JPS6286781A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS6286781A
JPS6286781A JP60226000A JP22600085A JPS6286781A JP S6286781 A JPS6286781 A JP S6286781A JP 60226000 A JP60226000 A JP 60226000A JP 22600085 A JP22600085 A JP 22600085A JP S6286781 A JPS6286781 A JP S6286781A
Authority
JP
Japan
Prior art keywords
active layer
layer
semiconductor laser
missing part
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60226000A
Other languages
Japanese (ja)
Inventor
Haruhisa Soda
晴久 雙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60226000A priority Critical patent/JPS6286781A/en
Publication of JPS6286781A publication Critical patent/JPS6286781A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1057Comprising an active region having a varying composition or cross-section in a specific direction varying composition along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts

Abstract

PURPOSE:To continue stable single axis mode oscillation even when a high output is taken out by a method wherein a missing part is formed near the center of an active layer and current injection into the part where light intensity of a resonator is high is blocked. CONSTITUTION:In order to block current injection into the part where light intensity of a resonator is high, an active layer 5 which has a missing part 5A near its center and a corrugation 2 formed along the active layer 5 and its missing part 5A are provided. For instance, a corrugation 2 including a lambda/4 shifting part 2A, an N-type InGaAsP guide layer 3, an N-type InP isolating layer 4, an InGaAsP active layer 5, the missing part 5A of the active layer 5, a P-type InP cladded layer 6 and a P-type InGaAsP cap layer 7 are formed on the surface of an N-type InP substrate 1 and a reflection preventing film 8, a positive side stripe electrode 9 and a negative side electrode 10 are provided. The length l of the missing part 5A is recommended to be about 10% of the whole length of the active layer 5.

Description

【発明の詳細な説明】 〔概要〕 本発明は、分布帰還型半導体レーザに於いて、活性層の
中央近傍に欠如部分を形成して共振器の光強度が大であ
る部分に電流が注入されることを阻止するようにしたこ
とに依り、高出力を取り出す場合にも安定に単一軸モー
ドの発振を継続できるようにしたものである。
[Detailed Description of the Invention] [Summary] The present invention provides a distributed feedback semiconductor laser in which a missing portion is formed near the center of the active layer so that current is injected into the portion of the resonator where the light intensity is high. By preventing this from occurring, single-axis mode oscillation can be stably continued even when high output is extracted.

〔産業上の利用分野〕[Industrial application field]

本発明は、単一軸モードの発振をさせるのに好適な構成
を有する分布帰還(distrjbuted  fee
dback:DFB)型半導体レーザに関する。
The present invention provides a distributed feedback system having a configuration suitable for producing single-axis mode oscillation.
dback: DFB) type semiconductor laser.

〔従来の技術〕[Conventional technology]

一般に、活性層に沿って回折格子、即ち、グレーティン
グ(grating)を形成して共振器に波長選択性を
もたせたDFB型半導体レーザが知られている。
Generally, a DFB semiconductor laser is known in which a resonator has wavelength selectivity by forming a diffraction grating, ie, a grating, along an active layer.

こ(7)DFB型半導体レーザでは、グレーティングに
依り、利得スペクトル幅の範囲内で一つの波長の光が選
択的に反射され単一軸モード発振するとされている。
In this (7) DFB type semiconductor laser, light of one wavelength is selectively reflected within the range of the gain spectrum width by the grating, and oscillation occurs in a single axis mode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、前記DFB型半導体レーザに於いて、発振開始以
後の単一軸モード発振安定化に関しては充分に検討され
ていない。
Conventionally, in the DFB type semiconductor laser, stabilization of single-axis mode oscillation after the start of oscillation has not been sufficiently studied.

従って、製造後、良品と判定されたものであっても、高
出力を取り出すような場合には、2モードで発振するよ
うな状態がしばしば発生する。
Therefore, even if a device is determined to be a good product after manufacturing, when a high output is to be extracted, a state where oscillation occurs in two modes often occurs.

本発明は、高出力時にも安定な単一軸モード発振が得ら
れるような構成にしたDFB型半導体レーザを提供する
ものである。
The present invention provides a DFB type semiconductor laser configured to provide stable single-axis mode oscillation even at high output.

