JPS6287686A - Control method for screw compressor - Google Patents

Control method for screw compressor

Info

Publication number
JPS6287686A
JPS6287686A JP22736585A JP22736585A JPS6287686A JP S6287686 A JPS6287686 A JP S6287686A JP 22736585 A JP22736585 A JP 22736585A JP 22736585 A JP22736585 A JP 22736585A JP S6287686 A JPS6287686 A JP S6287686A
Authority
JP
Japan
Prior art keywords
compression ratio
increase
decrease
screw compressor
internal volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22736585A
Other languages
Japanese (ja)
Inventor
Toshimasa Shimoda
下田 利正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP22736585A priority Critical patent/JPS6287686A/en
Publication of JPS6287686A publication Critical patent/JPS6287686A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To improve operation efficiency, by driving an internal displacement ratio variable mechanism when a change width of compression ratio increases to a predetermined value or more. CONSTITUTION:A pressure transmitter 22 is provided in a delivery pressure pipe 13 of a screw compressor 11. A delivery pressure signal, detected by the pressure transmitter 22, is input to an arithmetic unit 23, here compression ratio is calculated. The calculated compression ratio changes, and when its change width increased to a predetermined value or more, a four way type solenoid valve 19 is driven to supply pressure oil to and discharge it from a driving oil hydraulic cylinder 17 of an internal displacement ratio variable mechanism, both actuating it and regulating internal displacement ratio of the screw compressor to an optimum value.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば都市ガスホルダの充填、ヒートポン
プ、冷凍・冷却庫などの用途において、圧縮比が時々刻
々変化する場合のスクリュー圧縮機の制御方法に関する
Detailed Description of the Invention (Field of Industrial Application) This invention is a method for controlling a screw compressor when the compression ratio changes from time to time, for example in applications such as filling city gas holders, heat pumps, and freezers/coolers. Regarding.

(従来技術とその問題点) 一般的にスクリュー圧縮機では、ロータが回転するにし
たがってロータ歯溝空間の容積が減少し、この容積があ
る一定の値になると吐出口と連絡してガスが吐出される
構造になっている。歯溝空間がどこまで減少すれば吐出
口と連絡する(すなわち吐出口が開く)のかを表わす指
標として内部容積比(V、)を使用し、これには次の関
係がある。
(Prior art and its problems) Generally, in a screw compressor, as the rotor rotates, the volume of the rotor tooth space decreases, and when this volume reaches a certain value, it connects with the discharge port and gas is discharged. The structure is such that The internal volume ratio (V,) is used as an index representing how far the tooth groove space must be reduced to communicate with the discharge port (that is, the discharge port opens), and has the following relationship.

すなわち■・は、吸込が完了したときの容積と吐出ボー
トが開くときの容積との比を表わしている。
In other words, ■ represents the ratio between the volume when suction is completed and the volume when the discharge boat is opened.

