JPS6287673A - Wind mill - Google Patents

Wind mill

Info

Publication number
JPS6287673A
JPS6287673A JP22945385A JP22945385A JPS6287673A JP S6287673 A JPS6287673 A JP S6287673A JP 22945385 A JP22945385 A JP 22945385A JP 22945385 A JP22945385 A JP 22945385A JP S6287673 A JPS6287673 A JP S6287673A
Authority
JP
Japan
Prior art keywords
air
wind turbine
blades
wind
outer blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22945385A
Other languages
Japanese (ja)
Inventor
Joji Watakabe
渡壁 城治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22945385A priority Critical patent/JPS6287673A/en
Publication of JPS6287673A publication Critical patent/JPS6287673A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To smoothly rotate a wind mill so as to improve the absolute value of a lift generated in outer blades in a wide speed range of air, by forcedly generating an air stream facing to the outer blades of the wind mill and accelerating the outer blades by said air stream. CONSTITUTION:Plural ouater blades 4, extending in the same direction with a rotary shaft 1, are provided around the vertical rotary shaft 1, and lengthwise direction both end sides of these outer blades 4 are mounted to the rotary shaft 1 by horizontal blades 6 extending in the radial direction. Externally mounted baffles 5A, 5A are opposed in the outside of said horizontal blades 6, and an air stream is supplied to said externally mounted baffles 5A through ducts 7 from a feed air source 7A of exhaust by a warehouse, building, etc. or of a separately provided air collector and the like. And each air stream, being delivered to the horizontal blades 6 from the externally mounted baffles 5A, 5A, further acts on the outer blades 4 to accelerate a wind mill.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は風力エネルギーを効率よく回転エネルギーに変
換することができるNL車に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an NL vehicle that can efficiently convert wind energy into rotational energy.

[従来の技術] 風車の〜形式として、軸心を風の進行方向に交差(垂直
交差)させて配置する垂直軸型風車が知られている。(
例えば、オーム社発行、風力エネルギー読本、第37頁
など) この垂直型風車にも、パドル型、サポニウス型、ダリウ
ス型、ジャイロミル型など各種のものがあるが、パドル
型やサポこウス型は、高速回転力を得ることができず、
高効率風車には不向きである。ダリウス型やジャイロミ
ル型の風重j寸、帯状ないし長方形板状の五を用い、各
賞のN4’方向両端が回転軸に固結されたものであり、
ベト)1/型、サポニウス型の風車に比べ高速回転を得
ることができ、効率が高い。
[Prior Art] As a type of wind turbine, a vertical shaft type wind turbine is known in which the shaft center is arranged to intersect (perpendicularly intersect) with the direction of wind travel. (
(For example, published by Ohmsha, Wind Energy Reader, p. 37) There are various types of vertical wind turbines such as paddle type, saponius type, Darius type, and gyro mill type. , it is not possible to obtain high-speed rotational force,
Not suitable for high-efficiency wind turbines. Darius type or gyro mill type wind weight j dimension, belt-shaped or rectangular plate-shaped five are used, and both ends of each award in the N4' direction are fixed to the rotating shaft,
It can achieve high speed rotation and is highly efficient compared to the 1/type and Saponius type wind turbines.

[発明が解決しようとする問題点] ダリウス型やジャイロミル型の垂直軸風車は。[Problem to be solved by the invention] Darius type and gyro mill type vertical axis wind turbines.

風が翼に当ることにより生ずる揚力の回転方向の分力に
より回転力を得る原理となっているのであるが、この揚
力については、是の回転位相により変動する現象があり
、そのため回転が必ずしも滑らかではないという問題が
生ずる。また、風速が小さいと回転力を取り出しにくい
The principle is to obtain rotational force from the rotational component of the lift force generated when the wind hits the blade, but there is a phenomenon in which this lift force fluctuates depending on the rotational phase of the wing, so the rotation is not necessarily smooth. The problem arises that this is not the case. Also, if the wind speed is low, it is difficult to extract rotational power.

