JPS6286662A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS6286662A
JPS6286662A JP60224763A JP22476385A JPS6286662A JP S6286662 A JPS6286662 A JP S6286662A JP 60224763 A JP60224763 A JP 60224763A JP 22476385 A JP22476385 A JP 22476385A JP S6286662 A JPS6286662 A JP S6286662A
Authority
JP
Japan
Prior art keywords
electrode
air
electrolyte
fuel cell
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60224763A
Other languages
Japanese (ja)
Other versions
JPH0727777B2 (en
Inventor
Seiji Takeuchi
瀞士 武内
Yuichi Kamo
友一 加茂
Teruo Kumagai
熊谷 輝夫
Koki Tamura
弘毅 田村
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60224763A priority Critical patent/JPH0727777B2/en
Publication of JPS6286662A publication Critical patent/JPS6286662A/en
Publication of JPH0727777B2 publication Critical patent/JPH0727777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To increase the electrolyte absorption quantity of an air pole, and check a potential drop with a variation in electrolyte volume in an air pole catalytic layer in continuous discharge of a cell as well as to aim at the promotion of long service life in the cell, by adding a hydrophilic agent to the air pole catalytic layer. CONSTITUTION:A methanol fuel cell is provided with air poles (an air pole substrate 10 and an air pole catalytic layer 11), and methanol poles (a methanol pole substrate 14 and a methanol pole catalytic layer 13 via an ion-exchange film 12, and the atmosphere is led into an air chamber 9, while H2SO4-CH3H- water are fed to a methanol pole chamber 15. A mixture of an electrode catalyz er bearing Pt on a furnace black having carbon powder and polytetrafluoroethylene or a water-repellent agent is applied onto a conductive porous substrate and burned, thereby forming the catalytic layer 11 to which SiC is added as a hydrophilic member.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池に係り、特にメタノール燃料電池に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to fuel cells, and more particularly to methanol fuel cells.

〔発明の背景〕[Background of the invention]

液体燃料、特にメタノールを燃料とする燃料電池は未だ
世の中で実用化がなされておらず各研究機関でその初期
特性が評価されている段階である。
Fuel cells that use liquid fuels, particularly methanol, have not yet been put into practical use in the world, and their initial characteristics are still being evaluated at various research institutions.

一般に燃料電池に用いられるガス拡散電極は、カーボン
粉末上へ微細なpt粒子を高分散化し、比活性を向上さ
せた電極触媒と撥水剤であるポリテトラフルオロエチレ
ン(以下PTFEと略記)の混合物を導電性多孔質基板
上へ塗布・焼成したものが用いられる(例えば、特開昭
60−86767号)、この種の電極は、 PTFHの
添加量、電極の焼成温度。
Gas diffusion electrodes generally used in fuel cells are made of a mixture of an electrode catalyst with improved specific activity by highly dispersing fine PT particles on carbon powder, and polytetrafluoroethylene (hereinafter abbreviated as PTFE), which is a water repellent. This type of electrode is prepared by coating and firing PTFH on a conductive porous substrate (for example, Japanese Patent Application Laid-Open No. 60-86767).

カーボン担体の種類や電体質種によって、電極触媒層へ
の電解液の吸収量が異ってくる。
The amount of electrolyte absorbed into the electrode catalyst layer varies depending on the type of carbon carrier and the type of electrolyte.

燃料電池に用いるガス拡散電極の詳細については、リン
酸型燃料電池に関するものが多い、リン酸型燃料電池に
用いられているガス拡散電極をメタノール燃料電池に適
用した場合、その性能は全く発揮されない。これは、電
解質の種類や電池作動温度が異なる事に起因し、メタノ
ール燃料電池に用いる電解質である硫酸が電極触媒層へ
吸収されないため反応の場である液体−気体一同体の三
相界面が形成されずらいことによる。
Regarding the details of gas diffusion electrodes used in fuel cells, most of them are related to phosphoric acid fuel cells.If the gas diffusion electrodes used in phosphoric acid fuel cells are applied to methanol fuel cells, their performance will not be exhibited at all. . This is due to differences in the type of electrolyte and the operating temperature of the cell, and because sulfuric acid, which is the electrolyte used in methanol fuel cells, is not absorbed into the electrode catalyst layer, a three-phase interface of liquid and gas, which is the site of reaction, is formed. This is due to the fact that it is difficult to do so.

以上のようにガス拡散電極の構成は、燃料電池の種類に
対応して最適化を図る必要がある。
As described above, the configuration of the gas diffusion electrode needs to be optimized depending on the type of fuel cell.

〔発明の目的〕[Purpose of the invention]

本発明は、従来用いて来たガス拡散電極が電解液をわず
かしか吸収できない点を改善しつる燃料電池を提供する
ことを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel cell that improves the problem that conventionally used gas diffusion electrodes can absorb only a small amount of electrolyte.

〔発明の概要〕[Summary of the invention]

本発明は、メタノール燃料電池に用いるガス拡散電極の
初期性能及び燃料極と組合せた電池の寿命について詳細
に検討した結果をもとに成されたものである。
The present invention was developed based on the results of detailed studies on the initial performance of gas diffusion electrodes used in methanol fuel cells and the life span of cells combined with fuel electrodes.

一般的なガス拡散電極は、前述したごとくカーボン粉末
上へ微細なpt粒子を高度に分散担持して比活性を向上
させた電極触媒と撥水剤であるPTFI?の混合物を多
孔質導電性基板上へ塗布・焼成して作製される。この種
の電極においては、適度な撥水性を有し、反応の場であ
る液体−気体一固体の接する三相界面の面精の増大と安
定化を図る必要がある。
As mentioned above, a typical gas diffusion electrode consists of an electrode catalyst that has improved specific activity by highly dispersing fine PT particles on carbon powder, and PTFI, a water repellent. It is produced by coating and baking a mixture of the following on a porous conductive substrate. In this type of electrode, it is necessary to have appropriate water repellency and to increase and stabilize the surface quality of the three-phase interface where liquid, gas, and solid contact, which is the reaction site.

電極の撥水性すなわち電解液との濡れ性に影響を与える
因子としては、カーボン粉末担体の種類。
The type of carbon powder carrier is a factor that affects the water repellency of the electrode, that is, its wettability with the electrolyte.

