JP2829158B2 - Deviation position detection method - Google Patents

Deviation position detection method

Info

Publication number
JP2829158B2
JP2829158B2 JP21082891A JP21082891A JP2829158B2 JP 2829158 B2 JP2829158 B2 JP 2829158B2 JP 21082891 A JP21082891 A JP 21082891A JP 21082891 A JP21082891 A JP 21082891A JP 2829158 B2 JP2829158 B2 JP 2829158B2
Authority
JP
Japan
Prior art keywords
measured
fluid
excitation
flow velocity
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21082891A
Other languages
Japanese (ja)
Other versions
JPH0552620A (en
Inventor
一郎 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21082891A priority Critical patent/JP2829158B2/en
Publication of JPH0552620A publication Critical patent/JPH0552620A/en
Application granted granted Critical
Publication of JP2829158B2 publication Critical patent/JP2829158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、管内を流れる偏流の
位置等を測定する方式に関する。また、この発明は管内
を流れる流体の速度分布を求める装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the position of a drift flowing in a pipe. The present invention also relates to an apparatus for determining a velocity distribution of a fluid flowing in a pipe.

【0002】[0002]

【従来の技術】一般に、管内を流れる流体の流速は均一
ではなく、速度分布を有し、例えば、他の部分より20
〜30%程度流速の早い部分を含むことが多い。他の部
分と異なる流速を含む流れを偏流と呼ぶ。
2. Description of the Related Art Generally, the flow velocity of a fluid flowing in a pipe is not uniform, but has a velocity distribution.
It often includes a portion where the flow velocity is as fast as about 30%. A flow including a flow velocity different from that of the other portions is called a drift.

【0003】[0003]

【発明が解決しようとする課題】偏流は流量計による流
量の測定値に大きな影響を与える。このため、偏流の位
置、速度等を、簡単に測定できるシステムが望まれる。
しかし、この要求を満たす偏流位置等の測定装置等或い
は流体の速度分布を求める装置は従来存在しなかった。
この発明は上記実情に鑑みてなされたもので、この発明
の目的は、偏流の位置、流速等を簡単な構成で測定でき
る方式を提供することである。この発明の他の目的は、
管内の被測定流体の速度分布を簡単な構成で測定できる
方式を提供することである。
The drift has a great influence on the measured value of the flow rate by the flow meter. Therefore, a system that can easily measure the position, velocity, and the like of the drift is desired.
However, there has not been a measuring device for measuring a drift position or the like which satisfies this requirement or a device for obtaining a velocity distribution of a fluid.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of measuring a position of a drift, a flow velocity, and the like with a simple configuration. Another object of the present invention is
An object of the present invention is to provide a method capable of measuring a velocity distribution of a fluid to be measured in a pipe with a simple configuration.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、この発明にかかる偏流位置検出方式は、被測定流体
が通過する測定管と、被測定流体に磁界を印加するため
の複数の励磁コイルと、前記被測定流体に前記磁界によ
り誘導された電圧を検出する複数の電極と、前記複数の
電極の内の選択されたものからの信号に対応する被測定
流体の流速を求める手段と、前記複数の励磁コイルのオ
ン/オフ又は前記電極の選択状態を切り替える制御回路
を備え、
In order to achieve the above object, a drift position detecting method according to the present invention comprises a measuring pipe through which a fluid to be measured passes, and a plurality of excitation coils for applying a magnetic field to the fluid to be measured. A plurality of electrodes for detecting a voltage induced by the magnetic field in the fluid to be measured, and means for determining a flow rate of the fluid to be measured corresponding to a signal from a selected one of the plurality of electrodes; A control circuit for switching on / off of a plurality of excitation coils or a selection state of the electrodes,

【0005】前記複数の励磁コイルの励磁状態又は前記
複数電極の選択状態を切り替えて、管内区分領域の流速
を求め、測定された複数の流速を比較することにより偏
流の位置を特定することを特徴とする。
[0005] By switching the excitation state of the plurality of excitation coils or the selection state of the plurality of electrodes, the flow velocity in the section area in the pipe is obtained, and the position of the drift is identified by comparing the measured flow velocities. And

【0006】また、この発明にかかる流速分布測定装置
は被測定流体が通過する測定管と、前記被測定流体に磁
界を印加し、電磁誘導の法則に従って前記測定管内の特
定領域の流速に主に対応する信号を出力する流速測定手
段と、前記特定領域を切り替える手段を備え、前記特定
領域を切り替えて流速を測定することにより前記被測定
流体の前記測定管内での速度分布の測定を可能とするこ
とを特徴とする。
The flow velocity distribution measuring apparatus according to the present invention mainly applies a magnetic field to a measurement pipe through which a fluid to be measured passes and a flow rate in a specific area in the measurement pipe according to the law of electromagnetic induction. A flow rate measuring means for outputting a corresponding signal; and a means for switching the specific area, and by measuring the flow rate by switching the specific area, the velocity distribution of the fluid to be measured in the measurement pipe can be measured. It is characterized by the following.

