JPS6285897A - Method of controlling impurity concentration of boiling water type reactor feed water system - Google Patents

Method of controlling impurity concentration of boiling water type reactor feed water system

Info

Publication number
JPS6285897A
JPS6285897A JP60224885A JP22488585A JPS6285897A JP S6285897 A JPS6285897 A JP S6285897A JP 60224885 A JP60224885 A JP 60224885A JP 22488585 A JP22488585 A JP 22488585A JP S6285897 A JPS6285897 A JP S6285897A
Authority
JP
Japan
Prior art keywords
water
reactor
concentration
impurity concentration
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60224885A
Other languages
Japanese (ja)
Inventor
健治 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60224885A priority Critical patent/JPS6285897A/en
Publication of JPS6285897A publication Critical patent/JPS6285897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野] 本発明は、沸騰水型原子炉給水系の不純物濃度制御方法
に係り、特に給水系のクラッド濃度を最適にコントロー
ルすることによって再循環系に、)5りるイAン状放射
能を低く抑えるための制御方法に関づる。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for controlling impurity concentration in a boiling water reactor feed water system, and in particular, by optimally controlling the crud concentration in the feed water system, ) 5 Relates to control methods for keeping radioactivity low.

〔発明の技術的背預とその問題点〕[Technical backbone of the invention and its problems]

沸騰水型原子炉(B W R)ブラン1−では、第4図
に示すように原子炉1からの蒸気がタービン2に供給さ
れ、タービン2で仕串をした蒸気は復水器3内で復水と
47る。この復水は復水濾過器4にて浄化され、ざらに
復水脱塩器5を経て浄化された後、給水加熱器6で加温
され、原子炉に導入される。
In the boiling water reactor (BWR) Brun 1-, steam from the reactor 1 is supplied to the turbine 2, as shown in Figure 4, and the steam that has been squeezed by the turbine 2 is stored in the condenser 3. 47 with condensate. This condensate is purified by a condensate filter 4, roughly purified by a condensate demineralizer 5, heated by a feed water heater 6, and introduced into the reactor.

このように従来の原子炉給水系においては、給水4中の
クラッドを低減させるために復水濾過器4および復水脱
塩器5により給水からクラッドを除去していた。そして
従来は、第3図に示すように、給水中のクラッドが少な
い程、鉄を主成分としたクラッド放射能の生成が少なく
なるとの観点から給水中のクラッドをできる限り少なく
づる方法が採られていた。
As described above, in the conventional reactor water supply system, in order to reduce crud in the feed water 4, the condensate filter 4 and the condensate demineralizer 5 remove crud from the feed water. Conventionally, as shown in Figure 3, a method has been adopted to reduce the amount of crud in the water supply as much as possible, from the perspective that the less crud in the water supply, the less radioactivity will be generated from the iron-based crud. was.

しかしながら、近年のニッケル合金製配管多用のプラン
1〜では、給水中のクラッドを極端に少なくすると、ク
ラッドによるイオン状放射能の吸着除去陪下J5よび共
析除去降下が低減し、原子炉の再循環系にお【ノるイオ
ン放射能が増大する結果、再循環系配管などの再循環系
構造物の内表面部にイオン状放射能が蓄積されることが
判った。その結果、原子炉再循環系の点検時に、その点
検作業を行なう作業者の被曝を回避するために、メンテ
ナンスコストの上昇を来たす問題点が生じた。
However, in Plan 1~, which uses a lot of nickel alloy piping in recent years, if the amount of crud in the water supply is extremely reduced, the amount of adsorption and removal of ionic radioactivity by the crud and the eutectoid removal drop are reduced, and the reactor is restarted. It was found that as a result of the increase in ionic radioactivity in the circulation system, ionic radioactivity was accumulated on the inner surfaces of recirculation system structures such as recirculation system piping. As a result, when inspecting the reactor recirculation system, a problem arises in that maintenance costs increase in order to avoid exposure of workers performing the inspection work.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、原
子炉の再循1フ系におけるイオン状放射能イ4 ’15
を低減させ、点検時に+5 Lノる被曝を低減させるこ
とかで・きる沸騰水型原子炉給水系の不純物濃度制御方
法を提供することを目的とする。
The present invention has been made in consideration of these circumstances, and is aimed at reducing ionic radioactivity in the recirculation system of a nuclear reactor.
The purpose of the present invention is to provide a method for controlling impurity concentration in a boiling water reactor water supply system by reducing radiation exposure by +5 L during inspection.

