JPS6285819A - Displacement detector - Google Patents

Displacement detector

Info

Publication number
JPS6285819A
JPS6285819A JP22658385A JP22658385A JPS6285819A JP S6285819 A JPS6285819 A JP S6285819A JP 22658385 A JP22658385 A JP 22658385A JP 22658385 A JP22658385 A JP 22658385A JP S6285819 A JPS6285819 A JP S6285819A
Authority
JP
Japan
Prior art keywords
permanent magnet
current pulse
ultrasonic
magnetostrictive
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22658385A
Other languages
Japanese (ja)
Inventor
Kozo Kyoizumi
宏三 京和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO BOEKI KK
Original Assignee
SANKYO BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO BOEKI KK filed Critical SANKYO BOEKI KK
Priority to JP22658385A priority Critical patent/JPS6285819A/en
Publication of JPS6285819A publication Critical patent/JPS6285819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect displacement in a state that there are no restrictions in the approaching distance between two magnets without being influenced by transmission speed of ultrasonic waves by detecting separately ultrasonic signals of the fixed and movable permanent magnets by supply signals of two transmission means. CONSTITUTION:The movable permanent magnet 2 movable along a magnetostrictive line 1 and the fixed permanent magnet 3 fixed on a prescribed part of the magnetostrictive line 1 are provided. Then, the 1st pulse generator 4 impresses a starting end of the magnetostrictive line 1 with an electric current pulse A1 and the 2nd pulse generator 5 impresses just behind the magnet 3 of the magnetostrictive line 1 with an electric current pulse A2. Further, a distortion detector 6 is provided at the starting end side of the magnetostrictive line 1 and receives the ultrasonic signal transmitting through the magnetostrictive line 1. Then, a signal in connection with transmission time until the detector 6 of an ultrasonic signal produced or reflected on a part of the magnetostrictive line 1 where the magnets 2 and 3 approach is introduced into an arithmetic circuit and the mechanical displacement given to the magnet 3 is calculated. Accordingly, there is no possibility being influenced by the transmission speed of the ultrasonic waves. Further, since a reception means may be provided at only one place, the displacement can be detected without being restricted by an object to be measured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁歪現象を用いて物体や液面などの機械的変位
を検出する変位検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a displacement detection device that detects mechanical displacement of an object, liquid level, etc. using magnetostriction phenomena.

従来技術とその問題点 従来、磁歪現象を用いて物体や液面の機械的変位を知る
変位検出装置としては、例えば米国特許第317313
1号公報に記載のように、磁歪線の一端に電流パルスを
流し、磁歪線に沿って移動可能な永久磁石の近接する磁
歪線の部位にいわゆるビープマン効果(Wiedema
nn effect)により超音波(捩り歪)を発生さ
せ、磁歪線の特定部位までの超音波の伝播時間を計測す
ることにより、永久磁石に与えられる機械的変位を検出
するものが知られている。しかしながら、この種の変位
検出装置の場合には、超音波の伝播速度が例えば温度変
化によって変動すると測定距離に誤差をもたらすという
問題がある。
Prior art and its problems Conventionally, as a displacement detection device that detects mechanical displacement of an object or liquid surface using magnetostriction phenomenon, for example, U.S. Pat. No. 317313
As described in Publication No. 1, a current pulse is passed through one end of a magnetostrictive wire, and a so-called Wiedema effect (Wiedema
There is a known device that detects mechanical displacement given to a permanent magnet by generating ultrasonic waves (torsional strain) using magnetostrictive lines and measuring the propagation time of the ultrasonic waves to a specific part of the magnetostrictive line. However, in the case of this type of displacement detection device, there is a problem in that if the propagation speed of the ultrasonic wave changes due to, for example, a temperature change, an error occurs in the measured distance.

このような伝播速度の変動による測定誤差を解消するた
めに、例えば特開昭55−66710号公報に記載のよ
うに、磁歪線の両端部に第1と第2の受信手段を設け、
永久磁石からこれら受信手段までの超音波の伝播時間を
それぞれ検出することによって、伝播速度に関係なく永
久磁石の位置を求めることができる変位検出装置が提供
されている。ところが、上記の変位検出装置の場合には
1、両端部に受信手段を設ける必要があるため、装置の
一端部が測定すべき対象物の内部に埋没するような場合
、例えば液面検出などに使用すると、液中に一方の受信
手段が位置するためにリード線を液中に配線しなければ
ならず、測定困難となるとともに、受信手段を2個必要
とするため高価になる欠点がある。
In order to eliminate measurement errors caused by such variations in propagation velocity, first and second receiving means are provided at both ends of the magnetostrictive wire, as described in, for example, Japanese Patent Laid-Open No. 55-66710,
A displacement detection device is provided that can determine the position of a permanent magnet regardless of the propagation speed by detecting the propagation time of each ultrasonic wave from the permanent magnet to these receiving means. However, in the case of the above-mentioned displacement detection device, it is necessary to provide receiving means at both ends, so if one end of the device is buried inside the object to be measured, for example, when detecting the liquid level, etc. When used, since one of the receiving means is located in the liquid, a lead wire must be wired in the liquid, making measurement difficult and having the disadvantage of being expensive since two receiving means are required.

