward), as described above. It flows back into the suction passage (toward) through the gap in the through hole, through the inside of the cylinder e. Since this pressure is transmitted through the communication path (G), the pressure in the suction valve body side space (22C) increases, and the resultant force of the force P1 due to this pressure and the force Pθ of the spring holder is applied to the discharge side valve body ( ) The force P2 and p acting on the end face of
As shown in the figure, it stops at the position where the connecting side end face of the π suction side valve element (material) comes into contact with the stopper piece (material).

このとき、弁体(至)の閉塞部(24b)、 (25b
)は貫通穴(22a)、 (22b)の位置ば一致し、
吸入管■と吸入通路口は閉塞され、吐出通路(ト)と吐
出管(至)は閉塞さn、6.これで、@閉容器(1)内
の冷媒ガスが吸入管(2)を逆流して蒸発器(5)へ多
食に流入することは抑止される。
At this time, the closed part (24b), (25b) of the valve body (to)
) match the positions of the through holes (22a) and (22b),
The suction pipe ■ and the suction passage opening are closed, and the discharge passage (g) and the discharge pipe (to) are closed n, 6. This prevents the refrigerant gas in the closed container (1) from flowing backward through the suction pipe (2) and into the evaporator (5).

また、圧縮機(1)の再起動時には、ピストン(lE9
の回転と共に、圧縮要素Iへの吸入通路(至)の圧力P
1も降下して、押はねの力2日との合力が、弁体@に作
用する密閉容器(11)内の圧力による力P?よりも小
さくなると、弁体@は再び吸入側弁体@側へと移動し、
上述のように制止片■に当接して停止し、吸入及び吐出
各通路が連通される。
Also, when restarting the compressor (1), the piston (lE9
With the rotation of , the pressure P in the suction passage to the compression element I
1 also descends, and the resultant force of the pushing force 2 is the force P due to the pressure inside the closed container (11) that acts on the valve body @? When it becomes smaller than , the valve body @ moves to the suction side valve body @ side again,
As described above, it comes into contact with the stopper piece (2) and stops, and the suction and discharge passages are communicated.

第5−〜第7図はこの発明の他の実施例を示す弁装置C
11部分の縦断面図である。
5 to 7 are valve devices C showing other embodiments of the present invention.
It is a longitudinal cross-sectional view of 11 parts.

第5図は吸入通路田に冷媒ガスの反吸込方向への流れを
阻止する逆流阻止体を設けたもので、この実施例では流
体ダイオード(至)が用いられ、連通路謔と吸入側弁体
(至)の間て配置されている。
Figure 5 shows a case in which a backflow blocker is provided in the suction passageway to prevent the flow of refrigerant gas in the counter-suction direction.In this embodiment, a fluid diode is used, It is located between (to).

これにより、吸入通路C32の逆流抵抗が増加するので
、圧縮機(1)停止後の吸入弁体側空間(22りの圧力
は急速に上昇し、停止後短時間で吸入通路33と吸入管
(至)は閉塞され、いっそう確実な弁制御動作が得られ
ることになる。その結果、密閉容器(1)からの高温高
圧冷媒ガスの流出を最小限に抑えることが可能となる。
As a result, the backflow resistance in the suction passage C32 increases, so the pressure in the suction valve body side space (22) increases rapidly after the compressor (1) is stopped, and the pressure in the suction passage 33 and the suction pipe ( ) is closed, resulting in a more reliable valve control operation.As a result, it becomes possible to minimize the outflow of high-temperature, high-pressure refrigerant gas from the closed container (1).

第6図は吸入側弁体(241と吸入管(Aの間に逆流阻
止体を設けたもので、この実施例では逆止弁体C1が用
いられているーその作用は第5図と同様である。
Fig. 6 shows a case in which a backflow prevention body is provided between the suction side valve body (241) and the suction pipe (A). In this embodiment, a check valve body C1 is used - its function is the same as in Fig. 5. be.

第7図は弁装置Qi)を密閉容器(11)の外部に近接
させて設けたもので、筒状体■の吐出弁体側端面はプラ
グQ1で密閉さn、吐出通路(至)と吐出弁体側空間(
22(L)は連通路(4υで連通されている。
In Fig. 7, a valve device Qi) is provided close to the outside of a closed container (11), and the end face of the cylindrical body (2) on the side of the discharge valve body is sealed with a plug (N), and the discharge passage (to) and the discharge valve body lateral space (
22(L) is a communication path (communicated through 4υ).

第7図の動作は第1図〜第3図のものと全く同様であり
、同様の機能を持たせることができる。
The operation of FIG. 7 is completely similar to that of FIGS. 1 to 3, and the same functions can be provided.