〔発明の概要) 上記の1」的を達成するために、本発明に係る沸騰水型
原子炉給水系の不純物濃度制御方法で1よ、沸j渣水型
原子炉の給水系中の鉄濃度とニッケル淵19との比(F
e/Ni)を2以上となるように制御することを特徴と
している。
[Summary of the Invention] In order to achieve the above-mentioned objective 1, the impurity concentration control method of the boiling water reactor feed water system according to the present invention is used to reduce the iron concentration in the boiling water reactor feed water system. and the ratio of Nickelbuchi 19 (F
e/Ni) is controlled to be 2 or more.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実滴例を図面に基づいて説明する。 Hereinafter, an example of a droplet of the present invention will be explained based on the drawings.

第1図は本発明に係る制御方法を実施するための給水系
のフ[1−を示づ。なお、基本的な系統は第4図に示す
従来の構成と変らないので、図の該当個所に同一符号を
付してその説明を省略する。
FIG. 1 shows the flow [1-] of a water supply system for carrying out the control method according to the present invention. Incidentally, since the basic system is the same as the conventional configuration shown in FIG. 4, the same reference numerals are given to the corresponding parts in the figure and the explanation thereof will be omitted.

この実施例の系統では、原子炉1に給水が導入される0
4の給水系の糸路途中に濁度計7を設り、これによって
検出したクラッド11111からFe1lが分析され、
濃度が算出されるようにしている。
In the system of this embodiment, the feed water is introduced into the reactor 1.
A turbidity meter 7 was installed in the middle of the thread path of the water supply system in step 4, and Fe1l was analyzed from the crud 11111 detected by this.
The concentration is calculated.

この算出値からFea度と別途にイオンクロスト計8に
より測定されるN i +1J度との比(Fe/Ni)
計算機9により締出され、この算出値が、設定値(Fe
/N1=2>以下となったとき、バイパス系路10の途
中に設けられたバイパス弁9の開指令信号が出力される
とともに設定値(1:e/N1=2)とFe/Niのり
〕出値との偏m ニMづいてバイパス弁11の開度が調
整されるようになっている。この結果、給水中のクラッ
ドは復水濾過器4で捕捉されることなく、給水過熱器6
を鋒て原−r炉1に供給されるとともにバイパス弁11
の開度調整によって所定のクラッド濃度以下の給水が原
子炉1に供給される。また、同様にバイパス弁13の開
度の調整によっても復水脱塩器5でクラッドが捕捉され
ることなく所定のクラッド濃度を(ワることができる。
From this calculated value, the ratio (Fe/Ni) of the Fe degree and the Ni + 1J degree separately measured by the ion cross meter 8
The calculated value is set as the set value (Fe
/N1=2> or less, a command signal to open the bypass valve 9 provided in the middle of the bypass line 10 is output, and the set value (1:e/N1=2) and Fe/Ni glue] The opening degree of the bypass valve 11 is adjusted according to the deviation m from the output value. As a result, crud in the feed water is not captured by the condensate filter 4 and is removed by the feed water superheater 6.
is supplied to the raw material reactor 1, and the bypass valve 11
By adjusting the opening of the reactor 1, water having a predetermined crud concentration or less is supplied to the reactor 1. Similarly, by adjusting the opening degree of the bypass valve 13, a predetermined crud concentration can be achieved without trapping crud in the condensate demineralizer 5.