PTFE添加量。電極焼成温度又電解質である硫酸の濃
度が上げられる。
Amount of PTFE added. The electrode firing temperature or the concentration of sulfuric acid, which is an electrolyte, is increased.

上述のパラメータを変化させたとき電極の濡れ性がどの
ように変化したが或いは電極の濡れの程度と電極性態の
関係を把握しておく必要がある。
It is necessary to understand how the wettability of the electrode changes when the above-mentioned parameters are changed, or the relationship between the degree of wetting of the electrode and the electrode property.

そのための評価法として、前者については所定の濃度の
硫酸電解液上へ電極触媒層を液側にして浮遊させ硫酸を
吸収した電極の重量が一定に達した値を用いて電解液平
衡吸収量とした。この電解液平衡吸収量の値の大小によ
って電極の濡れ性の指標とした。一方電極の濡れ性と電
極性能の関係については、電極触媒層細孔容積を占める
電解液量を細孔占有率と定義し、この細孔占有率と電極
性能の関係で整理した。
As for the evaluation method, for the former, the electrode catalyst layer is suspended on the liquid side on a sulfuric acid electrolyte of a predetermined concentration, and the value when the weight of the electrode that has absorbed sulfuric acid reaches a constant value is used to calculate the equilibrium absorption amount of the electrolyte. did. The magnitude of the electrolyte equilibrium absorption amount was used as an index of the wettability of the electrode. On the other hand, regarding the relationship between electrode wettability and electrode performance, we defined the amount of electrolyte occupying the pore volume of the electrode catalyst layer as pore occupancy, and organized the relationship between this pore occupancy and electrode performance.

細孔占有率と空気極電位の関係をモデル的に第1図に示
す。第1図に示したごとく空気極電位は。
The relationship between pore occupancy and air electrode potential is shown in FIG. 1 as a model. As shown in Figure 1, the air electrode potential is.

細孔占有率がある範囲内で三相界面が理想的に形成され
るため高い性能を示す。これに対し細孔占有率が小さい
領域においては、電解液による触媒層の濡れが不十分な
ためH十移動抵抗が大きくなり電位は低下する。逆に細
孔占有率が大きい所では、触媒層が電解液で十分に覆わ
れガスの拡散が阻害される結果電位が低下することが予
想される。
It exhibits high performance because the three-phase interface is ideally formed within a certain range of pore occupancy. On the other hand, in a region where the pore occupancy is small, the catalyst layer is not sufficiently wetted by the electrolytic solution, so the H+ migration resistance increases and the potential decreases. On the other hand, in areas where the pore occupancy is large, the catalyst layer is sufficiently covered with the electrolyte and gas diffusion is inhibited, resulting in a decrease in potential.

したがって性能の安定した空気極を得るためには。Therefore, in order to obtain an air electrode with stable performance.

電池の運転条件の変化によっても電位の安定した細孔占
有率領域からはずれない触媒層構造にする必要がある。
It is necessary to create a catalyst layer structure that does not deviate from the pore occupancy region where the potential is stable even when the operating conditions of the battery change.

最初にカーボン担体種の異なる空気極の電解液平衡吸収
量を求めてみた。その結果を第2図に示す。第2図1は
カーボン担体としての250 rrF/gのカーボン粉
末を有するファーネスブラック(以下第1の担体という
)にptを15wt%担持した電極触媒とPTFE!が
20wt%なるようにして調製し、空気中にて320’
Cで焼成した空気極の電解液吸収変化を示したものであ
る。電解液は3mou/Q硫酸温度は60℃である。ま
た2は、担体としての1400ni’/gのカーボン粉
末を有するファーネスブラック(以下第2の担体という
)にptを50wt%担持した電極触媒を用いて前記と
同様にして作製した空気極の電解液吸収変化を示した。
First, we determined the equilibrium absorption amount of electrolyte for air electrodes with different types of carbon carriers. The results are shown in FIG. FIG. 2 shows an electrode catalyst in which 15 wt% of PT is supported on furnace black (hereinafter referred to as the first carrier) having 250 rrF/g carbon powder as a carbon carrier, and PTFE! was prepared at a concentration of 20 wt%, and incubated in air for 320'
This figure shows the change in electrolyte absorption of the air electrode fired with C. The electrolyte was 3mou/Q sulfuric acid and the temperature was 60°C. In addition, 2 is an electrolytic solution of an air electrode prepared in the same manner as above using an electrode catalyst in which 50 wt% of PT was supported on furnace black having 1400 ni'/g carbon powder as a carrier (hereinafter referred to as the second carrier). It showed an absorption change.

いずれの空気極においても吸収量が一定になるのに14
0時間以上を用するが、電解液平衡吸収量とみることが
できる値を求めることができる6両者の空気極を比較す
るとカーボン担体種によって、平衡吸収量が異なること
がわかる。
Although the amount of absorption is constant at any air electrode, 14
Although a time of 0 hours or more is used, a value that can be considered as the equilibrium absorption amount of electrolyte can be obtained.6 Comparing both air electrodes, it can be seen that the equilibrium absorption amount differs depending on the type of carbon carrier.

次に触媒層中のPTFE量を変化させた空気極の電解液
平衡吸収量を求めた。電極触媒は、第1の担体にptを
15wt%担持したもので、これにPTFEを3Q、4
0,50wt%混合し空気中にて300’C−0,5h
焼成して空気極を作製した。
Next, the equilibrium absorption amount of electrolyte of the air electrode was determined by changing the amount of PTFE in the catalyst layer. The electrode catalyst has 15 wt% of PT supported on the first carrier, and PTFE is added to this by 3Q, 4
0.50wt% mixed in air at 300'C-0.5h
An air electrode was produced by firing.

吸収試験は、60℃、 1.5 moQ / Q Hi
s O&中で行った。その結果を第3図に示す。第3図
にみられるごとく、この実験条件において、触媒層中の
PTFE量によって平衡吸収量は大きく変化しないこと
がわかる。
Absorption test was conducted at 60°C, 1.5 moQ/Q Hi
I went inside s O&. The results are shown in FIG. As seen in FIG. 3, under these experimental conditions, the equilibrium absorption amount does not change significantly depending on the amount of PTFE in the catalyst layer.