[問題点を解決するための手段] 本発明の風車は、外翼に向う空気流を強制的に生起させ
、この空気流によって外翼を加速するための外翼加速手
段を備えて構成されている。この外翼は、是手方向両端
がそれぞれ回転軸に固結されて軸対称配置されており、
例えば前述のダリウス型やジャイロミル型の翼構成とさ
れる。外l加速手段としては、回転軸に沿って風車内に
強制的に導いた送気を放射方向に流出させる場合と、回
転軸に沿って風車内に強制的に導いた負圧を外翼内方に
作用させることにより外翼外部空気を反放射方向に流入
させる場合とがある。
[Means for Solving the Problems] The wind turbine of the present invention includes an outer blade accelerating means for forcibly generating an air flow toward the outer blades and accelerating the outer blades by this air flow. There is. This outer wing is arranged axially symmetrically with both ends of the outer wing fixed to the rotating shaft, respectively.
For example, the wing configuration is the aforementioned Darius type or gyro mill type. As external acceleration means, there are two methods: one is to force the air into the wind turbine along the rotation axis to flow out in the radial direction, and the other is to force the negative pressure into the wind turbine along the rotation axis to flow inside the outer blades. In some cases, air outside the outer wing is caused to flow in a counter-radial direction by acting in the opposite direction.

〔作用〕[Effect]

前述のように、ダリウス型やジャイロミル型の垂直軸5
風車は、翼に発生する揚力の回転方向の分力により回転
力を得るのであるが、本発明の風車においては、外翼加
速手段によって強制的に外気に向う気流が形成され(外
翼内方に送気が導かれる場合は送気が放射方向に流れ出
し、外気内方に負圧が導かれる場合は外翼外周の外気が
反放射方向に魔れ込み)、この強制的に生起された気流
によって外翼に発生する揚力の絶対値の向ヒが図れる。
As mentioned above, the vertical axis 5 of Darius type and gyro mill type
A wind turbine obtains rotational force from the rotational component of the lift force generated on the blades, but in the wind turbine of the present invention, an airflow toward the outside air is forcibly formed by the outer blade accelerating means (inward the outer blades). If the air is guided to the air, the air will flow out in the radial direction, and if negative pressure is guided inward to the outside air, the outside air around the outer wing will flow in the counter-radial direction), and this forced air flow This makes it possible to improve the absolute value of lift generated on the outer wing.

[実施例] 以丁図面を参照して実施例について説明する。[Example] Examples will now be described with reference to the drawings.

第1図は本発明の実施例に係る風車の縦断面図、第2図
は第1図の■−■線に沿う断面図である。なお、第1図
は第2図のI−I線に沿う断面を示している。
FIG. 1 is a longitudinal cross-sectional view of a wind turbine according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. Note that FIG. 1 shows a cross section taken along line II in FIG. 2.

符号1は回転軸であり、軸受2.3によって枢止されて
いる。この回転軸lの周りには回転軸と同方向に延びる
外翼4が設けられており、外翼4は、その長子方向両端
側が放射方向に延びる水平翼6によって、またその長手
方向中央部が円盤状の内装パフフル5によってそれぞれ
回転軸1に取り付けられている。なお、第2図に示すよ
うに、この外翼4は完型断面形状を有しており、また本
実施例では4枚取り刊けられている。第3図は水平翼6
の横断面図を示しており、この図から解るように水平翼
6も外χ4と同様に迩型断面形状を有し、4枚取り付け
られている。
Reference numeral 1 designates a rotating shaft, which is pivoted by a bearing 2.3. An outer wing 4 is provided around the rotation axis l and extends in the same direction as the rotation axis. Each is attached to the rotating shaft 1 by a disc-shaped interior puffer 5. As shown in FIG. 2, this outer wing 4 has a complete cross-sectional shape, and in this embodiment, four pieces are provided. Figure 3 shows horizontal wing 6
As can be seen from this figure, the horizontal blades 6 also have a cylindrical cross-sectional shape like the outer χ4, and four blades are attached.

符号7は回転軸lに沿って送気を導入するための送気ダ
クトであって、工場、倉庫、建物等の排気用エアダクト
から排出される排気、又は別に設(tられた集風装置か
らの風などの送気が送気源7Aによって導かれるように
なっている。符号5Aは水七翼6に接近して配置され、
送気ダクト7の開口部が支持されている外装パフフルで
あって、回転軸l、外翼4、水平翼6からなる回転体の
軸方向側を閉塞状態として送気ダクト7からの送気を回
転軸1に沿って効率よく導くようになっている。ダクト
7の開口部は同心円筒形状でも、あるいは複数の分岐ダ
クトが1状に配置されたもされるようなものであればそ
の構造はどのようなものでもよい。なお1図において上
下の水平翼6同士はそれぞれ迎角が逆となるように取り
付けられており、送気ダクト7から回転軸lに沿って送
気が導入されるとともに回転軸lの正転方向に水平翼6
に揚力を発生させるようになっている。また回転軸1に
沿って導入された送気は内装バッフル5によって放射方
向に向うようになり、この送気が外翼4に当たって外翼
を増速させるように作用する。即ち内装バッフル5は回
転軸1に沿って導入された送気を外気に向わせるガイド
部として機能している。
Reference numeral 7 denotes an air supply duct for introducing air along the rotation axis l, and the exhaust air is discharged from an exhaust air duct of a factory, warehouse, building, etc., or from a separately installed air collection device. Air such as wind is guided by an air supply source 7A.The reference numeral 5A is arranged close to the seven water wings 6,
It is an exterior puffer in which the opening of the air supply duct 7 is supported, and the axial side of the rotating body consisting of the rotating shaft l, the outer blades 4, and the horizontal blades 6 is closed, and the air is not supplied from the air supply duct 7. It is designed to be efficiently guided along the rotation axis 1. The opening of the duct 7 may have any structure as long as it has a concentric cylindrical shape or a plurality of branch ducts arranged in one shape. In Fig. 1, the upper and lower horizontal blades 6 are installed so that their angles of attack are opposite to each other, and air is introduced from the air duct 7 along the rotation axis l, and also in the normal rotation direction of the rotation axis l. horizontal wing 6
It is designed to generate lift force. Further, the air introduced along the rotation axis 1 is directed in a radial direction by the internal baffle 5, and this air hits the outer blade 4 and acts to increase the speed of the outer blade. That is, the internal baffle 5 functions as a guide portion that directs the air introduced along the rotating shaft 1 to the outside air.

符号8は回転軸1に連結された発電機であるが、発電機
の代りにポンプ、コンプレッサ、タービン等を連結して
もよい。
Reference numeral 8 is a generator connected to the rotating shaft 1, but a pump, compressor, turbine, etc. may be connected instead of the generator.

なお前記実施例において内装バー2フル5を回転軸lに
固着し、回転軸1と一体回転するように構成しているが
、ベアリング等を介して回転軸lに組付け1回転軸と一
体に回転しないようにするこ)−f4でキ ごの上らじ
す鉛lギ由鈷バー、 711= Fi ir+ l’i
il転に消費されるエネルギを有効に活用できる。さら
にまた前記実施例では内装バッフル5に送気の向う方向
を変換させる機能をもたせているが、」二下両方向から
導入された送気は互いに緩衝し合ってその方向を放射方
向に向けるので、あえて内装パフフル5を設けなくても
自ずと送気は放射方向に向きある程度の外翼加速効果を
得ることが可能である。また水平翼6の迎角を翼長方向
に異ならしめて水平質6を通った送気が放射方向に送ら
れるようにすることも可能である。
In the above embodiment, the interior bar 2 full 5 is fixed to the rotating shaft 1 and configured to rotate integrally with the rotating shaft 1. 711 = Fi ir + l'i
The energy consumed in turning can be effectively utilized. Furthermore, in the embodiment described above, the internal baffle 5 has a function of changing the direction of the air supply, but since the air introduced from both directions buffers each other and directs the direction in the radial direction. Even if the interior puffful 5 is not provided, the air is naturally oriented in the radial direction and a certain degree of outer blade acceleration effect can be obtained. It is also possible to make the angle of attack of the horizontal blade 6 different in the blade span direction so that the air passing through the horizontal blade 6 is sent in the radial direction.

第4図は本発明の別の実施例に係る風車の構成を示す縦
断面図である。この第4図の実施例においては、トロボ
スキニン(縄飛びの綱)形状の外i14が用いられ1回
転時に外翼に遠心力が作用しても引張応力のみが外翼に
作用し、曲げ変形が外翼14に生じない構成となってい
る。
FIG. 4 is a longitudinal sectional view showing the configuration of a wind turbine according to another embodiment of the present invention. In the embodiment shown in Fig. 4, the outer i14 having a troboskinin (jumping rope) shape is used, and even if centrifugal force is applied to the outer wing during one rotation, only tensile stress acts on the outer wing, and bending deformation is caused by the outer wing. The structure is such that it does not occur on the wing 14.

また外翼の上下両端部の水平に近い状態となっている回
転軸近傍領域14Aは、途中で捩られて上方に反り返り
、送気ダクト7からの送気によって外翼正転方向の揚力
が生ずるようになっている。なお外翼の回転軸近傍領域
14Aを外i14と別体の翼部材で構成し、迎角を第3
図のように設定して途中で連結するようにしてもよい、
その他の構成は第3図と同様であるので、同一部材に同
一符号を付してその説明を省略する。
In addition, the region 14A near the rotation axis, which is in a nearly horizontal state at both the upper and lower ends of the outer wing, is twisted in the middle and warped upward, and the air supplied from the air supply duct 7 generates a lift force in the normal rotation direction of the outer wing. It looks like this. Note that the region 14A near the rotation axis of the outer wing is configured with a wing member separate from the outer i14, and the angle of attack is set to the third
You can also set it up as shown in the figure and connect it in the middle.
The rest of the structure is the same as that in FIG. 3, so the same members are given the same reference numerals and their explanations will be omitted.

また、第2図にて2点鎖線で示すように、外翼4には半
径方向に対し斜め方向となる仰角をとらせても良い。こ
の仰角は、かなり大きな角度(例えばαが60〜806
)としてもよい。
Furthermore, as shown by the two-dot chain line in FIG. 2, the outer wing 4 may have an elevation angle that is oblique to the radial direction. This elevation angle is a fairly large angle (for example, α is 60 to 806
).

次に第5図を参照して、2F記実施例に係る風・トの作
動について説明する。
Next, with reference to FIG. 5, the operation of the wind/torque according to the embodiment described in 2F will be explained.

第5図は上記実施例に係る風車を回転軸が鉛直方向とな
るように設置した場合の平面構成を示す概略的な断面図
である。第5図においてWlは地面と平行方向に浣れる
風である。この風W+が外翼4に当たることにより回転
軸1が回転する。また風WIとは別に、送気ダクト7か
ら風車の軸心に沿って送気が導入される。この風は、内
装バ+/フル5Aによっであるいは水■Iによって放射
方向に分散され、風W2となる。外翼4には、前記の風
WIと、この放射方向に吹き出される風W2とが合流し
て合流風W3となる。また、翼4には、その回転により
相対風W4が作用しているので、!4に作用する作用風
W5は合流風W3と相対風W4とのベクトル和となり、
この作用風W5により揚力Fが発生する。さらに送気ダ
クト7からの送気により水平質6をして揚力ΔFを発生
させる。しかして、本実施例においては、放射方向の風
W2が存在するので、かかる風W2の生じない従来例に
比べて作用風W5が大きくなり、従って発生する揚力F
も従来例と比べて大きなものとなる。さらに水平質6に
よる揚力ΔFが付加されるのでかかる揚力ΔFの生じな
い従来例に比べて回転軸1を回転させる方向に働く総揚
力も従来例と比べて大きなものとなる。
FIG. 5 is a schematic cross-sectional view showing the planar configuration of the wind turbine according to the above embodiment when the wind turbine is installed so that the axis of rotation is in the vertical direction. In Fig. 5, Wl is the wind blowing in a direction parallel to the ground. When this wind W+ hits the outer blade 4, the rotating shaft 1 rotates. In addition to the wind WI, air is introduced from the air duct 7 along the axis of the wind turbine. This wind is dispersed in the radial direction by the internal bar +/full 5A or by the water I, and becomes wind W2. At the outer blade 4, the wind WI and the wind W2 blown in the radial direction merge to form a combined wind W3. Also, since the relative wind W4 is acting on the blade 4 due to its rotation,! The working wind W5 acting on the wind 4 is the vector sum of the combined wind W3 and the relative wind W4,
Lift force F is generated by this working wind W5. Further, the air supplied from the air supply duct 7 causes the horizontal plane 6 to generate a lift force ΔF. Therefore, in this embodiment, since the wind W2 in the radial direction exists, the working wind W5 becomes larger than in the conventional example in which such wind W2 does not occur, and therefore, the generated lift force F
is also larger than that of the conventional example. Furthermore, since the lift force ΔF due to the horizontal structure 6 is added, the total lift force acting in the direction of rotating the rotary shaft 1 is also larger than in the conventional example, compared to the conventional example in which such lift force ΔF does not occur.

また、外N4の迎角を、半径方向と非直角とする(例え
ば第2図の2点鎖線で示される)ようにすることにより
、揚力Fの方向を改善し、外翼4に発生する有効な仕事
量の改善が図れる。
In addition, by making the angle of attack of the outer wing 4 non-perpendicular to the radial direction (for example, as shown by the two-dot chain line in FIG. 2), the direction of the lift force F is improved, and the effective The amount of work can be improved.

外翼4に発生する揚力の回転方向の分布が平準化され、
外翼の回転が滑らかになるという作用も奏される。
The distribution of lift generated in the outer wing 4 in the rotational direction is equalized,
This also has the effect of smoothing the rotation of the outer blades.

なお、ifi記2つの実施例(第1図、第4図参照)で
は上下方向に対向させて送気ダクト7を設けるようにし
ているが、丘下方向のいずれか一方にのみ送気ダクト7
を設け、他方は外装バッフルにより風東内と外気との流
通を閉塞するようにしても同様の効果がある。
Note that in the two embodiments (see FIGS. 1 and 4), the air supply ducts 7 are provided facing each other in the vertical direction, but the air supply ducts 7 are provided only in one of the downward directions.
The same effect can be obtained even if the other side is provided with an exterior baffle to block the flow between the inside of the wind east and the outside air.

第6図は本発明の風車を大型ビルディングに適用した場
合の構成を示す斜視図である。符号20は高層ビルの本
体であって、左右の側面20a。
FIG. 6 is a perspective view showing the configuration when the wind turbine of the present invention is applied to a large building. Reference numeral 20 indicates the main body of the high-rise building, and the left and right sides 20a.

20bから両側方及び上ドにはみ出るように採風板21
が設けられ、採風板21の四囲をフ=〜ド部材22が取
り囲んでいる。採風板21の]一部には、開口23が開
設されており、高層ビル本体20の屋上中央部に設置さ
れたタービン室24へ向けて、風を導く仕切板25が設
置されている。
Air ventilation plate 21 protrudes from both sides and upper door from 20b.
is provided, and a food member 22 surrounds the ventilation plate 21 on all four sides. An opening 23 is opened in a part of the ventilation board 21, and a partition board 25 is installed to guide wind toward a turbine room 24 installed at the center of the rooftop of the high-rise building body 20.

なお、高層ビル本体20の屋上り面には、所定間部25
とこの屋根部26とによって通風部が区画形成されてい
る。
Note that there is a predetermined space 25 on the roof surface of the main body 20 of the high-rise building.
A ventilation section is defined by the roof section 26 and the roof section 26.

また、高層ビル本体20の他の側面20c、20d側に
は、フード部材27が左右の採風板21間に架は渡され
るようにして配設されており、この側面20c、20d
の上方部には、屋根部26、高層ビル本体20の屋上面
及び仕切板25によってダクト部28が形成されている
Further, on the other side surfaces 20c and 20d of the main body 20 of the high-rise building, a hood member 27 is disposed so as to extend between the left and right ventilation plates 21.
A duct part 28 is formed in the upper part of the roof part 26, the roof surface of the high-rise building main body 20, and the partition plate 25.

かかる構成の高層ビルにおいて、ビル壁面に当った風は
、該壁面に沿って上昇し、開口23又はダクト部28を
通ってタービン室24内に流れ込み、該タービン室z4
内に設置された本発明の風車によって、回転エネルギー
を出力させる。
In a high-rise building with such a configuration, the wind that hits the building wall rises along the wall, flows into the turbine room 24 through the opening 23 or the duct part 28, and flows into the turbine room z4.
Rotational energy is outputted by the wind turbine of the present invention installed inside.

なお、このような本発明の風車を利用した場合、暴風時
の風車の破損を防止するために、例えばダクト部28な
どに暴風減衰装置を設置するのが好ましい、暴風減衰装
置としては、例えば採風された風の通過部に、所定風速
以上の風が通過するときに立ち上がる立上がり翼を設置
すればよい。
In addition, when such a wind turbine of the present invention is used, it is preferable to install a storm damping device, for example, in the duct part 28, in order to prevent damage to the wind turbine during stormy winds. A rising wing that rises when wind passing at a predetermined wind speed or higher may be installed in the wind passing section.

本発明の風車によって取り出された動力は、発電機等に
直結してもよく、またギヤ、チェーン、ベルト等の適宜
の動力伝達機構成いは増減速機構を介して用途先に伝達
され、利用される。動力の用途としては、発電の他1例
えば大型屋外攪拌槽、揚水、熱発生装置等が挙げられる
The power extracted by the wind turbine of the present invention may be directly connected to a generator, etc., or it may be transmitted to the intended use via an appropriate power transmission structure such as gears, chains, belts, etc., or an increasing/decelerating mechanism. be done. In addition to power generation, the power may be used for, for example, large outdoor stirring tanks, water pumping, heat generation equipment, etc.

なお、前記実施例においては、送気源7Aによって送気
を風車内に導入し、これを放射方向に吹き出すように構
成しているが、送気源7Aに代えて滝等の高圧水のエゼ
クタ効果により負圧をつくり出す負圧源を用いて風車内
に負圧を導き、外翼4の周りの空気を反放射方向に流入
させ、この流入空気が外翼4に作用して外R4の揚力を
高めるようにしてもよい。
In the above embodiment, air is introduced into the wind turbine by the air source 7A and is blown out in the radial direction, but instead of the air source 7A, an ejector of high pressure water such as a waterfall is used A negative pressure source that creates negative pressure is used to introduce negative pressure into the wind turbine, causing air around the outer blades 4 to flow in a counter-radial direction, and this incoming air acts on the outer blades 4 to create lift on the outer R4. You may also try to increase the.

[発明の効果] 以上の説明から明らかな通り、本発明の風車によれば。[Effect of the invention] As is clear from the above description, according to the wind turbine of the present invention.

■ 低風速から高風速まで広い風速範囲で効率のよいエ
ネルギー変換を行うことが可能である。
■ It is possible to perform efficient energy conversion over a wide range of wind speeds, from low to high wind speeds.

■ 風車の回転が円滑であり、かつ高速回転できる。■ The windmill rotates smoothly and can rotate at high speed.

!少  翼の設計の自由度が広い。! Small: Wide degree of freedom in wing design.

■ 全体形状を小型にでき、また同一外形寸法における
出力が大きい。
■ The overall shape can be made smaller, and the output is larger with the same external dimensions.

等の効果を有する。It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る風車を示す縦断面図、第
2図は第1図■−■線に沿う断面図、第3図は水平χの
横断面図、第4図は別の実施例を示す縦断面図、第5図
は実施例に係る風車の作動説明図、第6図は本発明の風
車を高層ビルに適用した場合を説明する斜視図である。 1・・・回転軸、      4・・・外翼、5A、5
B・・・バッフル、  6・・・水平完、7・・・送気
ダクト、    7A・・・送気源、8・・・発′市機
Fig. 1 is a longitudinal cross-sectional view showing a wind turbine according to an embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, Fig. 3 is a horizontal cross-sectional view along the horizontal χ, and Fig. 4 is a separate view. FIG. 5 is a diagram illustrating the operation of the wind turbine according to the embodiment, and FIG. 6 is a perspective view illustrating the case where the wind turbine of the present invention is applied to a high-rise building. 1...Rotating shaft, 4...Outer wing, 5A, 5
B...Baffle, 6...Horizontal completion, 7...Air supply duct, 7A...Air supply source, 8...Start city machine.