標準的な■i固定タイプのスクリュー圧縮機の場合、吐
出ボートは使用される運転条件に合せて経済運転ができ
るように、例えばり、M、Hの3種類が準備されており
、予め最適の吐出ボートを選択して運転を行なう。しか
しその後運転条件が変化した場合、例えばMボート(中
圧縮化)を選択したスクリュー圧縮機で低圧縮比(高吸
込圧力または低吐出圧力)の運転を行なうと、第5図(
a)に示すように吐出ボートが開く前にガスは吐出圧力
以上に過圧縮され、余分な圧縮仕事を行なうことになる
。また逆に高圧縮比(低吸込圧力または高吐出圧力)で
運転すると、第5図(b)に示すように吐出圧力に達り
う前に吐出j18−1〜ノ゛)ζ開4\、ガスの逆流を
生じるj(縮不足となる。これI−:、II、裏いずれ
も図の斜線部分で示づたけの動力のロス・ター)じ、効
率の低下を招来ケる。なお第5図に1bい了、1はスク
リュー圧縮機のロータを示し、2はt′ノローダスライ
ド弁を示している。
In the case of a standard fixed type screw compressor, three types of discharge boats, for example M and H, are prepared to enable economical operation according to the operating conditions used, and the optimal one is selected in advance. Select a discharge boat and operate it. However, if the operating conditions change after that, for example, if a screw compressor with M boat (medium compression) is selected and is operated at a low compression ratio (high suction pressure or low discharge pressure), as shown in Figure 5 (
As shown in a), before the discharge boat opens, the gas is overcompressed beyond the discharge pressure and performs extra compression work. Conversely, when operating at a high compression ratio (low suction pressure or high discharge pressure), as shown in Figure 5(b), the gas is discharged before the discharge pressure is reached. This causes a backflow of (results in insufficient compression. This causes a loss of power as shown in the shaded area in both I-: and II), resulting in a decrease in efficiency. In addition, in FIG. 5, 1b shows the rotor of the screw compressor, and 2 shows the loader slide valve t'.

このようなV、固定タイプのスクリュー汀線B’l+1
を例えば第6図に示すような都市ガス圧送ライ゛Iに適
用した場合には、特に都市ガスボルグ3 +1.フ)ス
を充填する場合に動力ロスが非常に増加り、 t’:’
 4・都合が生じる。すなわtう第6図の都市ガス圧送
メインにおいて通常は圧送ラインの’11弁・1が開成
されてスクリュー圧縮機5から逆止弁6苓介(−5都市
ガスライン7にガスがJf送されでおり、I−のときは
吐出圧力は0,5醇7′rボ・−1・1.5)酌/’c
屑程度、(二ぞれ稈大きくは変化せず、したがってV、
固定ケイプのスクリュー圧縮機であってもそれ程不都J
)は生じない。しかしながら夜間のように都市ガ麦ホル
ダ3にガスを充填する場合には、吐出[f−“t、置、
1.1.5NSF/ tyi−+  7に!J/ ad
にわたってヘリ々と変化しC圧縮比が漸増し、このよう
な場合にVi固定タイプのスクリュー圧縮機を使用する
と、上述した理由により動力ロスが非常に増大して、効
率が極めて悪くなる。
Such V, fixed type screw shoreline B'l+1
For example, when applied to city gas compressed transportation line I as shown in FIG. 6, especially city gas Borg 3 +1. When filling the gas, the power loss increases significantly, and t':'
4. Conveniences arise. In other words, in the main city gas pumping shown in Fig. 6, normally valve '11 of the pumping line is opened and gas is sent from the screw compressor 5 to the check valve 6 (-5 city gas line 7). Therefore, when I-, the discharge pressure is 0.5 7'rbo・-1・1.5) Cup/'c
The degree of waste, (both culms do not change significantly, therefore V,
Even a fixed cape screw compressor is not that inconvenient.
) does not occur. However, when filling the city gamy holder 3 with gas at night, the discharge [f-"t, position,
1.1.5 NSF/tyi-+ 7! J/ ad
The C compression ratio gradually increases over time, and if a fixed Vi type screw compressor is used in such a case, the power loss will greatly increase for the reasons mentioned above, resulting in extremely poor efficiency.

このように圧縮比が大きく変化する運転条件に対しては
、■、可変タイプの圧縮機の適用が従来から知られてい
る。このV、可変タイプのスクリュー圧縮機は、容準調
整用のスライド弁を有しており、■・の制御に関しては
、適宜手動にて適当なV・ヘスライド弁を設定して、段
階的にV、を変化させるようにしていた。このため運転
効率上置も望ましい態様でV、を変化させることができ
ず、十分な■・可変効果を引き出すことができない上、
操作が煩雑であるという問題があった。
For such operating conditions where the compression ratio changes greatly, it has been known to use a variable type compressor. This V variable type screw compressor has a slide valve for volume adjustment. , I was trying to change the . For this reason, it is not possible to change V in a desirable manner in terms of operating efficiency, and it is not possible to bring out sufficient ■・variable effects.
There was a problem that the operation was complicated.