第4図には、焼成温度の異なる空気極についての吸収試
験結果を示す、第4図の試験に用いた空気極の作製は以
下の手順で行った。第1の担体に15wt%のptを担
持した電極触媒にPTFEが30wt%になるようにし
て混合し、これを導電性多孔質基板へ塗布し、空気中に
300℃、320℃及び340℃で各々0.5時間焼成
を行った。
FIG. 4 shows the absorption test results for air electrodes with different firing temperatures. The air electrodes used in the test shown in FIG. 4 were manufactured in the following procedure. PTFE was mixed with an electrode catalyst in which 15 wt% of PT was supported on the first carrier so that the amount was 30 wt%, and this was applied to a conductive porous substrate and heated at 300°C, 320°C and 340°C in air. Firing was performed for 0.5 hours each.

吸収試験は、60℃−3moQ/QHas04で行った
1図中曲線4は300℃焼成1曲線5は320℃及び曲
線6は340℃焼成の空気極の電解液吸収量変化を示し
ている。電解液平衡吸収量は、空気極焼成温度が高くな
るにつれ極端に小さな値をとるようになり、340℃焼
成のものについては、200時N浸漬においても平衡に
達していない。
The absorption test was conducted at 60°C-3moQ/QHas04. In Figure 1, curve 4 shows the change in electrolyte absorption amount of the air electrode fired at 300°C, curve 5 at 320°C, and curve 6 at 340°C fired. The electrolyte equilibrium absorption amount takes an extremely small value as the air electrode firing temperature increases, and for those fired at 340°C, equilibrium is not reached even after 200 hours of N immersion.

焼成温度が高く、特に340℃焼成空気極の吸収量が小
さくなる理由の一つとして以下のことが考えられる。 
PTFEは、320〜330℃付近で溶融し状態変化を
起こすことが一般に知られている。
One of the reasons why the absorption amount of the air electrode fired at 340° C. is small due to the high firing temperature is considered to be as follows.
It is generally known that PTFE melts and undergoes a state change at around 320 to 330°C.

従って340℃焼成のものでは、半融状態の履歴を受け
る結果、触媒層内でのPTFEの状態変化にともなって
空気極としての撥水性が強化されたものと思われる。し
かし、はっきりした確証は得ていない。
Therefore, in the case of the one fired at 340° C., as a result of undergoing a history of a semi-molten state, it is thought that the water repellency as an air electrode was strengthened as the state of PTFE changed within the catalyst layer. However, no clear proof has been obtained.

次に電極触媒塗布量を変化させた空気極について吸収試
験を行ってみた。電極触媒は、第2の担体へptを10
wt%担持したものを用い、これを電極12当り5mg
及び10mgになるように塗布した。このときのPTF
E量は、30wt%である。
Next, an absorption test was conducted on air electrodes with varying amounts of electrode catalyst applied. Electrocatalyst transfers 10 pt to the second support
5 mg per 12 electrodes.
and applied in an amount of 10 mg. PTF at this time
The amount of E is 30 wt%.

前述の電極を空気中、300℃−〇、5  h焼成して
空気極を得た。これらの空気極について、60℃−3n
o n / Q Has Oa中で吸収試験した結果を
第5図に示す。図中曲線7は、電極触媒塗布量が5 m
 g / aA、曲線8は10mg/cdの空気極の吸
収量変化を示している。
The above electrode was baked in air at 300° C. for 5 hours to obtain an air electrode. For these air electrodes, 60℃-3n
The results of an absorption test in on/Q Has Oa are shown in FIG. Curve 7 in the figure shows the amount of electrode catalyst applied is 5 m.
g/aA, curve 8 shows the change in absorption of the air electrode at 10 mg/cd.

図よりPTFE量及び焼成温度が一定の場合、空気極の
電解液平衡吸収量は、電極触媒の塗布量すなわち空気極
触媒層の厚さに比例することがわかる。
The figure shows that when the amount of PTFE and the firing temperature are constant, the equilibrium absorption amount of electrolyte in the air electrode is proportional to the amount of electrode catalyst applied, that is, the thickness of the air electrode catalyst layer.

以上、電極触媒調製に用いるカーボン担体種、空気極触
媒層に加えるPTFE量、空気極の焼成温度及び空気極
触媒層厚さを変化させたものについて電解液の平衡吸収
量を求めてみた。平衡吸収量の値を有効に活かすために
は、それぞれの空気極が電解液と平衡吸収に達したとき
空気極としての性能がどの程度の値を示すが確認してお
く必要がある。そのためには、前述したごとく空気極触
媒層の細孔容積に対し、平衡吸収に達した電解液量がど
の位占めたかという指標すなわち細孔占有率と空気極電
位との関係を求めれば良いことになる。
As described above, the equilibrium absorption amount of the electrolyte was determined by changing the type of carbon carrier used for preparing the electrode catalyst, the amount of PTFE added to the air electrode catalyst layer, the firing temperature of the air electrode, and the thickness of the air electrode catalyst layer. In order to make effective use of the value of equilibrium absorption amount, it is necessary to check the performance of each air electrode when it reaches equilibrium absorption with the electrolyte. To do this, as mentioned above, it is sufficient to find an index of how much of the pore volume of the air electrode catalyst layer is occupied by the amount of electrolyte that has reached equilibrium absorption, that is, the relationship between the pore occupancy and the air electrode potential. become.

最初に種々の調製条件で作製した空気極触媒層の細孔容
積を水銀圧入法により測定した。その結果を第6図に示
す。図中の値は、電極触媒として、第1の担体にptを
15wt%担持したものを用い、これにPTFEを30
.40及び50wt%混合したものを導電性多孔質基板
上へ塗布し、それぞれのPTFE量のものについて30
0℃、320℃及び340℃で焼成した空気極について
、触媒N1g当りの細孔容積を表わしている。同図の結
果から、空気極触媒層の細孔容積は、焼成温度による変
化は少なく PTFE添加量の影響の大きいことがわか
る。
First, the pore volumes of the air electrode catalyst layers prepared under various preparation conditions were measured by mercury intrusion method. The results are shown in FIG. The values in the figure are based on an electrode catalyst in which 15 wt% of PT is supported on the first carrier, and PTFE is added at 30 wt% on the first carrier.
.. A mixture of 40 and 50 wt% was applied onto a conductive porous substrate, and 30 wt% of each PTFE content was applied onto a conductive porous substrate.
The pore volume per gram of catalyst N is shown for air electrodes fired at 0°C, 320°C, and 340°C. From the results shown in the figure, it can be seen that the pore volume of the air electrode catalyst layer does not change much depending on the firing temperature, but is greatly influenced by the amount of PTFE added.