【0007】[0007]

【作用】上記構成の偏流位置検出方式においては、制御
回路が前記複数の励磁コイルの励磁状態及び前記複数電
極の選択状態を切り替えることにより、測定管断面上の
区分領域の流速が的確に測定できる。各区分領域の測定
感度は各々異なっていても、各々に校正係数を掛け、掛
けた結果がそれぞれの区分領域の流量に対応するように
する。校正係数は、数値解析や実験試験において求め
る。実流試験の方法の一例としては、偏流のない理想的
な流れを用いて励磁コイル、複数電極を切り替え、デー
タを採取し、主の校正係数とし、実際の流速分布をレー
ザードップラ流速計で測定し、補正係数を決定する。測
定管の断面上の複数の領域の流速を測定することによ
り、前記測定管内の流速分布を特定できる。
In the drift position detecting method having the above-described structure, the control circuit switches between the excitation state of the plurality of excitation coils and the selection state of the plurality of electrodes, so that the flow velocity in the divided region on the cross section of the measurement tube can be accurately measured. . Even if the measurement sensitivities of the respective divided areas are different, each is multiplied by a calibration coefficient, and the result of the multiplication corresponds to the flow rate of each of the divided areas. Calibration coefficients are obtained in numerical analysis and experimental tests. As an example of the actual flow test method, using an ideal flow without drift, switching the excitation coil and multiple electrodes, collecting data, setting the main calibration coefficient, and measuring the actual flow velocity distribution with a laser Doppler velocimeter Then, a correction coefficient is determined. By measuring the flow velocity in a plurality of regions on the cross section of the measurement pipe, the flow velocity distribution in the measurement pipe can be specified.

【0008】[0008]

【実施例】以下、図面を参照してこの発明の実施例にか
かる偏流位置測定方式について説明する。図1はこの実
施例の偏流位置測定装置の断面構造及び回路構造を示
す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a method for measuring a drift position according to an embodiment of the present invention; FIG. 1 shows a sectional structure and a circuit structure of the drift position measuring device of this embodiment.

【0009】図1において、測定管11上には、被測定
流体に磁界を印加するためのヨーク付の励磁コイル15
a、15bが配置されている。励磁コイル15a、15
bは独立に励磁可能となっており、励磁回路19から供
給される例えば、方形波状の励磁電流により、方形波状
の磁界を被測定流体に印加する。励磁コイル15a、1
5bはその特性が実質的に同一にとなるように構成され
ている。図示されているように、励磁コイル15a、1
5bを結ぶ線をy軸、これと直行する軸をx軸とする。
In FIG. 1, an excitation coil 15 with a yoke for applying a magnetic field to a fluid to be measured is provided on a measurement tube 11.
a and 15b are arranged. Exciting coils 15a, 15
b can be excited independently, and applies a square-wave magnetic field to the fluid to be measured by, for example, a square-wave excitation current supplied from the excitation circuit 19. Exciting coils 15a, 1
5b is configured so that its characteristics are substantially the same. As shown, the excitation coils 15a, 1
A line connecting 5b is defined as a y-axis, and an axis orthogonal to the y-axis is defined as an x-axis.

【0010】測定管11のy及びx軸からほぼ45度回
転した位置に2対の測定電極13aと13b、13cと
13dが配置されている。測定電極13a〜13dはフ
ァラデーの電磁誘導の法則に従って被測定流体に誘導さ
れた起電力を測定する。
Two pairs of measuring electrodes 13a and 13b and 13c and 13d are arranged at positions of the measuring tube 11 rotated substantially 45 degrees from the y and x axes. The measurement electrodes 13a to 13d measure the electromotive force induced in the fluid to be measured according to Faraday's law of electromagnetic induction.