上記各実施例のように、弁装置Cυを密閉容器αυの内
部に設けるか、又は脣閉容器+111の外部にこれに近
接して圧縮機(1)の一部分として設げることKよう、
圧縮機(1)の使用者側での浴接箇所も太幅に減少し、
信頼性及びコスト面でも有利なものとなる。
As in each of the above embodiments, the valve device Cυ may be provided inside the closed vessel αυ, or may be provided outside the closed vessel +111 as a part of the compressor (1) in close proximity thereto.
The bath contact point on the user side of the compressor (1) has also been greatly reduced,
It is also advantageous in terms of reliability and cost.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおフこの発明では、密閉容器の内部又は
外部に、=端が密閉容器内に連通し他端には吸入通路に
連通ずる連通路を有し吸入通路及び吐出通路にそれぞれ
挿入された筒状体を設げ。
With the above explanation, this invention has a communicating passage inside or outside of the sealed container, one end of which communicates with the inside of the sealed container and the other end of which communicates with the suction passage, and is inserted into the suction passage and the discharge passage, respectively. Provide a cylindrical body.

この筒状体内に弁体を設け、その一端が冷媒ガスの吐出
圧力で押圧されると吸入通路間及び吐出通路間がそれぞ
れ連通し、他端が冷媒ガスの逆流圧力゛及びばね圧力で
押圧されると吸入通路間及び吐出通路間がそれぞれ閉塞
するようKtuものである。これにより、構造が簡単で
信頼性が高く、シかも安価々弁装置を有し、冷凍サイク
ルの運転効率を高めることができる効果がある。
A valve body is provided in this cylindrical body, and when one end is pressed by the discharge pressure of the refrigerant gas, the suction passage and the discharge passage are communicated with each other, and the other end is pressed by the backflow pressure of the refrigerant gas and the spring pressure. Ktu so that the suction passages and the discharge passages are respectively closed. As a result, the structure is simple, highly reliable, and has an inexpensive valve device, which has the effect of increasing the operating efficiency of the refrigeration cycle.

また、この発明の別の発明は、吸入通路に冷媒ガスの反
吸込方向への流れを阻止する逆流阻止体を設けたので、
弁装置の動作をいっそう確実にすることができる効果が
ある。
Another aspect of the present invention is that a backflow blocker is provided in the suction passage to block the flow of refrigerant gas in the counter-suction direction.
This has the effect of making the operation of the valve device more reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明による回転式圧縮機の一実施
例を示す図で、第1図は圧縮機の破断側面図、第2図及
び第3図は第1図の弁装置の動作説明図、第4図は冷凍
サイクル構成図、第5図〜第7図はこの発明の他の実施
例を示す弁装置部分の縦断面図、第8図〜第10図は従
来の冷凍サイクル構成図である。 図中、(1)は圧縮機、αυは密閉容器、 f13は電
動機。 α4は圧縮要素、@は筒状体、□□□は弁体、f24は
吸入側弁体、(ハ)は吐出側弁体、(至)は押ばね、(
至)は吸入通路、03は連通路、 941は吸入通路(
吸入管)、(至)は吐出通路、c!6は吐出通路(吐出
管)、(至)は逆流阻止体(流体ダイオード) 、 (
3Iは逆流阻止体(逆上弁体)、aυは連通路である。 なお2図中同一符号は同−又は相当部分を示す。
1 to 4 are views showing one embodiment of a rotary compressor according to the present invention, in which FIG. 1 is a cutaway side view of the compressor, and FIGS. 2 and 3 are views of the valve device shown in FIG. 1. An explanatory diagram of the operation, FIG. 4 is a refrigeration cycle configuration diagram, FIGS. 5 to 7 are longitudinal sectional views of a valve device portion showing other embodiments of the present invention, and FIGS. 8 to 10 are a conventional refrigeration cycle. FIG. In the figure, (1) is a compressor, αυ is a closed container, and f13 is an electric motor. α4 is a compression element, @ is a cylindrical body, □□□ is a valve body, f24 is a suction side valve body, (c) is a discharge side valve body, (to) is a pressure spring, (
) is the suction passage, 03 is the communication passage, 941 is the suction passage (
suction pipe), (to) is the discharge passage, c! 6 is a discharge passage (discharge pipe), (to) is a backflow blocker (fluid diode), (
3I is a backflow prevention body (backward valve body), and aυ is a communication path. Note that the same reference numerals in the two figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)密閉容器内に電動機で回転される圧縮要素を収納
し、吸入通路から吸入した冷媒ガスを上記圧縮要素で圧
縮して上記密閉容器内から吐出通路を通して吐出させて
冷凍サイクル内へ送出するものにおいて、上記密閉容器
の内部又は外部に設けられ筒状に形成され一端は上記密
閉容器内に連通し他端には上記吸入通路に連通する連通
路を有し上記吸入通路及び上記吐出通路にそれぞれ挿入
された筒状体と、この筒状体に設けられ一端が上記冷媒
ガスの吐出圧力により押圧されると第1の位置において
、上記吸入通路間及び上記吐出通路間をそれぞれ連通し
、他端が上記連通路からの冷媒ガスの逆流圧力及びばね
圧力で押圧されて第2の位置に移動すると上記吸入通路
間及び上記吐出通路間をそれぞれ閉塞する弁体とを備え
たことを特徴とする回転式圧縮機。
(1) A compression element rotated by an electric motor is housed in an airtight container, and refrigerant gas sucked in from the suction passage is compressed by the compression element and discharged from the airtight container through the discharge passage and sent into the refrigeration cycle. The tube is provided inside or outside the sealed container and is formed into a cylindrical shape, and has a communicating passageway that communicates with the inside of the sealed container at one end and the suction passageway at the other end, and connects the suction passageway and the discharge passageway to the suction passageway. When the inserted cylindrical body and one end of the cylindrical body are pressed by the discharge pressure of the refrigerant gas, the suction passage and the discharge passage communicate with each other in the first position, and the other end is pressed by the discharge pressure of the refrigerant gas. The valve body is characterized by comprising a valve body whose end closes the suction passage and the discharge passage when the end thereof is moved to the second position by being pressed by the backflow pressure of the refrigerant gas from the communication passage and the spring pressure. Rotary compressor.
(2)密閉容器内に電動機で回転される圧縮要素を収納
し、吸入通路から吸入した冷媒ガスを上記圧縮要素で圧
縮して上記密閉容器内から吐出通路を通して吐出させて
冷凍サイクル内へ送出するものにおいて、上記密閉容器
の内部又は外部に設けられ筒状に形成され一端は上記密
閉容器内に連通し、他端には上記吸入通路に連通路を有
し、上記吸入通路及び上記吐出通路にそれぞれ挿入され
た筒状体と、この筒状体に設けられ一端が上記冷媒ガス
の吐出圧力により押圧されると第1の位置において、上
記吸入通路間及び上記吐出通路間をそれぞれ連通し、他
端が上記連通路からの冷媒ガスの逆流圧力及びばね圧力
で押圧されて第2の位置に移動すると上記吸入通路間及
び上記吐出通路間をそれぞれ閉塞する弁体と、上記吸入
通路に設けられ、上記冷媒ガスの反吸入方向への流れを
阻止する逆流阻止体とを備えたことを特徴とする回転式
圧縮機。
(2) A compression element rotated by an electric motor is housed in an airtight container, and refrigerant gas sucked in from the suction passage is compressed by the compression element and discharged from the airtight container through the discharge passage and sent into the refrigeration cycle. The tube is provided inside or outside of the sealed container and is formed into a cylindrical shape, one end communicating with the inside of the sealed container, the other end having a communicating passage with the suction passage, and the suction passage with the discharge passage. When the inserted cylindrical body and one end of the cylindrical body are pressed by the discharge pressure of the refrigerant gas, the suction passage and the discharge passage communicate with each other in the first position, and the other end is pressed by the discharge pressure of the refrigerant gas. a valve body that respectively closes between the suction passages and between the discharge passages when the end thereof is moved to a second position by being pressed by backflow pressure of refrigerant gas from the communication passage and spring pressure; and a valve body provided in the suction passage; A rotary compressor comprising: a backflow blocker that blocks the flow of the refrigerant gas in a counter-intake direction.
JP22818285A 1985-10-14 1985-10-14 Rotary compressor Granted JPS6287691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22818285A JPS6287691A (en) 1985-10-14 1985-10-14 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22818285A JPS6287691A (en) 1985-10-14 1985-10-14 Rotary compressor

Publications (2)

Publication Number Publication Date
JPS6287691A true JPS6287691A (en) 1987-04-22
JPH0419396B2 JPH0419396B2 (en) 1992-03-30

Family

ID=16872493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22818285A Granted JPS6287691A (en) 1985-10-14 1985-10-14 Rotary compressor

Country Status (1)

Country Link
JP (1) JPS6287691A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887988U (en) * 1981-12-09 1983-06-15 松下冷機株式会社 rotary compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887988U (en) * 1981-12-09 1983-06-15 松下冷機株式会社 rotary compressor

Also Published As

Publication number Publication date
JPH0419396B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
KR860002205B1 (en) Refrigerated cycle
KR970028265A (en) Back pressure control to improve system operating efficiency
IL158078A (en) Pressure equalization system and method
US4711617A (en) Rotary compressor
JPS6287691A (en) Rotary compressor
KR910001695B1 (en) Rotary compressor
JPH0144796Y2 (en)
JPS59215553A (en) Refrigerator
JP2678057B2 (en) Fluid control valve
JP2678043B2 (en) Fluid control valve
JPS62102062A (en) Refrigerator
JPH0134062Y2 (en)
JPS5852957A (en) Refrigerator
JPS59121263A (en) Three-way switching valve for refrigerating device
JPH0620050Y2 (en) Refrigeration equipment
JPS5862463A (en) Refrigerator
JPS6358278B2 (en)
JP2685293B2 (en) Fluid control valve
JPS61291796A (en) Multicylinder rotary compressor
JPH0226144B2 (en)
JPH04169763A (en) Fluid control valve
JPH06185832A (en) Valve device for refrigerating cycle
JPS5898692A (en) Rotary compressor
JPH0214621B2 (en)
JPS6325259B2 (en)