第2図〜第5図で得られた平衡吸収量の値と第6図で得
られた空気極触媒層の細孔容積の値から細孔占有率を計
算した。この細孔占有率と空気極電位の関係を整理して
第7図に示した。図中白丸で示した値は、1.5 mo
Q/QHxSO<電解液と平衡吸収に達した値、黒丸は
3moQ/ΩHx 80番電解液と平衡吸収に達した値
を用いて求めたものである。また空気極電位は電流密度
60mA/cdで得られる水素標準電極電位に対するも
のである。
The pore occupancy was calculated from the value of the equilibrium absorption amount obtained in FIGS. 2 to 5 and the value of the pore volume of the air electrode catalyst layer obtained in FIG. The relationship between the pore occupancy and the air electrode potential is summarized and shown in FIG. The value indicated by the white circle in the figure is 1.5 mo
Q/QHxSO<The value at which equilibrium absorption was reached with the electrolytic solution, and the black circle was determined using the value at which equilibrium absorption was reached with the 3moQ/ΩHx No. 80 electrolyte. Further, the air electrode potential is relative to the hydrogen standard electrode potential obtained at a current density of 60 mA/cd.

本実験条件の範囲で得られた結果では、空気極電位が高
く安定した電位は、細孔占有率が15〜33%の範囲で
得られた。
According to the results obtained under the present experimental conditions, a high and stable air electrode potential was obtained when the pore occupancy was in the range of 15 to 33%.

次にメタノール燃料電池の構成と寿命について考察して
みる。第8図(A)には、電池構成モデル図を[Blに
は電極回りの拡大図を示す。図(A)は、イオン交換1
1g12を介して空気極(空気極基板10、空気極触媒
層11)とメタノール極(メタノール極基板14、メタ
ノール極触媒層13)が配置され空気室9には大気が導
入され。
Next, let's consider the configuration and lifespan of a methanol fuel cell. FIG. 8(A) shows a battery configuration model diagram; Bl shows an enlarged view of the area around the electrodes. Diagram (A) shows ion exchange 1
An air electrode (an air electrode substrate 10, an air electrode catalyst layer 11) and a methanol electrode (a methanol electrode substrate 14, a methanol electrode catalyst layer 13) are arranged via the air electrode 1g12, and the atmosphere is introduced into the air chamber 9.

メタノール極室15には1 、5 mo n / Q 
Has 04−1.Onon/QCHsH−水が供給さ
れることにより発電する。拡大図(Blでは空気極すな
わちガス拡散電極の触媒層の液体−気体−同体界面を2
次元的に図示したものである。したがって図(B)中1
6の部分が前述の細孔占有率に相当する。
1.5 mon/Q in the methanol electrode chamber 15
Has 04-1. Onon/QCHsH-Power is generated by supplying water. Enlarged view (Bl shows the liquid-gas-isomer interface of the catalyst layer of the air electrode, that is, the gas diffusion electrode.
This is a dimensional illustration. Therefore, 1 in Figure (B)
The portion 6 corresponds to the pore occupancy rate described above.

今まで得られた空気極の基礎的検討結果がら1.5 l
l1oQ/QHzSO4電解液テノ細孔占有率20%程
度の空気極を用いて寿命試験を行った、その結果を第9
図に示す。電池電圧は電流密度60mA/a#で放電し
たときの値である。初期0.41V示した電圧は運転1
0時間後で約50mV低下し、その後50mV/1.O
hの速度で低下する。
Based on the basic study results of air electrodes obtained so far, 1.5 l
A life test was conducted using an air electrode with l1oQ/QHz SO4 electrolyte tenopore occupancy of about 20%, and the results are summarized in the 9th section.
As shown in the figure. The battery voltage is the value when discharged at a current density of 60 mA/a#. The initial voltage of 0.41V is during operation 1.
After 0 hours, it decreased by about 50 mV, and then 50 mV/1. O
decreases at a rate of h.

この電池電圧の低下原因の−っとしては、空気極側の変
化が考えられ、特に触媒層の電解液体積の減少による空
気極電位の低下が予測される。すなわち電解液と平衡吸
収に達した空気極を積層して運転した場合においても、
空気室には乾燥空気が供給され水分が蒸発するため第8
図mBlの細孔を占める電解液16体積が減少し、細孔
占有率が小さくなり第7図の左下りの部分へ移行する結
果、電池電圧が低下する傾向を示すと考えられる。
The cause of this decrease in battery voltage is thought to be changes on the air electrode side, and in particular, a decrease in the air electrode potential due to a decrease in the volume of electrolyte in the catalyst layer is predicted. In other words, even when operating with stacked air electrodes that have reached equilibrium absorption with the electrolyte,
Dry air is supplied to the air chamber and moisture evaporates, so the
It is thought that the volume of the electrolytic solution 16 occupying the pores in Figure mB1 decreases, the pore occupancy rate decreases, and shifts to the lower left portion of Figure 7, resulting in a tendency for the battery voltage to decrease.

以上のことから電池電圧を安定化するためには、空気極
の撥水性を維持しながら電解液平衡吸収量が大きく、細
孔占有率も大きい触媒層構造とする必要がある。
From the above, in order to stabilize the battery voltage, it is necessary to have a catalyst layer structure that has a large equilibrium absorption amount of electrolyte and a large pore occupancy while maintaining the water repellency of the air electrode.

そのためには、空気極触媒層へ親水剤を添加すれば良い
という考えに到った。
For this purpose, we came up with the idea that it would be sufficient to add a hydrophilic agent to the air electrode catalyst layer.

以下には、その考えに基づいた実施例について述べる。Examples based on this idea will be described below.

〔発明の実施例〕[Embodiments of the invention]

以下には、本発明の実施例について述べるが、本発明は
以下の実施例に限定されるものではない。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.

実施例1 本実施例では、第1の担体へptを15wt%担持した
電極触媒と30wt%[’TFE混練物を導電性多孔質
基板上へ塗布して形成される触媒層へ親水性部材として
SiCを添加した効果について述べる。以下に空気極の
作製手順を記す。
Example 1 In this example, an electrode catalyst in which 15 wt% of PT was supported on a first carrier and a 30 wt% ['TFE kneaded product were applied to a conductive porous substrate to form a catalyst layer. The effect of adding SiC will be described. The procedure for producing the air electrode is described below.