また、このようなバイパス弁11またはバイパス弁12
の開度による不純物濃度制御方法とともに、または単独
に次のような方法によっても給水中の不純物濃度を制御
するようになっている。づなわら、濁度計7によって測
定されたクラッド濃度からFe1度が分析されその濃度
が口出される。
Moreover, such a bypass valve 11 or bypass valve 12
The impurity concentration in the water supply is controlled by the following method, together with the method of controlling the impurity concentration by the opening degree of the pump, or by the following method alone. First, the Fe1 degree is analyzed from the crud concentration measured by the turbidity meter 7, and the concentration is determined.

またイオンクロスl−ff+8によってNillJ度が
分析され、その濃度が口出される。この口出値から「e
濃度とNi淵瓜との比Fe/Niが算出され、Fe/N
 iの算出値が設定値(Fe/N i =2)以下にな
ったとき、鉄の酸化物または鉄の水酸化物を水中に懸濁
さUoたタンク13から給水管に接続された配管の途中
に設けられた鉄性入用バルブ14への開指令信号が出力
されるとともに、設定値(Fe/N1=2)とFe/N
iの算出値との偏差値に基づいて鉄性入用バルブ14の
開度が調整される。
Further, the degree of NillJ is analyzed by the ion cross l-ff+8, and its concentration is reported. From this quotation value, “e”
The ratio Fe/Ni between the concentration and Ni fuchika is calculated, and Fe/N
When the calculated value of i becomes less than the set value (Fe/N i = 2), iron oxide or iron hydroxide is suspended in water, and the pipe connected from the tank 13 to the water supply pipe is An opening command signal is output to the ferrous intake valve 14 provided at the
The opening degree of the ferrous valve 14 is adjusted based on the deviation value from the calculated value of i.

このようにして給水中のPc/Niを2以上にりること
によって炉水中に+3いて1 .2+ II    +Fe 203 +  ト−120−+N
   i   Fe  2 0 4 −1−2  ト1
             ・・・ ・・・  (1)
60CO21+Fe2O3+1−120→60COFe
  O+21−1+ 24       ・・・・・・(2)で示される反応
が進行し、60Co2”のイオン放射能が低減される。
In this way, by increasing the Pc/Ni in the water supply to 2 or more, the ratio in the reactor water is +3 and 1. 2+ II +Fe 203 + To-120-+N
i Fe 2 0 4 -1-2 To1
・・・ ・・・ (1)
60CO21+Fe2O3+1-120→60COFe
O+21-1+ 24 ...The reaction shown in (2) proceeds, and the ion radioactivity of 60Co2'' is reduced.

この点は58COの場合も同様である。この場合、給水
中のF’e/Niと炉水中のイオン放射能濃度との関係
は、第2図に示7−ように、Fe/Niが2よりも低い
領域では炉水中のイオン放射能濃度が高いが、給水中の
Fe/Niが2以上のとぎは炉水中のイオン放射性濃度
が低いことが認められた。したがって、給水中のFe/
Niを2以−[に制御することによって、炉水中のイオ
ン放射能濃度が低くなるので、原子炉再循環系のイオン
状放射能の蓄積が大巾に低減されるものである。
This point also applies to 58CO. In this case, the relationship between F'e/Ni in the feed water and the ion radioactivity concentration in the reactor water is as shown in Figure 2. In the region where Fe/Ni is lower than 2, the ion radioactivity concentration in the reactor water is Although the concentration was high, it was found that the ion radioactivity concentration in the reactor water was low in the cases where the Fe/Ni ratio in the feed water was 2 or more. Therefore, Fe/
By controlling Ni to 2 or more, the ionic radioactivity concentration in the reactor water is lowered, so the accumulation of ionic radioactivity in the reactor recirculation system is greatly reduced.