そこで本出願人は、上記欠点を解消するため、磁歪線に
沿って移動可能な永久磁石の他に磁歪線の特定部位に固
定した永久磁石を設け、この固定永久磁石と可動永久磁
石とからの双方の超音波信号の伝播時間によって、可動
永久磁石に与えられる機械的変位を検出するようにした
変位検出装置を提案した(特願昭60−67716号)
Therefore, in order to eliminate the above-mentioned drawbacks, the present applicant provided a permanent magnet fixed at a specific part of the magnetostrictive line in addition to a permanent magnet movable along the magnetostrictive line, and the applicant proposed that the fixed permanent magnet and the movable permanent magnet We proposed a displacement detection device that detects the mechanical displacement given to a movable permanent magnet based on the propagation time of both ultrasonic signals (Japanese Patent Application No. 67716/1982).
.

この場合には、第7図に示すように発信手段からの電流
パルス30に基づいて固定永久磁石および可動永久磁石
の双方で超音波信号31.32が同時に発生し、これら
信号が受信手段で検出されるが、特に可動永久磁石が固
定永久磁石に一定距離以内に接近すると、可動永久磁石
による超音波信号32が固定永久磁石による超音波信号
31の余韻波の上に重畳し、測定時間tに誤差を生じる
おそれがある。これを第8図にしたがって説明すると、
図中破線の波32aは余韻波の影響を受けない可動永久
磁石による本来の波、実線の波32bは余韻波の上に重
畳した時の波であり、本来であれば時間tが測定される
が、余gAl!Lの影響で波32aが下方へ押し下げら
れて測定時間がt゛ となり、Δtだけ誤差が出ること
になる。このような誤差を避けるには、2個の永久磁石
の接近距離に制限を設けるしか方法がなく、これでは測
定可能範囲が磁歪線の全長に比べて(走に制約される欠
点がある。
In this case, as shown in FIG. 7, ultrasonic signals 31 and 32 are simultaneously generated in both the fixed permanent magnet and the movable permanent magnet based on the current pulse 30 from the transmitting means, and these signals are detected by the receiving means. However, especially when the movable permanent magnet approaches the fixed permanent magnet within a certain distance, the ultrasonic signal 32 from the movable permanent magnet is superimposed on the reverberation wave of the ultrasonic signal 31 from the fixed permanent magnet, and at measurement time t. There is a risk of errors. To explain this according to Figure 8,
In the figure, the broken line wave 32a is the original wave generated by the movable permanent magnet, which is not affected by the aftereffect wave, and the solid line wave 32b is the wave when superimposed on the aftereffect wave.Originally, time t would be measured. But, there's more! The wave 32a is pushed downward by the influence of L, and the measurement time becomes t', resulting in an error of Δt. The only way to avoid such errors is to limit the approach distance between the two permanent magnets, which has the disadvantage that the measurable range is limited by the distance (travel) compared to the total length of the magnetostrictive wire.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、超音波の伝播速度の影響を受けずに変位を
検出できるようにし、かつ2個の永久磁石の接近距離の
制限を無くした変位検出装置を提供することにある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The purpose is to provide a displacement detection device that can detect displacement without being affected by the propagation speed of ultrasonic waves and eliminates the limitation on the approach distance between two permanent magnets.

発明の構成 上記目的を達成するために、本発明の変位検出装置は、
磁歪線と、該磁歪線に沿って移動可能な可動永久磁石と
、磁歪線の特定部位に固定された固定永久磁石と、磁歪
線の一端に電流パルスあるいは超音波信号を供給する第
1発信手段と、磁歪線上の可動永久磁石と固定永久磁石
との間でかつ固定永久磁石の近傍部位に、第1発信手段
とは別時刻に電流パルスあるいは超音波信号を供給する
第2発信手段と、可動永久磁石および固定永久磁石の近
接する磁歪線の部位で発生あるいは反射した超音波信号
を受信する受信手段と、可動永久磁石および固定永久磁
石の近接する磁歪線の部位で発生あるいは反射した超音
波信号の受信手段までの伝播時間に関連した信号により
、可動永久磁石に与えられる機械的変位を求める演算手
段とを備えたものである。
Structure of the Invention In order to achieve the above object, the displacement detection device of the present invention has the following features:
A magnetostrictive wire, a movable permanent magnet movable along the magnetostrictive wire, a fixed permanent magnet fixed to a specific part of the magnetostrictive wire, and a first transmitting means for supplying a current pulse or an ultrasonic signal to one end of the magnetostrictive wire. a second transmitting means that supplies a current pulse or an ultrasonic signal to a portion between the movable permanent magnet and the fixed permanent magnet on the magnetostrictive line and in the vicinity of the fixed permanent magnet at a different time from that of the first transmitting means; Receiving means for receiving ultrasonic signals generated or reflected at adjacent magnetostrictive wire portions of a permanent magnet and a fixed permanent magnet; and ultrasonic signals generated or reflected at adjacent magnetostrictive wire portions of a movable permanent magnet and a fixed permanent magnet. and calculation means for determining the mechanical displacement given to the movable permanent magnet by a signal related to the propagation time to the receiving means.