、電極触媒4.5 gと平均粒径0.3μmの5iC1
,8gを混合し、水を加えて十分混練する。これにポリ
フロンディスパージョンをPTFEとして2.7 gに
なるように加えて混練する。このペーストを多孔質カー
ボンペーパ(25o×3oO!rn)上へ塗布し、風乾
後空気雰囲気にて300’Cと320℃の温度で焼成し
た。
, 5iC1 with 4.5 g of electrocatalyst and average particle size of 0.3 μm
, 8g, add water and knead thoroughly. Polyflon dispersion (PTFE) was added to this in an amount of 2.7 g and kneaded. This paste was applied onto porous carbon paper (25o x 3oO!rn), air-dried, and then fired at temperatures of 300'C and 320C in an air atmosphere.

これらの空気極について3t@oQ / Q Has 
04電解液中での吸収試験を行った。その結果を第10
図に示す。図中曲線17は300℃焼成のもの、曲線1
8は320℃の空気極である。得られた平衡吸収量は、
従来の空気極に比べて約2倍もの値を示した。なお30
0℃焼成の空気極においては、電解液の占有率が50%
にも達した。次に平衡吸収に達した空気極の単極の性能
を評価した。測定は、60℃−3moQ/QHxSO4
中で行った、その結果を第11図に示す6第11図は、
それぞれの空気極について電流密度−電位特性を評価し
たもので、一定電流密度で電位の高いものほど性能が良
いことを意味する。本発明で得られた空気極は、実用的
な電流密度である60mA/a#において、0.8Vv
sNHE以上の電位を示した。
About these air electrodes 3t@oQ/Q Has
An absorption test was conducted in 04 electrolyte. The result is the 10th
As shown in the figure. Curve 17 in the figure is the one fired at 300℃, curve 1
8 is an air electrode at 320°C. The equilibrium absorption amount obtained is
The value was approximately twice that of conventional air electrodes. Furthermore, 30
In the air electrode fired at 0°C, the occupancy rate of the electrolyte is 50%.
It also reached Next, we evaluated the performance of the monopolar air electrode that reached equilibrium absorption. Measurement was carried out at 60℃-3moQ/QHxSO4
The results are shown in Figure 11.6 Figure 11 shows
The current density-potential characteristics of each air electrode were evaluated, meaning that the higher the potential at a constant current density, the better the performance. The air electrode obtained in the present invention has a current density of 0.8Vv at a practical current density of 60mA/a#.
It showed a potential higher than sNHE.

比較例1 本比較例では、触媒層へ親水剤を加えない空気極の作製
手順、作製された空気極の電解液吸収量とその性能を評
価した。
Comparative Example 1 In this comparative example, the procedure for producing an air electrode without adding a hydrophilic agent to the catalyst layer, the amount of electrolyte absorbed by the produced air electrode, and its performance were evaluated.

第1の担体−15%pt電極触媒4.5 gに水を加え
て十分に混練する。これにポリテトラフルオロエチレン
ディスバージョンをPTFEとして2.7gになるよう
に加えて混練する。このペーストを多孔質カーボンペー
パ(250X300m)上へ塗布し、風乾後空気雰囲気
にて300℃と320℃の温度で焼成した。
Water is added to 4.5 g of the first carrier-15% PT electrode catalyst and thoroughly kneaded. Polytetrafluoroethylene dispersion (PTFE) was added to this in an amount of 2.7 g and kneaded. This paste was applied onto porous carbon paper (250×300 m), air-dried, and then fired at temperatures of 300° C. and 320° C. in an air atmosphere.

これらの空気極について3IIIOQ/aH2S04電
解液中で吸収試験を行った。その結果を第12図に示す
1図中曲線19は300℃焼成のもの、曲線20は32
0℃焼成のものである。得られた平衡吸収量は+ 30
0℃焼成のもので約6 m g / cd。
Absorption tests were conducted on these air electrodes in a 3IIIOQ/aH2S04 electrolyte. The results are shown in Figure 12. In Figure 1, curve 19 is for firing at 300℃, curve 20 is for firing at 300℃.
It was fired at 0°C. The equilibrium absorption amount obtained is +30
Approximately 6 mg/cd when fired at 0°C.

320℃焼成のもので約4 mg / dであり1本発
明による改良された空気極の約1/2程度の値であった
、次に平衡吸収に達した空気極の単極の性能を評価した
。測定は実施例1と同様の操作で行つた6その結果、本
比較例で作製した空気極は。
The value of the air electrode fired at 320°C was approximately 4 mg/d, which was approximately 1/2 of the value of the improved air electrode according to the present invention.Next, the performance of the single electrode of the air electrode that reached equilibrium absorption was evaluated. did. The measurements were carried out in the same manner as in Example 1.6 As a result, the air electrode produced in this comparative example was as follows.

いずれの焼成温度においても60mA/cxlの電流密
度において0.80  Vの電位を示した。
At any firing temperature, a potential of 0.80 V was exhibited at a current density of 60 mA/cxl.

実施例2 本実施例は、実施例1で作製した300”C焼成の空気
極とメタノール極を組合せた単電池の連続放電における
電池の性能変化について評価した。
Example 2 In this example, changes in battery performance during continuous discharge of a single cell in which the 300"C fired air electrode and methanol electrode prepared in Example 1 were combined were evaluated.

電池の電極有効面積は140dであり、空気極はam液
と平衡吸取に達したものを用いた。運転は60℃で行い
、空気極側には空気をメタノール極側にはアノライト(
1,5−0Q/QHzSOa−1,0+++oQ/QC
HaOH)を循環した。電流密度60 m A / a
lにおけるこの電池の放電特性を第13図に示す。
The effective electrode area of the battery was 140 d, and the air electrode used had reached equilibrium absorption with the am liquid. The operation was carried out at 60℃, with air on the air electrode side and an anolite (on the methanol electrode side).
1,5-0Q/QHzSOa-1,0+++oQ/QC
HaOH) was circulated. Current density 60 mA/a
The discharge characteristics of this battery at 1 are shown in FIG.