【0011】電極対13a、13bで検出された信号
(誘導起電力)は増幅器AM1を介して評価回路17に
出力される。同様に、電極対13c、13dで検出され
た信号は増幅器AM2を介して評価回路17に出力され
る。評価回路17は供給された信号に基づいて、被測定
流体の流速を測定する。増幅器AMP1と増幅器AMP
2は実質的に同一の特性を有する。評価回路17は、電
磁流量計等で使用されるされる、評価回路と同一の構成
を有する。
The signal (induced electromotive force) detected by the electrode pair 13a, 13b is output to the evaluation circuit 17 via the amplifier AM1. Similarly, signals detected by the electrode pairs 13c and 13d are output to the evaluation circuit 17 via the amplifier AM2. The evaluation circuit 17 measures the flow rate of the fluid to be measured based on the supplied signal. Amplifier AMP1 and amplifier AMP
2 have substantially the same properties. The evaluation circuit 17 has the same configuration as the evaluation circuit used in an electromagnetic flow meter or the like.

【0012】例えば、励磁電流が方形波の場合には、評
価回路17は、励磁回路19から励磁信号の極性切り替
えのタイミング信号を入力し、増幅器AMP1又はAM
P2の出力信号(方形波状の検出信号)の最も安定した
部分(極性反転の直前の信号レベル)をサンプリングす
る。評価回路17はサンプリング値を被測定流体の流速
に対応する直流信号レベルを有する流速信号に変換して
出力する。
For example, when the excitation current is a square wave, the evaluation circuit 17 inputs a timing signal for switching the polarity of the excitation signal from the excitation circuit 19, and outputs the signal to the amplifier AMP1 or AM.
The most stable portion (the signal level immediately before the polarity inversion) of the output signal (square wave detection signal) of P2 is sampled. The evaluation circuit 17 converts the sampled value into a flow velocity signal having a DC signal level corresponding to the flow velocity of the fluid to be measured and outputs it.

【0013】コントローラ21は励磁回路19に制御信
号を供給し、励磁コイル15a、15bへの励磁電流の
供給を切り替える。即ち、コントローラ21は、励磁コ
イル15aと15bの両方を励磁した状態、励磁コイル
15aのみを励磁した状態、励磁コイル15bのみを励
磁した状態等を切り替える。
The controller 21 supplies a control signal to the excitation circuit 19 and switches the supply of the excitation current to the excitation coils 15a and 15b. That is, the controller 21 switches between a state in which both the excitation coils 15a and 15b are excited, a state in which only the excitation coil 15a is excited, a state in which only the excitation coil 15b is excited, and the like.

【0014】コントローラ21は増幅器AMP1、AM
P2に制御信号を供給し、それぞれを動作状態または、
非動作状態(その出力は、フローテング状態または接地
状態)に設定する。
The controller 21 includes amplifiers AMP1 and AM
A control signal is supplied to P2, and each is operated or
Set to a non-operation state (the output is in a floating state or a ground state).

【0015】上述の構成により、例えば、偏流が全く存
在しない状態で、励磁コイル15a及び/又は15bを
励磁(オン)し、増幅器AMP1とAMP2を共に動作
状態とした場合、増幅器AMP1とAMP2の出力信号
の信号レベルはぼぼ一致する。また、コントローラ21
による状態の切り替えにより、重み関数を使用して後述
するように、測定管11の断面上の測定域が変化する。
次に、図1に示される回路の動作を説明する。コントロ
ーラ21は励磁回路19を増幅器AMP1とAMP2を
制御して、以下の4つの状態を時分割的に生成する。 (1) 励磁コイル15aを励磁し、励磁コイル15b
をオフし、増幅器AM1をオンし、増幅器AM2をオフ
した状態。 (2) 励磁コイル15aを励磁し、励磁コイル15b
をオフし、増幅器AM1をオフし、増幅器AM2をオン
した状態。 (3) 励磁コイル15aをオフし、励磁コイル11b
を励磁し、増幅器AM1をオンし、増幅器AM2をオフ
した状態。 (4) 励磁コイル15aをオフし、励磁コイル11b
を励磁し、増幅器AM1をオフし、増幅器AM2をオン
した状態。
With the above configuration, for example, when the exciting coils 15a and / or 15b are excited (turned on) in a state where there is no drift, and the amplifiers AMP1 and AMP2 are both operated, the outputs of the amplifiers AMP1 and AMP2 are output. The signal levels of the signals almost coincide. The controller 21
, The measurement area on the cross section of the measurement tube 11 changes as described later using the weight function.
Next, the operation of the circuit shown in FIG. 1 will be described. The controller 21 controls the excitation circuit 19 to control the amplifiers AMP1 and AMP2 to generate the following four states in a time-sharing manner. (1) Excitation the excitation coil 15a and the excitation coil 15b
Is turned off, the amplifier AM1 is turned on, and the amplifier AM2 is turned off. (2) Excitation the excitation coil 15a and the excitation coil 15b
Is turned off, the amplifier AM1 is turned off, and the amplifier AM2 is turned on. (3) Turn off the exciting coil 15a and turn off the exciting coil 11b.
, And the amplifier AM1 is turned on and the amplifier AM2 is turned off. (4) Turn off the exciting coil 15a and turn off the exciting coil 11b.
Is excited, the amplifier AM1 is turned off, and the amplifier AM2 is turned on.