すなわち、第1発信手段の供給信号と第2発信手段の供
給信号とによつて固定および可動永久磁石の超音波信号
を別個に検出し、波形が重畳することによる伝播時間の
検出誤差を解消するものである。
That is, the ultrasonic signals of the fixed and movable permanent magnets are detected separately based on the supply signal of the first transmitting means and the supply signal of the second transmitting means, thereby eliminating detection errors in propagation time due to superimposition of waveforms. It is something.

実施例の説明 第1図は本発明にかかる変位検出装置の基本的構成の一
例を示し、1はNiなどの磁歪材料からなる磁歪線、2
は両端面にそれぞれN極、S極が着磁され、磁歪線Iに
沿って移動可能な円筒形状の可動永久磁石、3は磁歪線
1の特定部位に固定され、可動永久磁石2と同様の特性
を有する固定永久磁石、4は磁歪線1の始端に電流パル
スA1を印加する発信手段の一例である第1パルス発生
装置、5は磁歪線1の固定永久磁石3の直後に電流パル
スA2を印加する第2パルス発生装置、6は磁歪線1の
始端側に設けられ、磁歪線1を伝播する超音波信号を受
信する受信手段の一例である歪検出装置、7は歪検出装
置6で受信した超音波信号Bをパルス状の信号B゛に成
形するパルス成形回路である。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of the basic configuration of a displacement detection device according to the present invention, in which 1 is a magnetostrictive wire made of a magnetostrictive material such as Ni, 2 is a magnetostrictive wire made of a magnetostrictive material such as Ni,
3 is a cylindrical movable permanent magnet with N and S poles magnetized on both end faces and movable along the magnetostrictive line I; 4 is a first pulse generator which is an example of a transmitting means for applying a current pulse A1 to the starting end of the magnetostrictive wire 1; 5 is a first pulse generator that applies a current pulse A2 to the magnetostrictive wire 1 immediately after the fixed permanent magnet 3; A second pulse generator 6 is provided on the starting end side of the magnetostrictive wire 1 and is an example of a receiving means for receiving an ultrasonic signal propagating through the magnetostrictive wire 1; This is a pulse shaping circuit that shapes the ultrasonic signal B into a pulsed signal B'.

S−R型フリンプフロンプ回路8のS端子には第1パル
ス発生装置4の電流パルスA、が入力され、R端子には
第2パルス発生装置5の電流パルスA2が入力されてい
る。AND回路9にはフリップフロップ回路8の出力Q
とパルス成形回路7の出力信号B゛とが入力され、AN
D回路10にはフリップフロップ回路8の出力ことパル
ス成形回路7の出力信号B′ とが入力されている。
The current pulse A of the first pulse generator 4 is input to the S terminal of the S-R type flimp flop circuit 8, and the current pulse A2 of the second pulse generator 5 is input to the R terminal. The output Q of the flip-flop circuit 8 is input to the AND circuit 9.
and the output signal B of the pulse shaping circuit 7 are input, and AN
The output of the flip-flop circuit 8, that is, the output signal B' of the pulse shaping circuit 7 is input to the D circuit 10.

第2図は第1図に示した回路各部の電圧波形を示し、1
1は電流パルスA、により固定永久磁石3の部位で発生
した超音波信号波形、12は電流パルスA1により可動
永久磁石2の部位で発生した超音波信号波形、13は電
流パルスA2により可動永久磁石2の部位で発生した超
音波信号波形である。すなわち、電流パルスA1は磁歪
線1の全域に流れるので、両方の永久磁石2,3で発生
した超音波信号11.12が検出されるが、電流パルス
A2は固定永久磁石3の直後から終端までの間にのみ流
れるので、可動永久磁石2で発生した超音波信号13の
みが検出される。これら波形11.12.13はパルス
成形回路7によってパルス状の信号14,15.16に
変換される。フリップフロップ回路8の出力Qは電流パ
ルスA1が印加されてから電流パルスA2が印加される
までの間ONとなるので、AND回路9の出力C7はパ
ルス信号14.15のみとなり、一方フリップフロップ
回路8の出力とは電流パルスA2が印加されてから次の
電流パルスA1が印加されるまでの間ONとなるので、
AND回路10の出力C2はパルス信号16のみとなる
Figure 2 shows the voltage waveforms of each part of the circuit shown in Figure 1.
1 is an ultrasonic signal waveform generated at the fixed permanent magnet 3 by the current pulse A, 12 is an ultrasonic signal waveform generated at the movable permanent magnet 2 by the current pulse A1, and 13 is an ultrasonic signal waveform generated at the movable permanent magnet 2 by the current pulse A2. This is the ultrasonic signal waveform generated at part 2. That is, since the current pulse A1 flows throughout the entire magnetostrictive wire 1, the ultrasonic signals 11 and 12 generated by both permanent magnets 2 and 3 are detected, but the current pulse A2 flows from immediately after the fixed permanent magnet 3 to the end. Since only the ultrasonic signal 13 generated by the movable permanent magnet 2 is detected. These waveforms 11, 12, 13 are converted into pulsed signals 14, 15, 16 by the pulse shaping circuit 7. Since the output Q of the flip-flop circuit 8 is ON from the time when the current pulse A1 is applied until the time when the current pulse A2 is applied, the output C7 of the AND circuit 9 becomes only the pulse signal 14.15, while the flip-flop circuit The output of 8 is ON from the time the current pulse A2 is applied until the next current pulse A1 is applied, so
The output C2 of the AND circuit 10 is only the pulse signal 16.