(発明の目的) それゆえに、この発明の目的は、上記従来技術の問題点
を解消し、圧縮比が大きく変化する運転条件下において
運転効率上置も望ましい態様で内部容積比V、を自動的
に変化させることができて、動力ロスをほとんど生じる
ことがないスクリュー圧縮機の制御方法を提供づ゛ルー
とである。
(Objective of the Invention) Therefore, the object of the present invention is to solve the problems of the prior art described above, and automatically adjust the internal volume ratio V in a manner that is desirable for improving operating efficiency under operating conditions where the compression ratio changes greatly. The purpose of the present invention is to provide a control method for a screw compressor that can be changed to the desired speed and causes almost no power loss.

(目的を達成するためのY段) 上記目的を達成するため、この発明によるスクリュー圧
縮機のυ制御方法i二13いては、スクリ1−圧縮機の
内部容積比を連続的に変化させるための内部容積比可変
機構と、圧縮比の増減を検知jするための圧縮比検知手
段とを設は、圧縮比検知手段により検知した圧縮比の増
減幅が所定1山以−口片;:したときに内部容積比可変
機構を所定時間だけ駆動して、圧縮比が増加傾向にある
ときに1.1内部盲積比を大きくし、圧縮比が減少傾向
にあるときIこは内部容積比を小さくするようにしてい
る。
(Y stage for achieving the objective) In order to achieve the above objective, the screw compressor υ control method according to the present invention i213 is a method for continuously changing the internal volume ratio of the screw compressor. The internal volume ratio variable mechanism and the compression ratio detection means for detecting an increase or decrease in the compression ratio are installed when the range of increase or decrease in the compression ratio detected by the compression ratio detection means is greater than or equal to a predetermined value. The internal volume ratio variable mechanism is driven for a predetermined period of time to increase the 1.1 internal dead volume ratio when the compression ratio tends to increase, and to decrease the internal volume ratio when the compression ratio tends to decrease. I try to do that.

(実施例) 第1図は、この発明によるスクリューn−縮瑯の制御方
法の一実施例を示す説明図である。潤滑11ttを用い
た油冷式のスクリュー圧縮機11は、吸込配管12と吐
出圧力配管13との間に介1申され(配設されており、
主モータ14により駆動されイ′、吸込配管12からガ
スを吸込圧縮して吐出1にカ配管13に送り出す。潤滑
油系統は油回収器15および油ポンプ16を含んで構成
されており、吐出圧力配管13から油回収器15に回収
された潤滑油は、油ポンプ16の動きにより再びスクリ
ュー圧縮機11へと戻されて循環使用される。
(Embodiment) FIG. 1 is an explanatory diagram showing an embodiment of the screw n-folding control method according to the present invention. An oil-cooled screw compressor 11 using lubrication 11tt is interposed (arranged) between a suction pipe 12 and a discharge pressure pipe 13.
Driven by the main motor 14, gas is sucked in from the suction pipe 12, compressed, and sent to the gas pipe 13 as a discharge 1. The lubricating oil system includes an oil recovery device 15 and an oil pump 16, and the lubricating oil recovered from the discharge pressure piping 13 to the oil recovery device 15 is returned to the screw compressor 11 by the movement of the oil pump 16. Returned and used for circulation.

スクリュー圧縮機11は内部容積比viを連続的に可変
し得るように構成されており、そのための内部容積比可
変線描として、例えば図示しない内部容積比調整用のス
ライド可能な調節弁(以下V;調節弁という)を有して
いる。そしてこの■i調節弁を油圧シリンダ17により
スライド駆動して、応じて内部容積比を連続的に変化さ
せるようにしている。
The screw compressor 11 is configured to be able to continuously vary the internal volume ratio vi, and as an internal volume ratio variable line for this purpose, for example, a slidable control valve (hereinafter referred to as V) for adjusting the internal volume ratio (not shown) is used. control valve). This control valve (i) is slid by a hydraulic cylinder 17 to continuously change the internal volume ratio accordingly.