【0016】(1)の状態、即ち、励磁コイル15aの
みを励磁し、増幅器AMP1がオンの状態では、測定管
内の磁界分布は図2のようになり、測定管11内の磁束
の強度分布は、図面上側で強く、図面下側で弱いという
ように、不均一となる。また、誘導起電力を測定してい
る電極は13aと13bである。このため、測定管11
の断面を図1に示されるように4つの象限に区切って考
えた場合、第1象限を流れる流体の流速の影響が評価回
路17の出力する流速信号に強く現れる。このことを重
み関数を用いて図示すると図3aに示されるようにな
る。図3aにおいて、W1〜W6は、その位置の流体の
流速が増幅器AMP1の出力に与える影響の程度を示
し、W1が一番大きく順次低下する。
In the state (1), that is, when only the exciting coil 15a is excited and the amplifier AMP1 is on, the magnetic field distribution in the measuring tube is as shown in FIG. , Such as strong at the top of the drawing and weak at the bottom of the drawing. The electrodes for measuring the induced electromotive force are 13a and 13b. For this reason, the measuring tube 11
1 is divided into four quadrants as shown in FIG. 1, the influence of the flow velocity of the fluid flowing in the first quadrant appears strongly in the flow velocity signal output from the evaluation circuit 17. This is illustrated in FIG. 3A using a weight function. In FIG. 3A, W1 to W6 indicate the degree of the influence of the flow velocity of the fluid at that position on the output of the amplifier AMP1, and W1 sequentially decreases most greatly.

【0017】(2)の状態、即ち、励磁コイル15aの
みを励磁し、増幅器AMP2がオンの状態では、図3b
の重み関数の分布から理解できるように、第2象限を流
れる流体の流速の影響が流速信号に強く現れる。
In the state (2), that is, when only the exciting coil 15a is excited and the amplifier AMP2 is turned on, FIG.
As can be understood from the distribution of the weight function, the influence of the flow velocity of the fluid flowing in the second quadrant appears strongly in the flow velocity signal.

【0018】(3)の状態、即ち、励磁コイル15bの
みを励磁し、増幅器AMP1がオンの状態では、測定管
内の磁界分布は図2と逆の状態となり、測定管11内の
磁束の強度分布は、図面下側で強く、図面上側で弱くな
る。このため、図3cの重み関数の分布から理解できる
ように、第3象限を流れる流体の流速の影響が流速信号
に強く現れる。
In the state (3), that is, when only the exciting coil 15b is excited and the amplifier AMP1 is turned on, the magnetic field distribution in the measuring tube is opposite to that shown in FIG. Is strong at the bottom of the drawing and weak at the top of the drawing. Therefore, as can be understood from the distribution of the weight function in FIG. 3C, the influence of the flow velocity of the fluid flowing in the third quadrant appears strongly in the flow velocity signal.

【0019】(4)の状態、即ち、励磁コイル15bの
みを励磁し、増幅器AMP2がオンの状態では、図3d
の重み関数の分布から理解できるように、第4象限を流
れる流体の流速の影響が流速信号に強く現れる。
In the state (4), that is, when only the exciting coil 15b is excited and the amplifier AMP2 is turned on, FIG.
As can be understood from the distribution of the weight function, the influence of the flow velocity of the fluid flowing in the fourth quadrant appears strongly in the flow velocity signal.