上記可動永久磁石2と歪検出装置6との距離を!、可動
永久磁石2で発生した超音波13が伝播する時間をt、
固定永久磁石3と歪検出装置6との距離を7!。、固定
永久磁石3で発生した超音波11が伝播する時間をt。
The distance between the movable permanent magnet 2 and the strain detection device 6! , t is the propagation time of the ultrasonic wave 13 generated by the movable permanent magnet 2,
The distance between the fixed permanent magnet 3 and the strain detection device 6 is 7! . , t is the propagation time of the ultrasonic wave 11 generated by the fixed permanent magnet 3.

、超音波の伝播速度をSとすると、 β =s−t            ・・・(111
2o=s・to          ・・・(2)とな
る。このように2個の永久磁石2.3を用いることによ
って2種の信号1,1oが得られ、+11、(2)式に
より1.1oの比を求めると、t/1o−IlZIlo
        ・・・(3)となる。(32式では伝
播速度Sが消去され、!!oは既知であるから、2種の
信号1.1oの比を演算すれば、可動永久磁石2の位置
lが一定の距離l。に対する比として測定され、伝播速
度の影響を受けない距離測定が可能となる。
, let S be the propagation speed of ultrasonic waves, then β = s-t...(111
2o=s·to...(2). In this way, by using two permanent magnets 2.3, two types of signals 1 and 1o are obtained, and when the ratio of 1.1o is calculated using +11 and equation (2), t/1o - IlZIlo
...(3). (In Equation 32, the propagation speed S is eliminated and !!o is known, so if we calculate the ratio of the two types of signals 1.1o, we can calculate the ratio of the position l of the movable permanent magnet 2 to a constant distance l. This enables distance measurements that are not affected by propagation speed.

また、電流パルスA、によって可動永久磁石2で発生し
た超音波12の伝播時間は電流パルスA2によって可動
永久磁石2で発生した超音波13の伝播時間tと間−で
あるため、上記超音波12の伝播時間を計測することも
可能であるが、この場合には可動永久磁石2が固定永久
磁石3に対して一定距離以内に接近すると、固定永久磁
石3の超音波11の余韻波が可動永久磁石2の超音波1
2に重畳され、測定時間tの検出誤差を生じるおそれが
ある。したがって、本発明では超音波12を無視し、誤
差を含まない超音波13の伝播時間tのみを測定してい
る。
Furthermore, since the propagation time of the ultrasonic wave 12 generated in the movable permanent magnet 2 by the current pulse A is between - and the propagation time t of the ultrasonic wave 13 generated in the movable permanent magnet 2 by the current pulse A2, the ultrasonic wave 12 It is also possible to measure the propagation time of Ultrasonic wave 1 of magnet 2
2, which may cause a detection error in the measurement time t. Therefore, in the present invention, the ultrasonic wave 12 is ignored and only the propagation time t of the ultrasonic wave 13, which does not include any error, is measured.

上記信号1.1oの比を求める方法としては、例えば1
,1oに比例する電圧を発生させ、この2つの電圧信号
を半導体集積回路で構成された除算器で演算すれば、(
3)式の計算が可能となる。また、他の方法として1,
1oをカウンタでデジタル信号として検出すれば、マイ
クロプロセッサにより(3)式の演算が可能となる。い
ずれの方法も既存の技術で演算可能であるが、構成部品
が高価であり調整が複雑であるという欠点があるので、
以下に安価で安定性に優れた演算手段である演算回路を
説明する。
As a method for determining the ratio of the above signal 1.1o, for example, 1
, 1o, and calculate these two voltage signals with a divider made of a semiconductor integrated circuit, we get (
3) Equations can be calculated. In addition, as another method 1,
If 1o is detected as a digital signal by a counter, the microprocessor can calculate equation (3). Both methods can be calculated using existing technology, but the disadvantages are that the components are expensive and the adjustment is complicated.
An arithmetic circuit, which is an inexpensive and highly stable arithmetic means, will be described below.

第3図は演算回路の一例であり、第4図は当該回路の各
部の電圧波形を示し、第4図のA、、A7+ B、C,
、C2は第2図と同様である。
Fig. 3 shows an example of an arithmetic circuit, and Fig. 4 shows voltage waveforms at various parts of the circuit.
, C2 are the same as in FIG.

第3図において、17は三角波発生回路、18はサンプ
ルホールド回路であり、三角波発生回路17は第1パル
ス発生装置4の電流パルスA、によってスタートする一
定勾配を持った第4図りのような三角波を発生する。サ
ンプルホールド回路18は固定永久磁石3で発生した波
形11をパルス化した第4図C7のパルス14によって
動作し、そのときの三角波りの電圧V。を保持する。
In FIG. 3, 17 is a triangular wave generating circuit, and 18 is a sample and hold circuit. occurs. The sample and hold circuit 18 is operated by the pulse 14 of FIG. 4 C7, which is a pulse of the waveform 11 generated by the fixed permanent magnet 3, and the voltage V of the triangular wave at that time. hold.

ここで、超音波の伝播速度が速くなったと仮定すると、
波形11は11”のように速く到達し、パルス14°に
よって保持される三角波りの電圧はvoo となり、V
Qより小さくなる。逆に伝播速度が遅くなると、波形1
1は11”のように遅く到達し、パルス14パによって
保持される三角波りの電圧はV。°゛となりV。より大
きくなる。
Now, assuming that the propagation speed of the ultrasonic wave has become faster,
The waveform 11 arrives as fast as 11”, and the voltage of the triangular wave held by the pulse 14° becomes voo, and V
It becomes smaller than Q. Conversely, when the propagation speed becomes slower, waveform 1
1 arrives late like 11'', and the voltage of the triangular wave held by the pulse 14 becomes V.°, which is larger than V.°.

これを式で示すと、voは時間り。に比例するので、そ
の比例定数(勾配)をaとすると、VO=a Lg  
          −・・(4)これに(2)式を代
入すると、 v (1w a l1t3 −         −(
51となる。
Expressing this in a formula, vo is time. Since it is proportional to , if its proportionality constant (slope) is a, then VO=a Lg
-...(4) Substituting equation (2) into this, v (1wa l1t3 - -(
It will be 51.

磁歪線上を伝播する超音波の伝播速度Sが温度によって
変化することは既に述べた通りであるが、実用温度範囲
ではその変化率はさほど大きくはない。そこで、常温に
おける伝播速度をS。とじ、常温における温度変化によ
る伝播速度の変化をΔSとして(5)式をテーラ−展開
し、ΔSの2次以上を無視すると、 のように1次式で近似できる。
As already mentioned, the propagation speed S of the ultrasonic waves propagating on the magnetostrictive wire changes depending on the temperature, but the rate of change is not so large in the practical temperature range. Therefore, the propagation speed at room temperature is S. If the change in propagation velocity due to temperature change at room temperature is expressed as ΔS, and equation (5) is expanded by Taylor, and if the second order or higher order of ΔS is ignored, it can be approximated by a linear equation as shown below.

(6)式を具体的に演算するのが第3図の演算増幅器1
9であり、演算増幅器19で演算されたV。
The operational amplifier 1 shown in Figure 3 specifically calculates equation (6).
9, and V calculated by the operational amplifier 19.

は増幅器20の正入力に加えられる。増幅器20、PN
PN上形ンジスタ21.抵抗22 (抵抗値R)および
コンデンサ23(容量値C)は積分回路を構成し、NP
N形トランジスタ24は電流パルスA2によってONす
る。したがって、コンデンサ23にチャージされている
電圧は電流パルスA2によってトランジスタ24を介し
て接地されて零となり、コンデンサ23の電圧は第4図
Eのように電流パルスA2と同時にスタートする三角波
状に変化する。増幅器20はその正入力と負入力の電圧
が同一になるように作動し、したがってトランジスタ2
1のエミッタ電圧がv(1となり、一定電圧Vが供給さ
れている抵抗22を流れる電流iは の関係で制御され、トランジスタ21を経てコンデンサ
23に流れ込む。電流パルスA2が印加された時点でコ
ンデンサ23の電圧を0とすると、コンデンサ23の電
圧Vは となり、これに(7)式を代入して(8)式を積分すれ
ばv = −(V −VO)  t      ・・・
(9)C となり、第4図Eのように変化する。
is applied to the positive input of amplifier 20. Amplifier 20, PN
PN upper type resistor 21. The resistor 22 (resistance value R) and the capacitor 23 (capacitance value C) constitute an integrating circuit, and the NP
N-type transistor 24 is turned on by current pulse A2. Therefore, the voltage charged in the capacitor 23 is grounded through the transistor 24 by the current pulse A2 and becomes zero, and the voltage of the capacitor 23 changes in a triangular waveform that starts at the same time as the current pulse A2, as shown in FIG. 4E. . Amplifier 20 operates such that the voltages at its positive and negative inputs are the same, so transistor 2
1, the emitter voltage becomes v(1), and the current i flowing through the resistor 22 to which a constant voltage V is supplied is controlled by the relationship , and flows into the capacitor 23 via the transistor 21. When the voltage of the capacitor 23 is set to 0, the voltage V of the capacitor 23 becomes, and by substituting the equation (7) into this and integrating the equation (8), v = -(V - VO) t...
(9)C, and changes as shown in Figure 4E.

固定永久磁石3の場合と同様に、可動永久磁石2で発生
した超音波13の波形は、伝播速度が速くなると第4図
Bの波形13゛、遅くなると波形13°゛のように到達
時間が変化し、第4図Eの実線で示すように三角波の勾
配が一定であれば、サンプルホールド回路25で保持さ
れる出力電圧■が到達時間によって変化することになる
。このとき、増幅器20の正入力の電圧V。を変化させ
て第4図Eの破線で示すように三角波の勾配を調整して
やれば、伝播速度が変化しても同一の出力電圧y 75
(得られることになる。
As in the case of the fixed permanent magnet 3, the waveform of the ultrasonic wave 13 generated by the movable permanent magnet 2 has a waveform of 13° in FIG. If the slope of the triangular wave is constant as shown by the solid line in FIG. 4E, the output voltage 2 held by the sample and hold circuit 25 will change depending on the arrival time. At this time, the voltage V at the positive input of the amplifier 20. If we change the slope of the triangular wave as shown by the broken line in Figure 4E, the output voltage y will remain the same even if the propagation speed changes.
(You will get it.

可動永久磁石2から発せられる波形13の到達時間りは t= □                   ・・
・00S で表されるから、(6)式と同様にテーラ−展開すれば となる。そこで、(61,(11)式を(9)式に代入
して整理すると、 SQ    5QSQ となる。(12)式において O となるように電圧■を設定すれば、(12)式は次のよ
うになる。
The arrival time of the waveform 13 emitted from the movable permanent magnet 2 is t= □...
・Since it is expressed as 00S, if we perform Taylor expansion in the same way as equation (6), we get: Therefore, by substituting equation (61, (11) into equation (9) and rearranging it, we get SQ 5QSQ.If we set the voltage ■ so that O in equation (12), equation (12) becomes the following It becomes like this.

RCSo  s6    S。RCSo s6 S.

(14)式の中で変数は可動永久磁石2の距離lと伝播
速度の変化ΔSのみである。また、(14)式の()の
第2項は2次であり、既に述べたように多くの場合無視
できるので、実際上次のように近似できる。
In equation (14), the only variables are the distance l of the movable permanent magnet 2 and the change in propagation speed ΔS. In addition, the second term in parentheses in equation (14) is quadratic and can be ignored in many cases as described above, so it can actually be approximated as follows.

RCSo   S。RCSo S.

以上のようにして、第3図に示すような安価な構成部品
で安定した温度補償回路が構成でき、磁歪線上を伝播す
る超音波の伝播速度が温度によって変動しても、その変
動を補償でき、元来が高精度な検出を行うことができる
磁歪現象を応用した変位検出装置をさらに安定したもの
とすることが可能となる。
As described above, a stable temperature compensation circuit can be constructed using inexpensive components as shown in Figure 3, and even if the propagation speed of the ultrasonic wave propagating on the magnetostrictive wire varies depending on the temperature, the variation can be compensated for. , it becomes possible to make the displacement detection device using the magnetostriction phenomenon, which is originally capable of highly accurate detection, even more stable.

第5図、第6図は本発明の他の実施例を示し、固定永久
磁石3を磁歪線lの終端側に固定し、可動永久磁石2を
歪検出装置6と固定永久磁石3の間で移動させるように
したものである。この場合には、第2パルス発生装置5
が固定永久磁石3の直前に電流パルスA2を供給するた
め、第6図のように電流パルスA2によって固定永久磁
石3が発生する超音波11のみを検出できる。なお、電
流パルスA、によって固定永久磁石3が発生する別の超
音波11°は可動永久磁石2が発生する超音波13の余
韻波の影響を受けるおそれがあるので、無視すればよい
5 and 6 show another embodiment of the present invention, in which a fixed permanent magnet 3 is fixed to the terminal end side of the magnetostrictive wire l, and a movable permanent magnet 2 is placed between the strain detection device 6 and the fixed permanent magnet 3. It was designed to be moved. In this case, the second pulse generator 5
Since the current pulse A2 is supplied just before the fixed permanent magnet 3, only the ultrasonic wave 11 generated by the fixed permanent magnet 3 by the current pulse A2 can be detected as shown in FIG. Note that another ultrasonic wave 11° generated by the fixed permanent magnet 3 due to the current pulse A may be affected by the aftereffect wave of the ultrasonic wave 13 generated by the movable permanent magnet 2, so it can be ignored.

第5図の変位検出装置を例えば暖かい液体の液面検出に
使用した場合には、磁歪線1の終端側、即ち固定永久磁
石3側が液中に埋没することになるので、固定永久磁石
3による温度補償が第1図に比べてさらに的確となり、
高精度の液面検出が可能となる。また、この変位検出装
置の演算手段として第3図の回路を使用した場合には、
電流パルスA、をトランジスタ24に、電流パルスA2
を三角波発生回路17に、出力C2をサンプルホールド
回路25に、出力C2をサンプルホールド回路18にそ
れぞれ入力すればよい。これにより第4図りの三角波は
電流パルスA2によってスタートし、第4図Eの三角波
は電流パルスA1によってスタートすることになる。
For example, when the displacement detection device shown in FIG. Temperature compensation is more accurate than in Figure 1,
Highly accurate liquid level detection becomes possible. Furthermore, when the circuit shown in Fig. 3 is used as the calculation means of this displacement detection device,
current pulse A, to transistor 24, current pulse A2
It is sufficient to input the output C2 to the triangular wave generation circuit 17, the output C2 to the sample hold circuit 25, and the output C2 to the sample hold circuit 18. As a result, the triangular wave in Figure 4 is started by the current pulse A2, and the triangular wave in Figure 4E is started by the current pulse A1.

なお、本発明の変位検出装置は上記実施例に限るもので
はなく、種々に変更可能である。例えば、パルス発生装
置4.5の電流パルスA、、A2と歪検出装置6の検出
信号Bとから2種の信号C7,C2を取り出すために、
フリップフロップ回路8とAND回路9.IOを設けた
例を示したが、これは単なる一例であって、既存の回路
で代替することが可能である。また、受信手段と゛して
2台のパルス発生袋W4,5を設けたが、1台のパルス
発生装置によって異なる時刻にかつ別個の箇所に電流パ
ルスA、、A2を供給するように構成することも可能で
ある。
Note that the displacement detection device of the present invention is not limited to the above embodiments, and can be modified in various ways. For example, in order to extract two types of signals C7 and C2 from the current pulses A, A2 of the pulse generator 4.5 and the detection signal B of the distortion detector 6,
Flip-flop circuit 8 and AND circuit 9. Although an example in which IO is provided is shown, this is just an example, and it is possible to replace it with an existing circuit. Furthermore, although two pulse generating bags W4 and 5 are provided as receiving means, it is possible to configure one pulse generating device to supply current pulses A, A2 at different times and to separate locations. is also possible.

また、本発明は磁歪線に電流パルスを流し、永久磁石の
近接する部位で超音波を発生させるものの他、例えば特
開昭55−23420号公報に記載のように、磁歪線に
超音波を流し、永久磁石の近接する部位で超音波の一部
を反射させるものにも通用できる。この場合には、発信
手段としてパルス発生装置に代えてコイルあるいは圧電
素子などの励振装置を使用すればよい。
In addition to the method in which a current pulse is passed through a magnetostrictive wire to generate an ultrasonic wave at a portion adjacent to a permanent magnet, the present invention also relates to a method in which an ultrasonic wave is caused to flow through a magnetostrictive wire as described in, for example, Japanese Unexamined Patent Publication No. 55-23420. , it can also be used to reflect part of the ultrasonic waves at a part close to a permanent magnet. In this case, an excitation device such as a coil or a piezoelectric element may be used instead of the pulse generator as the transmitting means.

さらに、本発明で使用する永久磁石としては、実施例の
ような両端面にN、S極を着磁した円筒形状のものに限
らず、通常の棒状磁石あるいは上記公報に記載のような
磁歪線を交差する磁界を有するコ字形磁石を使用しても
よい。
Furthermore, the permanent magnet used in the present invention is not limited to a cylindrical magnet with N and S poles magnetized on both end faces as in the embodiment, but also a regular bar-shaped magnet or a magnetostrictive wire as described in the above publication. A U-shaped magnet with a magnetic field that intersects may be used.

発明の効果 以上の説明で明らかなように、本発明によれば固定永久
磁石と可動永久磁石とからの双方の超音波信号の伝播時
間により、可動永久磁石に与えられる機械的変位を検出
するので、超音波の伝播速度の影響を受けるおそれがな
く、また1箇所に受信手段を設ければよいので、測定す
べき対象物に制約がなく、安価に構成できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the mechanical displacement given to the movable permanent magnet is detected based on the propagation time of the ultrasonic signals from both the fixed permanent magnet and the movable permanent magnet. Since there is no risk of being affected by the propagation velocity of ultrasonic waves, and the receiving means only needs to be provided at one location, there is no restriction on the object to be measured, and the structure can be constructed at low cost.

また、第1発信手段の供給信号と第2発信手段の供給信
号とによって固定および可動永久磁石の超音波信号を別
個に検出するため、双方の波形が重畳することによる伝
播時間の検出誤差を解消できる。したがって、可動永久
磁石と固定永久磁石との接近距離に制限を設ける必要が
なく、磁歪線の全長に対する測定可能範囲を従来に比べ
て広げることができる。
Furthermore, since the ultrasonic signals of the fixed and movable permanent magnets are detected separately based on the supply signal of the first transmitting means and the supply signal of the second transmitting means, detection errors in propagation time due to superimposition of both waveforms are eliminated. can. Therefore, there is no need to limit the approach distance between the movable permanent magnet and the fixed permanent magnet, and the measurable range for the entire length of the magnetostrictive wire can be expanded compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる変位検出装置の一例の基本構造
図、第2図は検出方法の一例を示す波形図、第3図は演
算回路の構成図、第4図は演算回路の各部の電圧波形図
、第5図は本発明の他の例の基本構成図、第6図はその
検出方法を示す波形図、第7図、第8図は従来例の検出
方法を示す波形図である。 1・・・磁歪線、2・・・可動永久磁石、3・・・固定
永久磁石、4・・・第1パルス発生装置(第1発信手段
)、5・・・第2パルス発生装置(第2発信手段)、6
・・・歪検出装置(受信手段)。 出 願 人  三京貿易株式会社 代 理 人  弁理士 部外 秀隆 第7図 第8図
Fig. 1 is a basic structural diagram of an example of a displacement detection device according to the present invention, Fig. 2 is a waveform diagram showing an example of a detection method, Fig. 3 is a configuration diagram of an arithmetic circuit, and Fig. 4 is a diagram of each part of the arithmetic circuit. Voltage waveform diagram; Figure 5 is a basic configuration diagram of another example of the present invention; Figure 6 is a waveform diagram showing its detection method; Figures 7 and 8 are waveform diagrams showing a conventional detection method. . DESCRIPTION OF SYMBOLS 1... Magnetostrictive wire, 2... Movable permanent magnet, 3... Fixed permanent magnet, 4... First pulse generator (first transmitting means), 5... Second pulse generator (first transmitting means),... 2 transmission means), 6
...Distortion detection device (receiving means). Applicant Sankyo Boeki Co., Ltd. Agent Patent attorney Outside Hidetaka Figure 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)磁歪線と、該磁歪線に沿って移動可能な可動永久
磁石と、磁歪線の特定部位に固定された固定永久磁石と
、磁歪線の一端に電流パルスあるいは超音波信号を供給
する第1発信手段と、磁歪線上の可動永久磁石と固定永
久磁石との間でかつ固定永久磁石の近傍部位に、第1発
信手段とは別時刻に電流パルスあるいは超音波信号を供
給する第2発信手段と、可動永久磁石および固定永久磁
石の近接する磁歪線の部位で発生あるいは反射した超音
波信号を受信する受信手段と、可動永久磁石および固定
永久磁石の近接する磁歪線の部位で発生あるいは反射し
た超音波信号の受信手段までの伝播時間に関連した信号
により、可動永久磁石に与えられる機械的変位を求める
演算手段とを備えたことを特徴とする変位検出装置。
(1) A magnetostrictive wire, a movable permanent magnet movable along the magnetostrictive wire, a fixed permanent magnet fixed to a specific part of the magnetostrictive wire, and a magnet that supplies a current pulse or an ultrasonic signal to one end of the magnetostrictive wire. a second transmitting means for supplying a current pulse or an ultrasonic signal at a time different from that of the first transmitting means between the movable permanent magnet and the fixed permanent magnet on the magnetostrictive wire and to a region near the fixed permanent magnet; and a receiving means for receiving an ultrasonic wave signal generated or reflected by the magnetostrictive wires adjacent to the movable permanent magnet and the fixed permanent magnet; 1. A displacement detection device comprising: calculation means for determining the mechanical displacement given to the movable permanent magnet by a signal related to the propagation time of the ultrasonic signal to the reception means.
(2)上記演算手段は、磁歪線に第1、第2発信手段の
一方から電流パルスが印加されたときにスタートする一
定勾配を持つ三角波状の電圧を、固定永久磁石の部位で
発生した超音波信号が受信手段に到達したときに保持し
、該電圧によって磁歪線に第1、第2発信手段の他方か
ら電流パルスが印加されたときにスタートする別の三角
波状の電圧の勾配を調整し、該三角波状の電圧を移動永
久磁石の部位で発生した超音波信号が受信手段に到達し
たときに保持することを特徴とする特許請求の範囲第1
項記載の変位検出装置。
(2) The calculation means generates a triangular wave-like voltage having a constant slope that starts when a current pulse is applied to the magnetostrictive wire from one of the first and second transmitting means, and generates a superfluous voltage generated at a portion of the fixed permanent magnet. The voltage is held when the sound wave signal reaches the receiving means, and the gradient of another triangular wave voltage is adjusted by the voltage, which starts when a current pulse is applied to the magnetostrictive wire from the other of the first and second transmitting means. , the triangular wave voltage is maintained when the ultrasonic signal generated at the moving permanent magnet reaches the receiving means.
Displacement detection device described in section.
JP22658385A 1985-10-11 1985-10-11 Displacement detector Pending JPS6285819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22658385A JPS6285819A (en) 1985-10-11 1985-10-11 Displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22658385A JPS6285819A (en) 1985-10-11 1985-10-11 Displacement detector

Publications (1)

Publication Number Publication Date
JPS6285819A true JPS6285819A (en) 1987-04-20

Family

ID=16847446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22658385A Pending JPS6285819A (en) 1985-10-11 1985-10-11 Displacement detector

Country Status (1)

Country Link
JP (1) JPS6285819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842467A (en) * 1995-06-23 1996-02-13 Mitsubishi Electric Corp Scroll compressor
JP2011158027A (en) * 2010-02-01 2011-08-18 Santest Co Ltd Fluid pressure actuator which can detect position and load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0842467A (en) * 1995-06-23 1996-02-13 Mitsubishi Electric Corp Scroll compressor
JP2011158027A (en) * 2010-02-01 2011-08-18 Santest Co Ltd Fluid pressure actuator which can detect position and load

Similar Documents

Publication Publication Date Title
US5017867A (en) Magnetostrictive linear position detector with reflection termination
US5274328A (en) Temperature compensation for magnetostrictive position detector
US5196791A (en) Magnetostrictive linear position detector and a dual pole position magnet therefor
US5412316A (en) Magnetostrictive linear position detector with axial coil torsional strain transducer
JPS58167918A (en) Ultrasonic wave flow speed measuring device
US5608318A (en) Inductive sensor circuit with coil resistance compensation
EP0856722B1 (en) Length measuring apparatus employing magnetostrictive delay line
EP0611953B1 (en) Length measuring apparatus
JPS6285819A (en) Displacement detector
JPS61226615A (en) Displacement detecting device
US3293921A (en) Angular accelerometer
US8054066B2 (en) Magnetostrictive displacement transducer with phase shifted bias burst
US20140266161A1 (en) Systems and methods for magnetostrictive sensing
US3917936A (en) Method and apparatus for measuring the cross-correlation of two dynamic mechanical quantities
JPH0530202B2 (en)
US4227401A (en) Surface elevation measuring apparatus
JP2829158B2 (en) Deviation position detection method
JP4154878B2 (en) Position detecting device and positioning device
JPH04600A (en) Vehicle sensing device
JPH0466818A (en) Electromagnetic flow meter
SU798670A1 (en) Gating apparatus for electric survey equipment
Yoo et al. A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation
SU717687A1 (en) Device for determining the depth of underwater pipelines
SU1476309A1 (en) Instrument for displacement measurements
JPH0355861Y2 (en)