なお、第1図に示す実施例ではバイパス系路10および
バイパス弁11を設けており、このバイパス系路10ま
たはバイパス弁11を給水が流通することが多くなるの
で復水濾過器4および復水脱塩器5の寿命を延ぼりこと
ができる。
In addition, in the embodiment shown in FIG. 1, a bypass line 10 and a bypass valve 11 are provided, and since feed water often flows through this bypass line 10 or bypass valve 11, the condensate filter 4 and the condensate The life of the demineralizer 5 can be extended.

(発明の効果) 以上のように本発明によれば、給水系のクラッド濃度を
最適にコン1−ロールすることによって炉水中のイオン
放射性濃度が低減し、このため再循環系にお【プるイオ
ン状放射能の蓄積が低減され、再循環系の点検時におけ
る作業者の被曝を大巾に低減させることができる。
(Effects of the Invention) As described above, according to the present invention, the ion radioactivity concentration in reactor water is reduced by optimally controlling the crud concentration in the water supply system, and therefore, the concentration of ion radioactivity in the reactor water is reduced. The accumulation of ionic radioactivity is reduced, and the exposure of workers to radiation during inspection of the recirculation system can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施づ−るための洲風水ケ′!原子炉
の給水系のフロー図、第2図は給水系のFc!/Niと
炉水中のイオン放割牲濃磨との関係を承りグラフ、第3
図は給水系のクラッドと炉水中の放射能濃度との関係を
示すグラフ、第4図は沸騰水型原子炉の給水系のフロー
図である。 1・・・原子炉、2・・・タービン、3・・・復水器、
4・・・復水濾過器、5・・・復水脱塩器、6・・・給
水加熱器、7・・・濁度計、8・・・イオンクロスト計
、9・・・S1紳機、10・・・バイパス系路、11・
・・バイパス弁、13・・・タンク、14・・・鉄性入
用バルブ。 出願人代理人   波 多 野   久第 f 目 HO,0/   0.1  /2 □ 矛な木、中のFC/A/を 第 2 図 ?1 □ 鉛水中のフラッド 第 3 目
Figure 1 shows the state of feng shui for carrying out the present invention! A flow diagram of the reactor water supply system, Figure 2 is the Fc of the water supply system! /Graph 3 regarding the relationship between Ni and ion radioactive concentration in reactor water.
The figure is a graph showing the relationship between the cladding of the water supply system and the radioactivity concentration in reactor water, and Figure 4 is a flow diagram of the water supply system of a boiling water reactor. 1... Nuclear reactor, 2... Turbine, 3... Condenser,
4... Condensate filter, 5... Condensate demineralizer, 6... Feed water heater, 7... Turbidity meter, 8... Ion clost meter, 9... S1 machine , 10... bypass system path, 11.
...Bypass valve, 13...tank, 14...iron valve. Applicant's agent Hisashi Hatano Fth HO, 0/ 0.1 /2 □ Is the FC/A/ inside the tree in Figure 2? 1 □ Flood in lead water Part 3

Claims (1)