【0020】従って、実際の被測定流体について、上記
4パターンの測定を行い、測定結果を比較することによ
り、流速分布及び偏流の位置を特定できる。例えば、第
1象限の流速のみが速く測定された場合には、第1象限
に偏流が存在することが分かる。また、例えば、第1象
限と第2象限の流速が第3象限と第4象限の流速に比し
て速い場合、第1象限と第2象限の間に偏流が存在する
ことが分かる。このようにして、流速分布及び偏流の位
置を特定できる。また、流速の比較から、偏流の流速の
およその値を知ることができる。
Therefore, the flow velocity distribution and the position of the drift can be specified by measuring the above four patterns for the actual fluid to be measured and comparing the measurement results. For example, when only the flow velocity in the first quadrant is measured quickly, it can be seen that there is a drift in the first quadrant. Also, for example, when the flow velocity in the first and second quadrants is faster than the flow velocity in the third and fourth quadrants, it can be seen that there is a drift between the first and second quadrants. In this way, the position of the flow velocity distribution and the drift can be specified. From the comparison of the flow velocities, an approximate value of the drift velocity can be known.

【0021】上記説明では、上記(1)〜(4)の状態
を個別に生成した。しかし、例えば、増幅器AMP1と
AMP2にそれぞれを評価回路を設けたり、評価回路1
7が時分割動作可能な場合には、励磁コイル15aを励
磁している状態で、増幅器AMP1とAMP2を共にオ
ンすれば、前述の(1)の時の流速信号と(2)の時の
流速信号を同時に得ることができる。同様に、励磁コイ
ル15bを励磁している状態で、増幅器AMP1とAM
P2を共にオンすれば、前述の(3)の時の流速信号と
(4)の時の流速信号を同時に得ることができる。
In the above description, the states (1) to (4) are individually generated. However, for example, each of the amplifiers AMP1 and AMP2 may be provided with an evaluation circuit,
7 can be operated in a time-sharing manner, if both the amplifiers AMP1 and AMP2 are turned on while the exciting coil 15a is energized, the flow velocity signal at the time of (1) and the flow velocity at the time of (2) Signals can be obtained simultaneously. Similarly, while the excitation coil 15b is being excited, the amplifiers AMP1 and AM
If both P2 are turned on, the flow velocity signal at the time of (3) and the flow velocity signal at the time of (4) can be obtained simultaneously.

【0022】また、偏流の位置の測定をより正確に行う
ため、励磁コイル15aと15bを同時に励磁し、電極
対13a、13bの出力により求められる流速(即ち、
増幅器AMP1の出力により求められる流速)と、電極
対13c、13dの出力により求められる流速(即ち、
増幅器AMP2の出力により求められる流速)を比較し
てもよい。励磁コイル15aと15bを同時に励磁し、
電極対13a、13bにより誘導起電力を測定する際
の、重み関数の分布を図4Aに示す。また、励磁励磁コ
イル15aと15bを同時に励磁し、電極対13c、1
3dにより誘導起電力を測定する際の、重み関数の分布
を図4Bに示す。
In order to more accurately measure the position of the drift, the exciting coils 15a and 15b are simultaneously excited, and the flow velocity (ie, the flow rate determined by the outputs of the electrode pairs 13a and 13b) is obtained.
The flow rate determined by the output of the amplifier AMP1 and the flow rate determined by the output of the electrode pairs 13c and 13d (ie,
The flow rate determined by the output of the amplifier AMP2) may be compared. Exciting the exciting coils 15a and 15b simultaneously,
FIG. 4A shows the distribution of the weight function when the induced electromotive force is measured by the electrode pairs 13a and 13b. In addition, the exciting coils 15a and 15b are simultaneously excited, and the electrode pairs 13c and 1c are excited.
FIG. 4B shows the distribution of the weight function when the induced electromotive force is measured by 3d.

【0023】例えば、第1象限に偏流が存在すると、電
極対13a、13bの出力により求められた流速が大き
くなり、電極対13c、13dの出力により求められた
流速が小さくなる。一方、X軸上或いはY軸上に偏流が
存在する場合には、両流速信号の大きな差は生じない。
For example, if there is a drift in the first quadrant, the flow velocity determined by the outputs of the electrode pairs 13a and 13b increases, and the flow velocity determined by the outputs of the electrode pairs 13c and 13d decreases. On the other hand, when there is a drift on the X axis or the Y axis, there is no large difference between the two flow velocity signals.