Claims (3)

【特許請求の範囲】[Claims] (1)長手方向両端がそれぞれ回転軸に固結されて軸対
称配置された複数個の外翼と、外翼に向う空気流を強制
的に生起させ、この空気流によって外翼を加速する外翼
加速手段と、を備えてなる風車。
(1) A plurality of outer blades arranged axially symmetrically with each longitudinal end fixed to a rotating shaft, and an outer blade that forcibly generates airflow toward the outer blade and accelerates the outer blade with this airflow. A windmill comprising a blade acceleration means.
(2)前記外翼加速手段は、風車外に設置された送気源
から風車の回転軸に沿って送気を導入する送気部と、風
車内に導かれた送気を外翼に向わせるガイド部とから構
成されていることを特徴とする特許請求の範囲第1項記
載の風車。
(2) The outer blade acceleration means includes an air supply unit that introduces air from an air supply source installed outside the wind turbine along the rotational axis of the wind turbine, and an air supply unit that directs the air introduced into the wind turbine toward the outer blades. 2. The wind turbine according to claim 1, further comprising a guide portion for causing the wind turbine to move.
(3)前記外翼加速手段は、風車外に設置された負圧源
から風車の回転軸に沿って負圧を導く負圧導入部と、風
車内に導かれた負圧を外翼方向に向わせるガイド部とか
ら構成されていることを特徴とする特許請求の範囲第1
項記載の風車。
(3) The outer blade accelerating means includes a negative pressure introduction part that guides negative pressure along the rotation axis of the wind turbine from a negative pressure source installed outside the wind turbine, and a negative pressure introduced into the wind turbine in the direction of the outer blade. Claim 1 is characterized in that it is composed of a guide portion for directing
Windmill mentioned in section.
JP22945385A 1985-10-15 1985-10-15 Wind mill Pending JPS6287673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22945385A JPS6287673A (en) 1985-10-15 1985-10-15 Wind mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22945385A JPS6287673A (en) 1985-10-15 1985-10-15 Wind mill

Publications (1)

Publication Number Publication Date
JPS6287673A true JPS6287673A (en) 1987-04-22

Family

ID=16892437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22945385A Pending JPS6287673A (en) 1985-10-15 1985-10-15 Wind mill

Country Status (1)

Country Link
JP (1) JPS6287673A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722075U (en) * 1992-11-10 1995-04-21 寿 今井 Wind power generator using building wind
JP2007268097A (en) * 2006-03-31 2007-10-18 Heiwa Corp Winning device for pachinko game machine
JP2011038489A (en) * 2009-08-17 2011-02-24 Mayekawa Mfg Co Ltd Method and device for recovering energy from artificial wind generated by artificial wind power generator
JP2016001001A (en) * 2012-09-06 2016-01-07 特定非営利活動法人国際資源活用協会 Wind collection type windmill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722075U (en) * 1992-11-10 1995-04-21 寿 今井 Wind power generator using building wind
JP2007268097A (en) * 2006-03-31 2007-10-18 Heiwa Corp Winning device for pachinko game machine
JP2011038489A (en) * 2009-08-17 2011-02-24 Mayekawa Mfg Co Ltd Method and device for recovering energy from artificial wind generated by artificial wind power generator
JP2016001001A (en) * 2012-09-06 2016-01-07 特定非営利活動法人国際資源活用協会 Wind collection type windmill

Similar Documents

Publication Publication Date Title
US6800955B2 (en) Fluid-powered energy conversion device
US6015258A (en) Wind turbine
US4350900A (en) Wind energy machine
US4781523A (en) Fluid energy turbine
CA2436920C (en) Fluid-powered energy conversion device
US8961103B1 (en) Vertical axis wind turbine with axial flow rotor
US7315093B2 (en) Wind turbine system for buildings
US4457666A (en) Apparatus and method for deriving energy from a moving gas stream
CA2557242A1 (en) Wind powered turbine in a tunnel
EP1147320B1 (en) Multiaxis turbine
AU2002228948A1 (en) Fluid-powered energy conversion device
WO2008009920A2 (en) Wind turbines
US11156204B2 (en) Wind turbine
KR101817229B1 (en) Apparatus for generating by wind power
US4370095A (en) Compound coaxial windmill
JPS6287673A (en) Wind mill
CN111279071B (en) Wind power generator
JPS6287672A (en) Wind mill
RU2638120C1 (en) Wind turbine plant
GB2496277A (en) Vertical or horizontal axis wind turbine system with variable geometry inlet
JP2004285968A (en) Wind mill
CA2349443C (en) Wind turbine design
RU2062353C1 (en) Wind-electric power plant
KR101764152B1 (en) Turbine type power generator with vertical axis
JP2001289148A (en) Wind turbine power generator