【特許請求の範囲】 1、沸騰水型原子炉の給水系中の鉄濃度とニッケル濃度
との比(Fe/Ni)を所定値以上となるように制御す
ることを特徴とする沸騰水型原子炉給水系の不純物濃度
制御方法。 2、給水系中のFe/Niが所定値以下となったときに
給水系路内に鉄の酸化物の懸濁液、鉄の水酸化物の懸濁
液を注入させる特許請求の範囲第1項記載の沸騰水型原
子炉給水系の不純物濃度制御方法。 3、給水系に設置される復水濾過器と復水脱塩器に対す
るバイパス系路を設け、給水系中のFe/Niが所定値
以下となつたときに給水を前記バイパス系路内に流通さ
せる特許請求の範囲第1項記載の沸騰水型原子炉給水系
の不純物濃度制御方法。
[Claims] 1. A boiling water nuclear reactor characterized by controlling the ratio of iron concentration to nickel concentration (Fe/Ni) in the water supply system of a boiling water reactor to a predetermined value or more. Method for controlling impurity concentration in reactor feed water system. 2. Claim 1 of injecting an iron oxide suspension or an iron hydroxide suspension into the water supply system when Fe/Ni in the water supply system falls below a predetermined value. A method for controlling impurity concentration in a boiling water reactor feed water system as described in . 3. A bypass system is provided for the condensate filter and condensate demineralizer installed in the water supply system, and when Fe/Ni in the water supply system falls below a predetermined value, the supply water is distributed into the bypass system. A method for controlling impurity concentration in a boiling water reactor feed water system according to claim 1.
JP60224885A 1985-10-11 1985-10-11 Method of controlling impurity concentration of boiling water type reactor feed water system Pending JPS6285897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60224885A JPS6285897A (en) 1985-10-11 1985-10-11 Method of controlling impurity concentration of boiling water type reactor feed water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60224885A JPS6285897A (en) 1985-10-11 1985-10-11 Method of controlling impurity concentration of boiling water type reactor feed water system

Publications (1)

Publication Number Publication Date
JPS6285897A true JPS6285897A (en) 1987-04-20

Family

ID=16820688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60224885A Pending JPS6285897A (en) 1985-10-11 1985-10-11 Method of controlling impurity concentration of boiling water type reactor feed water system

Country Status (1)

Country Link
JP (1) JPS6285897A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233796A (en) * 1986-04-04 1987-10-14 株式会社日立製作所 Method of reducing radioactivity of nuclear power plant
US4927598A (en) * 1987-09-09 1990-05-22 Hitachi, Ltd. Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
US11690520B2 (en) 2018-06-20 2023-07-04 Samsung Electronics Co., Ltd. Apparatus and method for measuring bio-information

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233796A (en) * 1986-04-04 1987-10-14 株式会社日立製作所 Method of reducing radioactivity of nuclear power plant
US4927598A (en) * 1987-09-09 1990-05-22 Hitachi, Ltd. Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
US11690520B2 (en) 2018-06-20 2023-07-04 Samsung Electronics Co., Ltd. Apparatus and method for measuring bio-information

Similar Documents

Publication Publication Date Title
JPH079477B2 (en) Radioactivity reduction method for nuclear power plant and nuclear power plant
JPH06130191A (en) Operation of boiling water reactor plant, boiling water reactor plant, and metal injection device
JPS6285897A (en) Method of controlling impurity concentration of boiling water type reactor feed water system
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
US4204911A (en) Method and apparatus for removing iodine from a nuclear reactor coolant
JP2001235584A (en) Nuclear power plant and its operation method
JPS6179194A (en) Reactor water feeder
JPS629296A (en) Structural material of nuclear-reactor primary cooling system
JPS60201296A (en) Reducer for radiation dose
JPH0424434B2 (en)
JPH0361918B2 (en)
JP3083629B2 (en) Nuclear power plant
Dacquait et al. $^{110} $ mAg behaviour in PWRs Lessons learnt from the EMECC campaigns
JP2865726B2 (en) Nuclear power plant
JPH0631817B2 (en) Boiling water nuclear plant
JPS61148394A (en) Method and device for controlling condensate purifying system of boiling water type nuclear power plant
JPH0198998A (en) Controller for water quality of condensate/feed water system of reactor
JPH05215892A (en) Feed water iron concentration control device
JPS61205897A (en) Nuclear power plant
JPH0479439B2 (en)
JPS61104297A (en) Device for removing radioactivity of nuclear reactor primarycooling system
JPS61102597A (en) Boiling water type nuclear power plant
JPH05297187A (en) Boiling water reactor
JPH0249479B2 (en)
JPH0875883A (en) Fuel assembly, nuclear power plant, and nuclear power plant operating method