【0024】また、前述の説明では、励磁電流として方
形波の電流を使用した例で説明したが、サイン波状の励
磁電流を利用した場合にも、評価回路の構成をそれに応
じて変更すればそのまま応用できる。評価回路の構成自
体は、電磁流速計等の分野において、周知であるので、
ここではこれ以上の説明を省略する。次に、この発明の
第2実施例を図4を参照して説明する。なお、図4にお
いて、図1と同一部分には、同一符号を付し、説明を省
略する。第2実施例は、図5に示されるように、3対の
電極23a〜23fを用いる電磁流量計をそのまま偏流
位置測定装置として使用する例を示す。図5において、
主電極対23aと23bはX軸上に配置され、補助電極
対23cと23d、23eと23fはX軸より角度ψず
れた位置に配置されている。
In the above description, an example in which a square-wave current is used as the exciting current has been described. However, even when a sine-wave-like exciting current is used, if the configuration of the evaluation circuit is changed accordingly, it is left as it is. Can be applied. The configuration of the evaluation circuit itself is well known in the field of electromagnetic current meters and the like.
Here, further description is omitted. Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 4, the same portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. In the second embodiment, as shown in FIG. 5, an example is shown in which an electromagnetic flowmeter using three pairs of electrodes 23a to 23f is used as it is as a drift position measuring device. In FIG.
The main electrode pairs 23a and 23b are arranged on the X axis, and the auxiliary electrode pairs 23c and 23d and 23e and 23f are arranged at positions shifted from the X axis by an angle ψ.

【0025】主電極対23aと23bで検出された信号
は増幅器AM1を介して流量測定回路25に供給され、
補助電極対23cと23dで検出された信号は増幅器A
M2を介して流量測定回路25に供給され、補助電極対
23eと23fで検出された信号は増幅器AM3を介し
て流量測定回路25に供給される。増幅器AM1〜AM
3の増幅率は偏流が存在しない状態で各出力信号のレベ
ルが一致するように調整されている。
The signals detected by the main electrode pairs 23a and 23b are supplied to a flow measurement circuit 25 via an amplifier AM1.
The signal detected by the auxiliary electrode pair 23c and 23d is the amplifier A
The signal supplied to the flow measurement circuit 25 via M2 and the signals detected by the auxiliary electrode pairs 23e and 23f are supplied to the flow measurement circuit 25 via the amplifier AM3. Amplifiers AM1 to AM
The amplification factor of No. 3 is adjusted so that the levels of the respective output signals match in a state where there is no drift.

【0026】補助電極23cと23fで検出された信号
は増幅器AM4を介して評価回路27に供給され、補助
電極対23dと23eで検出された信号は増幅器AM5
を介して評価回路27に供給される。増幅器AM4とA
M5の増幅率は偏流が全く存在しない状態で出力信号の
信号レベルが一致するように調整されている。
The signals detected by the auxiliary electrodes 23c and 23f are supplied to an evaluation circuit 27 via an amplifier AM4, and the signals detected by the auxiliary electrode pairs 23d and 23e are supplied to an amplifier AM5.
Is supplied to the evaluation circuit 27 via Amplifier AM4 and A
The amplification factor of M5 is adjusted so that the signal level of the output signal matches when there is no drift.

【0027】通常の動作状態では、励磁コイル15aと
15bは共に励磁され、3対の電極23a〜23fの出
力信号に基づいて流量測定回路25が流量(流速)信号
を出力する。一方、偏流の位置或いは流速分布を測定す
る場合には、励磁コイル15a、15bの一方を励磁
し、増幅器AM4とAM5の出力を比較して、第1実施
例の場合と同様に、偏流の位置又は流速分布を測定す
る。
In a normal operation state, both the exciting coils 15a and 15b are excited, and the flow rate measuring circuit 25 outputs a flow rate (flow rate) signal based on the output signals of the three pairs of electrodes 23a to 23f. On the other hand, when measuring the position of the drift or the flow velocity distribution, one of the exciting coils 15a and 15b is excited, the outputs of the amplifiers AM4 and AM5 are compared, and the position of the drift is measured as in the first embodiment. Alternatively, the flow velocity distribution is measured.

【0028】上記第1及び第2実施例においては、2つ
の励磁コイルを使用したが、磁界の照射域を限定した3
以上の励磁コイルを使用して励磁コイルを個別に励磁
し、その時の電極対の検出値から、偏流の位置を特定す
るようにしても良い。また、本発明は図6に示されるよ
うな静電容量型の電極33a〜33dを用いた場合も同
様に実施可能である。
In the first and second embodiments, two exciting coils are used.
The exciting coils may be individually excited using the above exciting coils, and the position of the drift may be specified from the detected value of the electrode pair at that time. In addition, the present invention can be similarly implemented when using capacitance type electrodes 33a to 33d as shown in FIG.