同図にみられるごとく、初期0.41Vを示した電圧は
、約10時間後において0.40V、その後10時間当
りの電圧低下は5mVであった。
As seen in the figure, the voltage which was initially 0.41 V was 0.40 V after about 10 hours, and the voltage drop was 5 mV per 10 hours thereafter.

比較例2 比較例1で作製した300℃焼成の空気極とメタノール
極を組合せた単電池の連続放電における電池の性能変化
について評価した。
Comparative Example 2 Changes in battery performance during continuous discharge of the unit cell prepared in Comparative Example 1, which was a combination of an air electrode and a methanol electrode fired at 300° C., were evaluated.

電池構成及び運転条件は、実施例2と全く同じ方法で行
った、その結果、0.41Vを示した電池電圧は、約1
0時間後にo、asv、その後10時間当りの電圧低下
は10mVであった。
The battery configuration and operating conditions were exactly the same as in Example 2. As a result, the battery voltage, which was 0.41V, was approximately 1
o, asv after 0 hours, and the voltage drop per 10 hours thereafter was 10 mV.

実施例3 本実施例では、第1の担体へptを15wt%担持した
電極触媒と30wt%PTFE混練物を導電性多孔質基
板上へ塗布して形成される触媒層へ親水性部材としてZ
rOxを添加した効果について述べる。
Example 3 In this example, Z was added as a hydrophilic member to a catalyst layer formed by coating an electrode catalyst in which 15 wt% of PT was supported on a first carrier and a 30 wt% PTFE kneaded product onto a conductive porous substrate.
The effect of adding rOx will be described.

空気極の作製は、以下の手順で行った。電極触媒4.5
 gと平均粒径1μmのZr0z 1.8  gを混合
し、水を加えて十分混練する。これにポリフロンディス
パージョンをPTFEとして2.7 gになるように加
えて混練する。このペーストを多孔質カーボンペーパー
(250x3001!m)上へ塗布し、風乾後、空気中
にて300℃の温度で焼成した。この空気極は、60℃
−3ago j2 / n HzSOtの吸収試験にお
いて、10 m g / ciの電解液を吸収した。こ
の値は、細孔占有率に換算すると45%になる。この平
衡吸収に達した空気極について。
The air electrode was prepared using the following procedure. Electrocatalyst 4.5
g and 1.8 g of Zr0z having an average particle size of 1 μm are mixed, water is added, and the mixture is sufficiently kneaded. Polyflon dispersion (PTFE) was added to this in an amount of 2.7 g and kneaded. This paste was applied onto porous carbon paper (250x3001!m), air-dried, and then baked in air at a temperature of 300°C. This air electrode is 60℃
In the absorption test of -3ago j2/n HzSOt, it absorbed 10 mg/ci of electrolyte. This value becomes 45% when converted to pore occupancy. For the air electrode that has reached this equilibrium absorption.

単極としての電流密度−電位特性及びメタノール極と組
合せた単電池特性について評価した。評価法は、実施例
1及び2で行ったと同様の方法である。
The current density-potential characteristics as a single electrode and the characteristics of a single cell in combination with a methanol electrode were evaluated. The evaluation method was the same as that used in Examples 1 and 2.

その結果、単極性能は電流密度60mA/a#において
0.80Vと高い電位を示した。又電池電圧は、初期0
.40Vの電圧示し、約10時間後に0.39V、その
後10時間当りの電圧低下は5mVであった。
As a result, the unipolar performance showed a high potential of 0.80 V at a current density of 60 mA/a#. Also, the battery voltage is initially 0.
.. The voltage was 40 V, and after about 10 hours it was 0.39 V, and the voltage drop was 5 mV per 10 hours.

実施例4 本実施例では、第1の担体へptを15wt%担持した
電極触媒と30wt%PTFE混練物を導電性多孔質基
板上へ塗布して形成される触媒層へ親水性部材としてリ
ン酸ジルコニウム(Zr(HPOa)z)を添加した効
果について述べる。
Example 4 In this example, phosphoric acid was added as a hydrophilic member to a catalyst layer formed by coating an electrode catalyst in which 15 wt% of PT was supported on a first carrier and a 30 wt% PTFE kneaded product onto a conductive porous substrate. The effect of adding zirconium (Zr(HPOa)z) will be described.

空気極の作製は、以下の手順で行った。Xc−72R−
15%Pt電極触g4,5  gと平均粒径200 m
esh以下のZr(HPOth 1 、8  gを滌合
し、水を加えて十分混練する。これにポリロメンデイス
バージョンをPTFEとして2.7 gになるように加
え混練する。このペーストを多孔質カーボンペーパー(
250x300m)上へ塗布し、風乾後空気中にて30
0℃で焼成した。この空気極は、60’C−3moQ/
jlHzsOaの吸収試験において。
The air electrode was prepared using the following procedure. Xc-72R-
15% Pt electrode contact g4.5 g and average particle size 200 m
Mix 8 g of Zr (HPOth) below esh, add water, and thoroughly knead.Add polyromendis version as PTFE to a total weight of 2.7 g and knead.This paste is mixed with porous carbon. paper(
250x300m) and air dried for 30 minutes in the air.
It was fired at 0°C. This air electrode is 60'C-3moQ/
In the absorption test of jlHzsOa.

10.5mg/aJの電解液を吸収した。この値は。Absorbed 10.5 mg/aJ of electrolyte. This value is.

細孔占有率に換算すると48%になる。この平衡吸収に
達した空気極について、単極としての電流密度−電位特
性及びメタノール極と組合せた単電池特性について評価
した。評価は、実施例1及び2と同様の方法で行った。
When converted to pore occupancy rate, it is 48%. For the air electrode that had reached this equilibrium absorption, current density-potential characteristics as a single electrode and unit cell characteristics in combination with a methanol electrode were evaluated. The evaluation was performed in the same manner as in Examples 1 and 2.

その結果、単極性能は電流密度60mA/a#において
0.78Vの電位を示した。又電池電圧は、初期0.3
8  Vの電圧示し、約10時間後に0.37V、その
後10時間当りの電圧低下は5 m Vであった。
As a result, the monopolar performance showed a potential of 0.78 V at a current density of 60 mA/a#. Also, the battery voltage is initially 0.3
It showed a voltage of 8 V, 0.37 V after about 10 hours, and then a voltage drop of 5 mV per 10 hours.

尚、ガス拡散電極を作製する場合、活性金属を担持する
担体は、電子電導性をそこなわない程度の導電性を有し
且つガス拡散電極としての撥水性を維持でき得る疎水部
と親水部とを合せ持ち更には活性金属は該担体の親木部
位にのみ存在したもので触媒層が構成されるものとして
もよい。
In addition, when producing a gas diffusion electrode, the carrier supporting the active metal must have a hydrophobic part and a hydrophilic part that have conductivity to a degree that does not impair electronic conductivity and can maintain water repellency as a gas diffusion electrode. Furthermore, the active metal may be present only in the parent part of the carrier to form the catalyst layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ガス拡散電極すなわち空気極の電解液
吸収量を増大でき、高い電位を示す細孔占有率領域を拡
大できる結果、電池の連続放電における空気極触媒層中
の電解液体積の変化にともなう電位低下を抑制できるこ
とから電池の長寿命化が達成できる。
According to the present invention, it is possible to increase the amount of electrolyte absorbed by the gas diffusion electrode, that is, the air electrode, and to expand the pore occupancy region that exhibits a high potential. Since it is possible to suppress the drop in potential due to changes, a longer battery life can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、空気極触媒層細孔容積を占める電解液量の割
合、すなわち細孔占有率と空気極性能の関係を示す図、
第2図は、空気極の時間に対する電解液の吸収量変化、
第3図は、触媒層中のPTFE量を変化させた空気極の
電解液平衡吸収量、第4図は、焼成温度を変化させた空
気極の時間に対する電解液吸収量、第5図は、触媒層厚
みを変化させた空気極の電解液吸収量、第6図は1種々
の方法で作製した空気極触媒層の細孔容積変化、第7図
は、細孔占有率の異なる空気極の電位変化、第8図(A
)(B)は、メタノール燃料電池の単電池構成と、空気
極−イオン交換膜−メタノール極近傍の拡大モデル図、
第9図は、従来電池の特性。 第10図は、本発明法よる空気極の時間に対する電解液
吸収量、第11図は、本発明による空気極の電流密度−
電位特性、第12図は従来法空気極の時間に対する電解
液吸収量、第13図は1本発明による空気極を用いた燃
料電池の連続放電特性を示す。 1・・・第1の担体−15%pt電極触媒を用いた空気
極の電解液吸収量、2・・・第2の担体−50%pt電
極触媒を用いた空気極の電解液吸収量、3・・・触媒層
中のPTFE量を変化させた空気極の電解液平衡吸収量
、4・・・第1の担体−15%pt電極触媒を用いた空
気極を300℃で焼成したものについての電解液吸収量
、5・・・同じく320℃焼成のもの、6・・・340
”C焼成のものの電解液吸収量。 7・・・第2の担体−50%pt電極触媒を電極12当
り5 m g塗布した空気極の電解液吸収量、8・・・
同じ<10mg/ffl’!!I布したもの、9・・・
空気室。 10・・・空気極基板、11・・・空気極触媒層、12
・・・イオン交換膜、13・・・メタノール極触媒層、
14・・・メタノール極基板、15・・・アノライト室
、16・・・空気極触媒層を占める電解液層、17・・
・本発明において300℃で焼成した空気極の電解液吸
収量、18・・・同じく320℃で焼成のもの、19・
・・17の空気極の電流密度−電位特性、20・・・1
8の空気極の特性221・・・300℃で焼成した従来
法空気極の電解液吸収量、22・・・同じく320℃で
焼成した空気極の時間に対する電解液吸収量。
FIG. 1 is a diagram showing the ratio of the amount of electrolyte occupying the pore volume of the air electrode catalyst layer, that is, the relationship between pore occupancy and air electrode performance;
Figure 2 shows the change in the amount of electrolyte absorbed by the air electrode over time;
Figure 3 shows the equilibrium absorption amount of electrolyte in the air electrode with varying amounts of PTFE in the catalyst layer, Figure 4 shows the amount of electrolyte absorbed versus time in the air electrode with varying firing temperature, and Figure 5 shows: Figure 6 shows the amount of electrolyte absorbed by air electrodes with different catalyst layer thicknesses. Figure 6 shows the changes in pore volume of air electrode catalyst layers prepared by various methods. Figure 7 shows the amount of electrolyte absorbed by air electrodes with different pore occupancy rates. Potential change, Figure 8 (A
) (B) is an enlarged model diagram of the unit cell configuration of a methanol fuel cell and the vicinity of the air electrode - ion exchange membrane - methanol pole,
Figure 9 shows the characteristics of a conventional battery. Figure 10 shows the amount of electrolyte absorbed by the air electrode according to the present invention over time, and Figure 11 shows the current density of the air electrode according to the present invention.
12 shows the electrolyte absorption amount versus time for the conventional air electrode, and FIG. 13 shows the continuous discharge characteristics of a fuel cell using the air electrode according to the present invention. 1... Amount of electrolyte absorbed by the air electrode using the first carrier - 15% pt electrode catalyst, 2... Amount of electrolyte absorbed by the air electrode using the second carrier - 50% pt electrode catalyst, 3...Equilibrium electrolyte absorption amount of air electrodes with varying amounts of PTFE in the catalyst layer, 4...Air electrodes using first carrier-15% pt electrode catalyst fired at 300°C Absorption amount of electrolyte, 5... Also fired at 320°C, 6... 340
7. Electrolyte absorption amount of the air electrode coated with 5 mg of second carrier-50% PT electrode catalyst per 12 electrodes, 8...
Same <10mg/ffl'! ! I clothed, 9...
air chamber. 10... Air electrode substrate, 11... Air electrode catalyst layer, 12
...Ion exchange membrane, 13...methanol electrode catalyst layer,
14... Methanol electrode substrate, 15... Anolyte chamber, 16... Electrolyte layer occupying the air electrode catalyst layer, 17...
・Amount of electrolyte absorbed by the air electrode fired at 300°C in the present invention, 18...Those also fired at 320°C, 19.
...17 air electrode current density-potential characteristics, 20...1
8 Characteristics of the air electrode 221...Amount of electrolyte absorbed by a conventional air electrode fired at 300°C, 22...Amount of electrolyte absorbed versus time of an air electrode also fired at 320°C.

Claims (1)

【特許請求の範囲】 1、酸化剤極と燃料極からなる対向した一対の電極と電
解液を含んだイオン交換膜から成る燃料電池において、
前記酸化剤極触媒層を構成する物質より親水性の部材を
触媒層に添加して電解液の保持容積を増大させたことを
特徴とする燃料電池。 2、特許請求の範囲第1項において、前記電解質は、プ
ロトン解離型の強酸から成ることを特徴とする燃料電池
。 3、特許請求の範囲第2項において、前記強酸は、硫酸
、リン酸及びスルフォン酸基をもつ有機酸のうち少なく
とも一つからなることを特徴とする燃料電池。 4、特許請求の範囲第1項において、前記イオン交換膜
は、プロトン輸送を行うカチオン交換膜であることを特
徴とする燃料電池。 5、特許請求の範囲第1項において、前記酸化剤極触媒
層構成物質は、カーボン系担体に白金を担持した電極触
媒と撥水性及び結着性を有するポリテトラフルオロエチ
レンとの混合物からなることを特徴とする燃料電池。 6、特許請求の範囲第1項において、前記親水性部材は
、前記触媒層構成物質より親水的なものからなり、かつ
酸化チタン、酸化ジルコニウム、酸化スズ、ジルコン、
窒化ホウ素、窒化ケイ素、炭化タンタル、炭化ケイ素、
リン酸ジルコニウム、リン酸チタン等のうち少なくとも
一つであることを特徴とする燃料電池。 7、特許請求の範囲第1項において、酸化剤は空気、燃
料はメタノールであることを特徴とする燃料電池。
[Claims] 1. A fuel cell comprising a pair of opposing electrodes consisting of an oxidizer electrode and a fuel electrode, and an ion exchange membrane containing an electrolyte,
A fuel cell characterized in that a material more hydrophilic than the substance constituting the oxidant electrode catalyst layer is added to the catalyst layer to increase the holding volume of the electrolyte. 2. The fuel cell according to claim 1, wherein the electrolyte is made of a proton dissociation type strong acid. 3. The fuel cell according to claim 2, wherein the strong acid comprises at least one of sulfuric acid, phosphoric acid, and an organic acid having a sulfonic acid group. 4. The fuel cell according to claim 1, wherein the ion exchange membrane is a cation exchange membrane that transports protons. 5. In claim 1, the oxidizing agent electrode catalyst layer constituent material is composed of a mixture of an electrode catalyst in which platinum is supported on a carbon-based carrier and polytetrafluoroethylene having water repellency and binding properties. A fuel cell featuring: 6. In claim 1, the hydrophilic member is made of a material more hydrophilic than the catalyst layer constituent material, and includes titanium oxide, zirconium oxide, tin oxide, zircon,
boron nitride, silicon nitride, tantalum carbide, silicon carbide,
A fuel cell comprising at least one of zirconium phosphate, titanium phosphate, etc. 7. The fuel cell according to claim 1, wherein the oxidizing agent is air and the fuel is methanol.
JP60224763A 1985-10-11 1985-10-11 Methanol fuel cell Expired - Lifetime JPH0727777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224763A JPH0727777B2 (en) 1985-10-11 1985-10-11 Methanol fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224763A JPH0727777B2 (en) 1985-10-11 1985-10-11 Methanol fuel cell

Publications (2)

Publication Number Publication Date
JPS6286662A true JPS6286662A (en) 1987-04-21
JPH0727777B2 JPH0727777B2 (en) 1995-03-29

Family

ID=16818849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224763A Expired - Lifetime JPH0727777B2 (en) 1985-10-11 1985-10-11 Methanol fuel cell

Country Status (1)

Country Link
JP (1) JPH0727777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002938A (en) * 2012-06-19 2014-01-09 Fujikura Ltd Direct methanol fuel cell

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212961A (en) * 1984-04-06 1985-10-25 Hitachi Ltd Fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212961A (en) * 1984-04-06 1985-10-25 Hitachi Ltd Fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002938A (en) * 2012-06-19 2014-01-09 Fujikura Ltd Direct methanol fuel cell

Also Published As

Publication number Publication date
JPH0727777B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
Antolini et al. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC
Watanabe et al. New preparation method of a high performance gas diffusion electrode working at 100% utilization of catalyst clusters and analysis of the reaction layer
Watanabe et al. Experimental analysis of the reaction layer structure in a gas diffusion electrode
Uchida et al. Influences of both carbon supports and heat‐treatment of supported catalyst on electrochemical oxidation of methanol
JP2824457B2 (en) Cermet electrode and its manufacturing method
EP1748509B1 (en) Fuel cell and gas diffusion electrode for fuel cell
US4017663A (en) Electrodes for electrochemical cells
JP2842150B2 (en) Polymer electrolyte fuel cell
McBreen et al. Carbon supports for phosphoric acid fuel cell electrocatalysts: alternative materials and methods of evaluation
JP2008505467A5 (en)
EA011179B1 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
US3972735A (en) Method for making electrodes for electrochemical cells
Escribano et al. Electrodes for hydrogen/oxygen polymer electrolyte membrane fuel cells
Arico et al. Carbon monoxide electrooxidation on porous Pt–Ru electrodes in sulphuric acid
US4643957A (en) Fuel cell
Mosdale et al. New electrodes for hydrogen/oxygen solid polymer electrolyte fuel cell
EP0557259B1 (en) Gas diffusion electrode for electrochemical cell and process of preparing same
JPS6286662A (en) Fuel cell
Mamlouk et al. A study of oxygen reduction on carbon-supported platinum fuel cell electrocatalysts in polybenzimidazole/phosphoric acid
Shibli et al. Development and evaluation of platinum—ruthenium bimetal catalyst-based carbon electrodes for hydrogen/oxygen fuel cells in NaOH media
Giordano et al. Influence of physicochemical properties on the performance of Pt/C porous electrodes for oxygen reduction in phosphoric acid
Song et al. The influence of oxygen additions to hydrogen in their electrode reactions at Pt/Nafion interface
KR20210066261A (en) Ionomer-ionomer support composite, method for preparing the same, and catalyst electrode for fuel cell comprising the ionomer-ionomer support composite
JPH0722020B2 (en) Method for manufacturing gas diffusion electrode
KR101105335B1 (en) A Method for Fabricating Hydrogen Electrochemical Sensor Using Tetramethylammonium hydroxide pentahydrate