油圧シリンダ17は、油圧シリンダ駆動用配管18、四
方電磁弁19および流量調整弁20を介1ノで上記潤滑
油系統に接続されており、四方電磁弁1つの切換に応じ
て油の流れへ向を適宜変化させて油圧シリンダ17に油
圧をかり、油圧シリンダ17のピストンに係合された上
記図示()ないVi調節弁を任意の位置に制御するよう
にしでいる。
The hydraulic cylinder 17 is connected to the lubricating oil system via a hydraulic cylinder drive piping 18, a four-way solenoid valve 19, and a flow rate adjustment valve 20, and the direction of the oil flow is changed depending on the switching of one of the four-way solenoid valves. is applied to the hydraulic cylinder 17 to control the Vi control valve (not shown), which is engaged with the piston of the hydraulic cylinder 17, to an arbitrary position.

このときVi調節ブ↑を駆動する速さは、流量調整弁2
0を適当(、−操作することによって変化させることが
できる。油圧シリンダ17の駆動に用いた油は、リター
ン配゛I≧21を通じて吸込配管12へと導いて、再利
用に供する。
At this time, the speed at which the Vi adjustment valve ↑ is driven is determined by the flow rate adjustment valve 2.
The oil used to drive the hydraulic cylinder 17 is guided to the suction pipe 12 through the return pipe I≧21 and is reused.

いま、吸込圧力h: <Jぽ一定の場合全想定して、圧
縮比の増減を検知するための圧縮比検知手段として吐出
圧力配管13に圧力発信器22を添設し、スクリュー圧
縮機11の吐出圧力を4〜20mA程疫の電流値に変換
して演算装置23に入力し゛(いる。演算装「23は、
入力された電′7N、値(すなわち吐出圧力) tJX
縫づいて圧縮比の増減4知り、その増減幅が所定値以上
に達すれば四方電磁弁1つを切換えるjζ二υ)の指令
信号を出力する。これにより油圧シリンダ17が駆動さ
れて上記図示しないV、調節弁がスライド移動され、ス
クリュー圧縮機11の内部容積比が刻々変化される。
Now, assuming that the suction pressure h: < J po is constant, a pressure transmitter 22 is attached to the discharge pressure piping 13 as a compression ratio detection means for detecting an increase or decrease in the compression ratio, and the pressure of the screw compressor 11 is The discharge pressure is converted into a current value of about 4 to 20 mA and inputted to the arithmetic unit 23.
Input voltage '7N, value (i.e. discharge pressure) tJX
It knows whether the compression ratio increases or decreases, and when the increase or decrease reaches a predetermined value or more, it outputs a command signal to switch one four-way solenoid valve. As a result, the hydraulic cylinder 17 is driven, the V and control valves (not shown) are slid, and the internal volume ratio of the screw compressor 11 is changed every moment.

第1図の演算装置23は例えばマイクロプロセッサを用
いて構成され、そこにでは例えば第2図のフローチャー
トにしたがって処理が実行される。
The arithmetic unit 23 in FIG. 1 is configured using, for example, a microprocessor, and processes are executed therein, for example, according to the flowchart in FIG. 2.

まずステップS1で時シIJ Tにおける田川圧力[〕
d1をサンプリングして入力し、続いてステップS2で
へT秒後の吐出圧力Pd2をサンプリングして入力する
。そしてステップS3で、両者の差ΔP6 = l P
 dlP 621       ・・・(1)を演算す
る。いま吸込圧力PSがほぼ一定で吐出圧力Pdのみが
刻々変化している場合(例えば第6図の都市ガスホルダ
にガスを充填する場合)を想定すると、(1)式の△P
dは圧縮比の増減を表わしていると考えることができる
First, in step S1, the Tagawa pressure at IJT []
d1 is sampled and input, and then, in step S2, the discharge pressure Pd2 after T seconds is sampled and input. Then, in step S3, the difference between the two ΔP6 = l P
dlP 621 ...(1) is calculated. Assuming that the suction pressure PS is almost constant and only the discharge pressure Pd is changing moment by moment (for example, when filling the city gas holder with gas in Figure 6), △P in equation (1)
It can be considered that d represents an increase or decrease in the compression ratio.

次にステップS4で、上述のようにして求めたΔF〕1
1が予め適当に設定された値△P8よりも大きいかどう
か、吉い換えれば圧縮比の増減が所定値以上に達したか
どうかを判別する。ΔPd〈△Paすなわち圧縮比の増
減が所定値に達していなけれ)S、再びステップS2へ
と戻ってΔT秒後の吐出圧力P2をサンプリングし、上
述と同様の動作を繰返して行なう。
Next, in step S4, ΔF]1 obtained as described above
1 is larger than a value ΔP8 appropriately set in advance, or in other words, it is determined whether the increase or decrease in the compression ratio has reached a predetermined value or more. ΔPd (unless ΔPa, that is, the increase/decrease in the compression ratio has not reached a predetermined value), the process returns to step S2, samples the discharge pressure P2 after ΔT seconds, and repeats the same operation as described above.

そして△P d>△P、となった時点でステップS4か
らステップS5へと進み、Pd2〉Pd1がどうか、否
い換えれば圧縮比が増加傾向にあるのがどうかを判別づ
゛る。PIN〉Pd2であれば、圧縮比は増加傾向にあ
るので、ステップS5からステップS6へと進んでV、
:A節介ロード信号を四方電磁弁19に対して所定時間
だけ出力し、これにより油圧シリンダ17をロード側に
所定時間駆動して、Vi調即弁をロード方向く内部容積
比を大きくする方向)に所定距離だけスライド移動させ
る。
When ΔP d>ΔP, the process proceeds from step S4 to step S5, and it is determined whether Pd2>Pd1, or in other words, whether the compression ratio is on an increasing trend. If PIN>Pd2, the compression ratio tends to increase, so the process proceeds from step S5 to step S6, and V,
: Outputs the A-articulating load signal to the four-way solenoid valve 19 for a predetermined period of time, thereby driving the hydraulic cylinder 17 toward the load side for a predetermined period of time, and moving the Vi adjustment immediate valve in the load direction to increase the internal volume ratio. ) by a specified distance.

またPd2〈Pd1であれば、圧縮比は減少傾向にある
ので、ステップS5から87へと進んでvi調面弁アン
O−ド信号を四方電磁弁19に対して所定時間だ()出
力し7、これにより油圧シリンダ17をアンロード側に
所定時間駆動して、V1調節弁を7ンロード方向(内部
′?1積比を小さくする方向)に所定距離だけスライド
移動させる。その後は再びステップS1へと戻って上述
の動作を繰り返し、v1調節弁は次の命令がくるまでそ
の位置に停止させておく。
If Pd2<Pd1, the compression ratio is decreasing, so the process proceeds from step S5 to 87, where a vi leveling valve un-O-do signal is output to the four-way solenoid valve 19 for a predetermined period of time (). As a result, the hydraulic cylinder 17 is driven toward the unloading side for a predetermined period of time, and the V1 control valve is slid by a predetermined distance in the unloading direction (in the direction of decreasing the internal volume ratio). Thereafter, the process returns to step S1 to repeat the above-mentioned operation, and the v1 control valve is kept at that position until the next command is received.

このよ・)な動作を繰り六寸ことによって、スクリュー
圧縮機11の内部1〜積比V 、は、第S3図(a)に
示4゛ように階段状に変化する。第3図(a)は圧縮比
が増加傾向にある場合を示したものであり、点線で示し
た曲線Aは理論的に最適な内部容積比を表わし、一点鎖
線で示した曲線Bは上述の制御によって得られる平均値
どしての内部容積比を表わしている。好ましくは第3図
(b)に示すように、A、Bがほぼ一致するように上記
△P、の値およびロード/アンロード信号の出力時間を
設定しておく。
By repeating this operation, the internal volume ratio V of the screw compressor 11 changes stepwise as shown in FIG. S3(a). Figure 3 (a) shows the case where the compression ratio tends to increase. Curve A shown by the dotted line represents the theoretically optimal internal volume ratio, and curve B shown by the dashed-dot line represents the above-mentioned internal volume ratio. It represents the internal volume ratio as an average value obtained by control. Preferably, as shown in FIG. 3(b), the value of ΔP and the output time of the load/unload signal are set so that A and B almost match.

この結果、例えば第3図のように制御を行なった場合に
は、理論的に最適の内部容積比の増加に追縦して実際の
内部容積比が時々刻々増加していくので、第4図の斜線
部分に示すように圧縮不足による動力ロスがほとんど生
じなくなる。従来の■・可変タイプのスクリュー圧縮機
を用いた場合であれば、たとえ手動にて適当なViへ随
時スライド弁を設定し直したとしても、第4図の点線部
分で示す程度の動力ロスが平均的に生じることは避けら
れない。
As a result, when control is performed as shown in Figure 3, for example, the actual internal volume ratio increases moment by moment following the increase in the theoretically optimal internal volume ratio, so as shown in Figure 4. As shown in the shaded area, there is almost no power loss due to insufficient compression. If you use a conventional variable type screw compressor, even if you manually reset the slide valve to an appropriate Vi at any time, there will be no power loss as shown by the dotted line in Figure 4. It is inevitable that it will occur on average.

ところで上述の説明においては、吸込圧力PSがぼぼ一
定で吐出圧力P、のみが刻々変化する場合を想定して、
圧縮比の増減を知るために吐出圧力Pdの変化のみを検
知する実施例について説明した。しかしながら吐出圧力
Pdと同時に吸込+r力P も刻々変化する場合も考え
られ、この場合には第1図の吸込配管12にも例えば圧
力発信器を添設して吸込圧力P8を検知するようにして
もよい。そして吐出圧力Pdおよび吸込圧力PSを同時
にサンプリングしてPd/P、の値をfill々計算す
れば圧縮比の増減を知ることができるので、P、、、’
P、の値を上記P、の代りの変数に利用して、上述と同
様の制御方法で処理を実行するので・ある。また吐出圧
力P、がほぼ一定で吸込圧力P、のみが変化する場合に
は、吸込圧力P、のみを検知して上述と同様の制御を行
なうこともできる。
By the way, in the above explanation, it is assumed that the suction pressure PS is almost constant and only the discharge pressure P changes from moment to moment.
An embodiment has been described in which only a change in the discharge pressure Pd is detected in order to know the increase or decrease in the compression ratio. However, it is conceivable that the suction +r force P changes moment by moment at the same time as the discharge pressure Pd, and in this case, a pressure transmitter, for example, may be attached to the suction pipe 12 in Fig. 1 to detect the suction pressure P8. Good too. Then, if the discharge pressure Pd and suction pressure PS are sampled simultaneously and the value of Pd/P is calculated for each fill, it is possible to know the increase or decrease in the compression ratio, so P,,,'
The value of P is used as a variable in place of P, and the process is executed using the same control method as described above. Furthermore, if the discharge pressure P is substantially constant and only the suction pressure P changes, it is also possible to detect only the suction pressure P and perform the same control as described above.

以上の場合においても、上述の実施例と同様の効果を奏
する。
Even in the above case, the same effects as those of the above-mentioned embodiments can be achieved.

(発明の効果) 以上説明したように、この発明によれば、圧縮比の増減
を検知してその増減幅が所定値以上に達したときに内部
容積比可変機構を所定時間だt−J駆動して圧縮比の増
減に応じて内部容積比を変化させるようにしたので、動
力ロスをほとんど生じることなく、スクリュー圧縮機を
常に効率良く運転することができる。また煩雑なスライ
ド弁調整操作を行なわなくて済み、電磁弁等の寿命が大
幅に延びる。
(Effects of the Invention) As explained above, according to the present invention, when an increase or decrease in the compression ratio is detected and the range of increase or decrease reaches a predetermined value or more, the internal volume ratio variable mechanism is driven t-J for a predetermined period of time. Since the internal volume ratio is changed according to an increase or decrease in the compression ratio, the screw compressor can be operated efficiently at all times with almost no power loss. Further, there is no need to perform complicated slide valve adjustment operations, and the life of solenoid valves etc. is greatly extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明によるスクリュー圧縮機の制御方法の
一実施例を示す説明図、第2図はこの発明による制御処
理を示すフローチャート、第3図はこの発明による制御
処理を実行した場合の内部容積比の変化を示す説明図、
第4図はこの発明による動力ロスの減少を示づ説明図、
第5図は従来のスクリュー圧縮機における動力ロスを示
す説明図、第6図は都市ガス圧送ラインを示す説明図で
ある。 11・・・スクリュー圧縮機、12・・・吸込配管13
・・・吐出圧力配管、17・・・油圧シリンダ1つ・・
・四方電磁弁、20・・・流量調整弁22・・・圧力発
信器、23・・・演算装置第2図 第3図 時間 時間
FIG. 1 is an explanatory diagram showing an embodiment of the control method for a screw compressor according to the present invention, FIG. 2 is a flowchart showing the control process according to the present invention, and FIG. 3 is an internal view when the control process according to the present invention is executed. An explanatory diagram showing changes in volume ratio,
FIG. 4 is an explanatory diagram showing the reduction in power loss by this invention.
FIG. 5 is an explanatory diagram showing power loss in a conventional screw compressor, and FIG. 6 is an explanatory diagram showing a city gas pressure transmission line. 11...Screw compressor, 12...Suction pipe 13
...Discharge pressure piping, 17...1 hydraulic cylinder...
・Four-way solenoid valve, 20...Flow rate adjustment valve 22...Pressure transmitter, 23...Arithmetic device Fig. 2 Fig. 3 Time Time

Claims (4)

【特許請求の範囲】[Claims] (1)スクリュー圧縮機の内部容積比を連続的に変化さ
せるための内部容積比可変機構と、圧縮比の増減を検知
するための圧縮比検知手段とを備え、前記圧縮比検知手
段により検知した圧縮比の増減幅が所定値以上に達した
ときに前記内部容積比可変機構を所定時間だけ駆動して
、圧縮比が増加傾向にあるときには内部容積比を大きく
し、圧縮比が減少傾向にあるときには内部容積比を小さ
くするようにしたことを特徴とする、スクリュー圧縮機
の制御方法。
(1) The screw compressor is equipped with an internal volume ratio variable mechanism for continuously changing the internal volume ratio, and a compression ratio detection means for detecting an increase or decrease in the compression ratio, and the compression ratio detection means detects an increase or decrease in the compression ratio. When the range of increase/decrease in the compression ratio reaches a predetermined value or more, the internal volume ratio variable mechanism is driven for a predetermined period of time, and when the compression ratio tends to increase, the internal volume ratio is increased, and the compression ratio tends to decrease. A control method for a screw compressor, characterized in that the internal volume ratio is sometimes reduced.
(2)前記内部容積比可変機構は、内部容積比を調整す
るためのスライド可能な調節弁と、該調節弁を駆動する
ための油圧シリンダとを含む、特許請求の範囲第1項記
載のスクリュー圧縮機の制御方法。
(2) The screw according to claim 1, wherein the internal volume ratio variable mechanism includes a slidable control valve for adjusting the internal volume ratio, and a hydraulic cylinder for driving the control valve. Compressor control method.
(3)前記圧縮比検知手段は吐出圧力の増減を検知する
ための吐出圧力検知手段を含み、前記圧縮比の増減は前
記検知した吐出圧力の増減に基づいて定める、特許請求
の範囲第1項記載のスクリュー圧縮機の制御方法。
(3) The compression ratio detection means includes a discharge pressure detection means for detecting an increase or decrease in the discharge pressure, and the increase or decrease in the compression ratio is determined based on the detected increase or decrease in the discharge pressure. The described method for controlling a screw compressor.
(4)前記圧縮比検知手段は吐出圧力の増減を検知する
ための吐出圧力検知手段と、吸込圧力を検知するための
吸込圧力検知手段とを含み、前記圧縮比の増減は前記検
知した吐出圧力および吸込圧力の比の増減に基づいて定
める、特許請求の範囲第1項記載のスクリュー圧縮機の
制御方法。
(4) The compression ratio detection means includes a discharge pressure detection means for detecting an increase or decrease in the discharge pressure, and a suction pressure detection means for detecting the suction pressure, and the increase or decrease in the compression ratio is determined by the detected discharge pressure. The method for controlling a screw compressor according to claim 1, wherein the control method is determined based on an increase or decrease in the ratio of the suction pressure and the suction pressure.
JP22736585A 1985-10-11 1985-10-11 Control method for screw compressor Pending JPS6287686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22736585A JPS6287686A (en) 1985-10-11 1985-10-11 Control method for screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22736585A JPS6287686A (en) 1985-10-11 1985-10-11 Control method for screw compressor

Publications (1)

Publication Number Publication Date
JPS6287686A true JPS6287686A (en) 1987-04-22

Family

ID=16859659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22736585A Pending JPS6287686A (en) 1985-10-11 1985-10-11 Control method for screw compressor

Country Status (1)

Country Link
JP (1) JPS6287686A (en)

Similar Documents

Publication Publication Date Title
US6619062B1 (en) Scroll compressor and air conditioner
US6287083B1 (en) Compressed air production facility
US7399165B2 (en) Pump unit with multiple operation modes
JP4627492B2 (en) Oil-cooled screw compressor
US11118328B2 (en) Construction machine
EP1241356A3 (en) Drive circuit for fluid motor
JP3922577B2 (en) Double-rotating hydraulic pump device
JPS6287686A (en) Control method for screw compressor
JPH11280643A (en) Hydraulic pump unit for automatic transmission
US6474083B2 (en) Variable displacement compressor with capacity control device
JP2003166505A (en) Method and device for returning leakage oil of hydraulic motor
JP2656285B2 (en) Air conditioner
JPS6287687A (en) Control method for screw compressor
EP1687163B1 (en) Lowering of refrigerant emissions by cycling of a variable displacement compressor
JP4593898B2 (en) Engine-driven compressor discharge pressure changing method and engine-driven compressor capable of changing discharge pressure
JPS6215500Y2 (en)
KR0129980Y1 (en) Full power hydraulic controlling apparatus for excavator
JP4344213B2 (en) Engine-driven compressor discharge pressure changing method and engine-driven compressor capable of changing discharge pressure
WO2024014083A1 (en) Hydraulic system
US20240035711A1 (en) Two-stage compressor having variable speed first stage
JPS6287688A (en) Control method for screw compressor
JP2664702B2 (en) Air conditioner
JP2009007975A (en) Inverter drive control method for hydraulic pump
JPS6246870Y2 (en)
JPH04325784A (en) Pump absorbing horsepower control method by temperature