【0029】測定管11としては、非磁性で電気絶縁性
のパイプ、例えば、セラミックス、強化プラスチックス
等からなるパイプを用いてもよく、また、非磁性の導電
性パイプ、例えば、SUS316ステンレススチール管
の内面を電気絶縁性の物質、例えば、プラスチック、ゴ
ムなどでライニングしたパイプを使用しても良い。
As the measuring tube 11, a non-magnetic and electrically insulating pipe, for example, a pipe made of ceramics, reinforced plastics or the like may be used, or a non-magnetic conductive pipe, for example, SUS316 stainless steel pipe A pipe whose inner surface is lined with an electrically insulating substance such as plastic or rubber may be used.

【0030】[0030]

【発明の効果】以上説明したように、本願発明によれ
ば、偏流の有無、偏流の位置を電磁誘導の原理に基づい
て簡単に測定できる。
As described above, according to the present invention, the presence or absence of a drift and the position of the drift can be easily measured based on the principle of electromagnetic induction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例にかかる偏流位置測定装
置の構成を示す図。
FIG. 1 is a diagram showing a configuration of a drift position measuring device according to a first embodiment of the present invention.

【図2】図1に示される偏流位置測定装置の励磁コイル
の一方のみを励磁した場合の磁束分布の例を示す図。
FIG. 2 is a diagram showing an example of a magnetic flux distribution when only one of the exciting coils of the drift position measuring device shown in FIG. 1 is excited.

【図3】1つの励磁コイルを励磁した場合の重み関数の
分布を示す図。
FIG. 3 is a diagram showing a distribution of a weight function when one excitation coil is excited.

【図4】2つの励磁コイルを励磁した場合の重み関数の
分布を示す図。
FIG. 4 is a diagram showing a distribution of weighting functions when two exciting coils are excited.

【図5】3電極対を使用する電磁流量計を偏流位置測定
装置と使用する例を説明するための構成図。
FIG. 5 is a configuration diagram for explaining an example in which an electromagnetic flowmeter using three electrode pairs is used with a drift position measuring device.

【図6】静電型電極を使用する実施例を説明するための
構成図。
FIG. 6 is a configuration diagram for explaining an embodiment using an electrostatic electrode.

【符号の説明】[Explanation of symbols]

11…測定管、13a〜13d…電極、15a、15b
…励磁コイル、17、27…評価回路、19…励磁回
路、21…コントローラ、AMP1、AMP2、AM1
〜AM5…増幅器、25…流量測定回路。
11: measuring tube, 13a to 13d: electrode, 15a, 15b
... Exciting coil, 17, 27 ... Evaluation circuit, 19 ... Exciting circuit, 21 ... Controller, AMP1, AMP2, AM1
AMAM5: amplifier, 25: flow measurement circuit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01F 1/58──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01F 1/58