〔問題点を解決するための手段〕[Means for solving problems]

前記したように高出力時に発振モードが複数になるのは
、当初の発振モードに対する利得が飽和することに起因
している。
As described above, the reason why there are multiple oscillation modes at high output is that the gain for the initial oscillation mode is saturated.

このような利得の飽和は、半導体レーザに於ける共振器
内の光強度分布が関連することは当然であり、その光強
度が大である部分が問題になる。
Naturally, such gain saturation is related to the light intensity distribution within the resonator of the semiconductor laser, and the portion where the light intensity is high becomes a problem.

通常、この光強度分布は、半導体レーザの中央部分で最
も大になり且つ両端では小さくなっている。これは、電
界分布が中央部分で最も高く、両端に向かうにつれて低
くなることからも理解できる。
Normally, this light intensity distribution is greatest at the center of the semiconductor laser and is smaller at both ends. This can be understood from the fact that the electric field distribution is highest at the center and becomes lower toward both ends.

そこで、本発明のDFB型半導体レーザでは、共振器の
光強度が大である部分に電流が注入されることを阻止す
るため中央近傍に欠如部分(例えば欠如部分5A)が形
成された活性層(例えば活性層5)と、該活性層並びに
前記欠如部分に沿って形成されたコルゲーション(例え
ばコルゲーション2)とを備えてなる構成を採っている
Therefore, in the DFB type semiconductor laser of the present invention, an active layer (for example, a missing portion 5A) is formed in the vicinity of the center to prevent current from being injected into a portion of the resonator where the light intensity is high. For example, the active layer 5) and a corrugation (for example, corrugation 2) formed along the active layer and the missing portion are employed.

〔作用〕[Effect]

前記手段に依ると、DFB型半導体レーザ内に於ける光
強度が大になるであろう部分には活性層が存在しないの
で、そこでは電流の注入が行われず、その結果、光強度
は全長に互って略平坦になり、利得飽和の影響は低減さ
れ、高出力を取り出す場合にも安定な単一軸モード発振
を維−持することができる。
According to the above means, since there is no active layer in the part of the DFB semiconductor laser where the light intensity would be high, current is not injected there, and as a result, the light intensity is not increased over the entire length. They become substantially flat, the influence of gain saturation is reduced, and stable single-axis mode oscillation can be maintained even when high output is extracted.

〔実施例〕〔Example〕

図は本発明一実施例を説明する為の要部切断側面図を表
している。
The figure shows a cutaway side view of essential parts for explaining one embodiment of the present invention.

図に於いて、lはn型1nP基板、2は基板Iの表面に
形成されたコルゲーション、2Aはコルゲーション2の
λ/4シフト部分、3はn型InGaAsPガイド層、
4はn型InP分Ni層、5はInGaAsP活性層、
5Aは活性層5の欠如部分、6はp型InPクラッド層
、7はp型InGaAsPキャップ層、8は反射防止膜
、9はp側ストライプ電極、IOはn側電極、lは活性
層5に於ける欠如部分5Aの長さをそれぞれ示している
In the figure, l is an n-type 1nP substrate, 2 is a corrugation formed on the surface of the substrate I, 2A is a λ/4 shifted portion of the corrugation 2, 3 is an n-type InGaAsP guide layer,
4 is an n-type InP Ni layer, 5 is an InGaAsP active layer,
5A is the missing part of the active layer 5, 6 is the p-type InP cladding layer, 7 is the p-type InGaAsP cap layer, 8 is the antireflection film, 9 is the p-side stripe electrode, IO is the n-side electrode, and l is the active layer 5. The lengths of the missing portions 5A are shown respectively.

図示例の各部分に関する諸データを例示すると次の通り
である。
Examples of data regarding each part of the illustrated example are as follows.

(1)基板1について 不純物濃度: 2X I Q ” (am−’)(2)
  コルゲーション2について 深さ:500  [人〕 ピッチ:2000  (人〕 (3)ガイド層3について 厚さ:0.15(μm〕 不純物濃度:5X1017(ロー3〕 (4)分離層4について 厚さ:0.ICμm〕 不純物濃度: 5 X 1017(cm−’)(5) 
 活性層5について 厚さ:0.15(μm〕 (6)欠如部分5Aについて l :50(μm〕 (7)クラッド層6について 厚さ:2〜.3 〔μm〕 不純物濃度: I X 1018(cm−’)(8) 
 キャップ層7について 厚さ:0.2Cμm〕 (9)p側ストライプ電極9について 材料: T i / P t / A u幅:2〔μm
〕 aω n側電極10について 材料:Au−Ge/Au 尚、図示例に於ける共振器長は400〔μm〕である。
(1) Impurity concentration for substrate 1: 2X IQ''(am-') (2)
Depth for corrugation 2: 500 [people] Pitch: 2000 (people) (3) Thickness for guide layer 3: 0.15 (μm) Impurity concentration: 5X1017 (Rho 3) (4) Thickness for separation layer 4: 0.IC μm] Impurity concentration: 5 x 1017 (cm-') (5)
Thickness of active layer 5: 0.15 (μm) (6) Thickness of missing portion 5A: 50 (μm) (7) Thickness of cladding layer 6: 2 to .3 [μm] Impurity concentration: I x 1018 ( cm-') (8)
Thickness of cap layer 7: 0.2 Cμm] (9) Material of p-side stripe electrode 9: T i / P t / A u width: 2 [μm]
] Material of the aω n-side electrode 10: Au-Ge/Au The resonator length in the illustrated example is 400 [μm].

図から判るように、このDFB型半導体レーザでは、活
性層5の中央近傍には欠如部分5Aが形成されていて、
このようにすると、利得飽和の影響が低減され、高出力
時に於ける単一軸モードの安定性が改善される。
As can be seen from the figure, in this DFB type semiconductor laser, a missing portion 5A is formed near the center of the active layer 5.
This reduces the effects of gain saturation and improves single-axis mode stability at high power.

欠如部分5Aを形成するには、活性層5がInGaAs
Pである場合、エッチャントとして(H2so、+H2
O2)を用いれば、下地のn型InP分離層4がエツチ
ング・ストッパとなるから、通常のフォト・リソグラフ
ィ技術にて、容易に活性層5の選択的除去が可能であり
、また、欠如部分5Aの長さlは活性層5に於ける全長
の約10〔%〕程度にすると好結果が得られる。
In order to form the missing portion 5A, the active layer 5 is made of InGaAs.
P, as an etchant (H2so, +H2
If O2) is used, the underlying n-type InP isolation layer 4 serves as an etching stopper, so the active layer 5 can be easily selectively removed using normal photolithography technology, and the missing portion 5A can be removed easily. Good results can be obtained by setting the length l to about 10% of the total length of the active layer 5.

〔発明の効果〕〔Effect of the invention〕

本発明に依るDFB型半導体レーザでは、共振器の光強
度が大である部分に電流が注入されることを阻止するた
め中央近傍に欠如部分が形成された活性層と、該活性層
並びに前記欠如部分に沿って形成されたコルゲーション
とを備えた構成を採っている。
The DFB semiconductor laser according to the present invention includes an active layer in which a cutout is formed near the center to prevent current from being injected into a portion of the resonator where the light intensity is high, and the active layer and the cutout. The structure includes corrugations formed along the sections.

この構成に依ると、DFB型半導体レーザ内で光強度が
大になるであろう部分には活性層が存在せず、従って、
そこでは電流が注入されないので、光強度はレーザ内の
全長に亙って略平坦になり、利得飽和の影響は低減され
、高出力を取り出しても単一軸モード発振が多軸モード
発振に移行することはなくなる。
According to this configuration, there is no active layer in the portion where the light intensity would be high in the DFB semiconductor laser, and therefore,
Since no current is injected there, the optical intensity is approximately flat over the entire length of the laser, reducing the effects of gain saturation, and even at high outputs, single-axis mode oscillation transitions to multi-axis mode oscillation. That will no longer be the case.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明一実施例の要部切断側面図を表している。 図に於いて、1はn型InP基板、2は基板1の表面に
形成されたコルゲーション、2Aはコルゲーション2の
λ/4シフト部分、3はn型InGaAsPガイド層、
4はn型1nP分N71.5はI nGaAs P活性
層、5Aは活性層5の欠如部分、6はp型1nPクラッ
ド層、7はp型InGaAsPキャップ層、8は反射防
止膜−19はp側ストライプ電極、10!、tn側電極
、lは活性層5に於ける欠如部分5Aの長さをそれぞれ
示している。
The figure shows a cutaway side view of essential parts of an embodiment of the present invention. In the figure, 1 is an n-type InP substrate, 2 is a corrugation formed on the surface of the substrate 1, 2A is a λ/4 shifted portion of the corrugation 2, 3 is an n-type InGaAsP guide layer,
4 is an n-type 1nP layer, N71.5 is an InGaAsP active layer, 5A is a missing part of the active layer 5, 6 is a p-type 1nP cladding layer, 7 is a p-type InGaAsP cap layer, 8 is an anti-reflection film, and 19 is a p-type InGaAsP cap layer. Side stripe electrode, 10! , tn side electrode, and l indicate the length of the missing portion 5A in the active layer 5, respectively.

Claims (1)

【特許請求の範囲】 共振器の光強度が大である部分に電流が注入されること
を阻止するため中央近傍に欠如部分が形成された活性層
と、 該活性層並びに前記欠如部分に沿って形成されたコルゲ
ーションと を備えてなることを特徴とする分布帰還型半導体レーザ
[Scope of Claims] An active layer in which a missing portion is formed near the center to prevent current from being injected into a portion of the resonator where the light intensity is high; and along the active layer and the missing portion. A distributed feedback semiconductor laser comprising a corrugation formed therein.
JP60226000A 1985-10-12 1985-10-12 Distributed feedback type semiconductor laser Pending JPS6286781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60226000A JPS6286781A (en) 1985-10-12 1985-10-12 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60226000A JPS6286781A (en) 1985-10-12 1985-10-12 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6286781A true JPS6286781A (en) 1987-04-21

Family

ID=16838219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60226000A Pending JPS6286781A (en) 1985-10-12 1985-10-12 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6286781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191651A1 (en) * 2000-09-06 2002-03-27 Nec Corporation Distributed feedback semiconductor laser
JP2015056515A (en) * 2013-09-12 2015-03-23 日本オクラロ株式会社 Semiconductor optical element and optical communication module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191651A1 (en) * 2000-09-06 2002-03-27 Nec Corporation Distributed feedback semiconductor laser
JP2015056515A (en) * 2013-09-12 2015-03-23 日本オクラロ株式会社 Semiconductor optical element and optical communication module

Similar Documents

Publication Publication Date Title
EP0187718B1 (en) A distributed feedback semiconductor laser device
JPS6286781A (en) Distributed feedback type semiconductor laser
JPH0542148B2 (en)
JPS62173786A (en) Distributed feedback type semiconductor laser
JPS63228795A (en) Distributed feedback type semiconductor laser
JP2574806B2 (en) Semiconductor laser device
JPS60788A (en) Optical integrated circuit and manufacture thereof
JPS5858784A (en) Distribution feedback type semiconductor laser
JPH04305991A (en) Semiconductor laser element
JP2669045B2 (en) Manufacturing method of distributed feedback semiconductor laser
JPS59200484A (en) Semiconductor laser
JPH0271573A (en) Distributed feedback type semiconductor array laser
JPH02281681A (en) Semiconductor laser
JPH1093185A (en) Semiconductor laser and manufacture thereof
JPS62136888A (en) Semiconductor laser
JPS61279192A (en) Semiconductor laser
JPH06283804A (en) Distributed reflector laser and fabrication thereof
JP2000106469A (en) Mode-locked semiconductor laser
JPS60158686A (en) Semiconductor laser
JPS59119882A (en) Distributed feedback type semiconductor laser
JPH01101684A (en) Manufacture of wavelength multiplexed semiconductor laser
JPS6333890A (en) Optical integrated circuit
JP2003324232A (en) Photosemiconductor device
JPH01310586A (en) Semiconductor laser
JPH0730192A (en) Semiconductor laser