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定流体が通過する測定管と、被測定流
体に磁界を印加するための複数の励磁コイルと、前記被
測定流体に前記磁界により誘導された電圧を検出する複
数の電極と、前記複数の電極の内の選択されたものから
の信号に対応する被測定流体の流速を求める手段と、前
記複数の励磁コイルのオン/オフ又は前記電極の選択状
態を切り替える制御回路を備え、 前記複数の励磁コイルの励磁状態又は前記複数電極の選
択状態を切り替えて、流速を求め、測定された複数の流
速を比較することにより偏流の位置を特定することを特
徴とする偏流位置検出方式。
1. A measurement tube through which a fluid to be measured passes, a plurality of excitation coils for applying a magnetic field to the fluid to be measured, and a plurality of electrodes for detecting a voltage induced in the fluid to be measured by the magnetic field. Means for determining a flow rate of the fluid to be measured corresponding to a signal from a selected one of the plurality of electrodes, and a control circuit for switching on / off the plurality of excitation coils or selecting a state of the electrodes, A drift position detection method characterized in that a flow velocity is obtained by switching an excitation state of the plurality of excitation coils or a selection state of the plurality of electrodes, and a position of the drift is identified by comparing the measured plurality of flow rates.
【請求項2】前記制御回路は、前記測定管の断面上の任
意の領域を流れる流体の流速に対する信号が強くなるよ
うに、前記励磁コイルの励磁状態または前記電極の選択
状態を切り替えることを特徴とする請求項1記載の偏流
位置検出方式。
2. The control circuit according to claim 1, wherein the control circuit switches between an excitation state of the excitation coil and a selection state of the electrodes so that a signal corresponding to a flow velocity of a fluid flowing in an arbitrary region on a cross section of the measurement tube becomes strong. The drift position detection method according to claim 1, wherein
【請求項3】被測定流体が通過する測定管と、前記被測
定流体に磁界を印加し、電磁誘導の法則に従って前記測
定管内の特定領域の流速に主に対応する信号を出力する
流速測定手段と、前記特定領域を切り替える手段を備
え、 前記特定領域を切り替えて流速を測定することにより前
記被測定流体の前記測定管内での速度分布の測定を可能
とすることを特徴とする速度分布測定装置。
3. A measuring pipe through which a fluid to be measured passes, and a flow velocity measuring means for applying a magnetic field to the fluid to be measured and outputting a signal mainly corresponding to a flow velocity in a specific area in the measuring pipe in accordance with the law of electromagnetic induction. And a means for switching the specific area, wherein a velocity distribution of the fluid to be measured in the measurement pipe can be measured by measuring the flow velocity by switching the specific area. .
【請求項4】前記速度分布測定装置は、被測定流体に磁
界を印加するための複数の励磁コイルと、前記磁界によ
り前記被測定流体に誘導された電圧を検出する複数の電
極と、前記複数の電極からの信号に対応する流速を求め
る手段を備え、前記切り替え手段は、前記測定管の断面
上の流速に対する感度を変更するように、前記励磁コイ
ルの励磁状態または前記電極の選択を切り替える回路を
備えることを特徴とする請求項3記載の速度分布測定装
置。
4. A velocity distribution measuring device comprising: a plurality of excitation coils for applying a magnetic field to a fluid to be measured; a plurality of electrodes for detecting a voltage induced in the fluid to be measured by the magnetic field; A circuit for determining a flow rate corresponding to a signal from the electrode, wherein the switching means switches an excitation state of the excitation coil or selection of the electrode so as to change sensitivity to a flow rate on a cross section of the measurement tube. The velocity distribution measuring device according to claim 3, further comprising:
JP21082891A 1991-08-22 1991-08-22 Deviation position detection method Expired - Fee Related JP2829158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21082891A JP2829158B2 (en) 1991-08-22 1991-08-22 Deviation position detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21082891A JP2829158B2 (en) 1991-08-22 1991-08-22 Deviation position detection method

Publications (2)

Publication Number Publication Date
JPH0552620A JPH0552620A (en) 1993-03-02
JP2829158B2 true JP2829158B2 (en) 1998-11-25

Family

ID=16595791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21082891A Expired - Fee Related JP2829158B2 (en) 1991-08-22 1991-08-22 Deviation position detection method

Country Status (1)

Country Link
JP (1) JP2829158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520878B2 (en) * 2005-02-16 2010-08-11 国土交通省関東地方整備局長 River flow monitoring system

Also Published As

Publication number Publication date
JPH0552620A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
EP1042651B1 (en) Electrode integrity checking
EP0704682B1 (en) Electromagnetic flowmeter for unfilled fluid flow conduit
US4283643A (en) Hall sensing apparatus
JP2009505085A (en) Magnetic induction flow measuring device
EP2005121A2 (en) Reduced noise sensitivity in magnetic flowmeter
JPH0473554B2 (en)
JPH03235067A (en) Electromagnetic type conductivity meter and method for measuring conductivity
JP2005300534A (en) Method for operating magnetic dielectric flowmeter
US7508222B2 (en) Electromagnetic flow meter
JPH05248902A (en) Electromagnetic flow meter
JP2829158B2 (en) Deviation position detection method
US7110899B2 (en) Phase measurement in measuring device
JP2000056000A (en) Magnetic sensor device and current sensor device
JP3204066B2 (en) Capacitive electromagnetic flowmeter
JP2002243815A (en) Magnetic detector
ATE350671T1 (en) METHOD AND ARRANGEMENT FOR THE CONTACTLESS DETERMINATION OF SPATIAL VELOCITY DISTRIBUTIONS IN ELECTRICALLY CONDUCTIVE LIQUIDS
JPH04318424A (en) Electromagnetic flowmeter
JP2001241983A (en) Electromagnetic flowmeter
JP3035724B2 (en) Metal detection method
JP2619121B2 (en) Electromagnetic flow meter
JP2894875B2 (en) Electromagnetic flow meter
JP3666464B2 (en) Proximity sensor
KR100467314B1 (en) Electromagnetic Flowmeter
JPH0466818A (en) Electromagnetic flow meter
SU808852A1 (en) Electromagnetic flowmeter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees