JPS6285699A - Variable-speed generator - Google Patents

Variable-speed generator

Info

Publication number
JPS6285699A
JPS6285699A JP60222812A JP22281285A JPS6285699A JP S6285699 A JPS6285699 A JP S6285699A JP 60222812 A JP60222812 A JP 60222812A JP 22281285 A JP22281285 A JP 22281285A JP S6285699 A JPS6285699 A JP S6285699A
Authority
JP
Japan
Prior art keywords
command value
output
power
variable speed
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60222812A
Other languages
Japanese (ja)
Inventor
Osamu Sugimoto
修 杉本
Tadaatsu Kato
加藤 忠厚
Goo Nohara
野原 哈夫
Masuo Goto
益雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Hitachi Ltd
Original Assignee
Kansai Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Hitachi Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP60222812A priority Critical patent/JPS6285699A/en
Priority to US06/915,392 priority patent/US4742288A/en
Priority to DE19863634328 priority patent/DE3634328A1/en
Publication of JPS6285699A publication Critical patent/JPS6285699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To improve stability by using a difference between power required for a control spot and an output capable of being made to correspond by other periodic machines as a power command value for a variable speed machine. CONSTITUTION:A command-value computing section 15 outputs an opening command value V for a governor valve 12 for a hydraulic turbine 13 and a speed command value N) on the basis of static head H ad an output command value P0. A phase-angle computing section 16 computes the phase angle DELTAdeltaof a secondary winding for an induction generator 100 on the basis of the output command value P0, effective power P, the speed command value N0 and a speed signal N. An excitation-quantity setting section 17 sets the quantity of the secondary winding excited by the speed signal N, the phase angle DELTAdelta and an output from a voltage regulating section 18. A proportional arithmetic section 60 compensates the output command value P0 on the generation of a grounding accident, outputs a compensated commend value P01, and absorbs the unbalanced energy of a system.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、2次励磁制御法を採用した誘導電動機によっ
て可変速運転される可変速発電装置、特に系統安定度の
向上をはかつてなる可変速発電装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a variable speed power generation device operated at variable speed by an induction motor employing a secondary excitation control method, and in particular to a variable speed power generation device that improves system stability. Regarding power generation equipment.

〔発明の背景〕[Background of the invention]

従来の揚水発電システムは、揚水時に負荷の調整ができ
ないこと、及び発電運転及び揚水運転時に系統より要求
される発電力の変化並びに揚水時の揚程等により、シス
テムの効率が変化するとの欠点があった。
Conventional pumped storage power generation systems have the disadvantages that the load cannot be adjusted during pumping, and the efficiency of the system changes due to changes in the power required by the grid during power generation and pumping operations, as well as the head during pumping. Ta.

このため1発電力、揚程にかかわらず上記システムを最
高効率で運転させるための研究が進んである。この目的
を達成するために、従来の同期機より構成した揚水発電
機の代りに、2次励磁制御法を採用した誘導機を揚水発
電機とする考え方がある。2次励磁制御法を採用した誘
導機にあっては、可変速運転が可能であるため、発電力
、揚程にかかわらず、発電システムの最高効率で運転が
可能である。
For this reason, research is progressing on how to operate the above system at maximum efficiency regardless of power output or lift. In order to achieve this objective, there is an idea of using an induction machine that employs a secondary excitation control method as a pumped storage power generator instead of a conventional pumped storage power generator configured with a synchronous machine. Since the induction machine that employs the secondary excitation control method is capable of variable speed operation, it is possible to operate at the highest efficiency of the power generation system regardless of the power generation capacity or head.

尚、同期機であっても、大容量同期機を可変速運転する
考え方については、「大容量同期電動機の可変速運転特
性」 (昭和59年度電気学会全国大会論文集、江島、
伊藤他2名、東芝)がある。
Regarding the concept of variable-speed operation of large-capacity synchronous motors, even if they are synchronous machines, see "Variable-speed operation characteristics of large-capacity synchronous motors" (Proceedings of the 1981 National Conference of the Institute of Electrical Engineers of Japan, Ejima, Japan).
Ito and two others, Toshiba).

一方、発電所内又は発電所近傍にあっては、系統安定化
のために、同期機を使用する。この同期機は、発電機と
なったり電動機となったりして系統の安定化をはかるこ
とになる。然るに、系統に大きなアンバランスが発生し
た場合、同期機は脱調することが考えられる。
On the other hand, in or near power plants, synchronous machines are used to stabilize the system. This synchronous machine serves as a generator or electric motor to stabilize the system. However, if a large imbalance occurs in the system, the synchronous machine may lose synchronization.

可変速運転の誘導機を発電機として使用した場合、この
脱′:I!4現象を防止することが必要となる。
When a variable speed induction machine is used as a generator, this problem occurs: I! It is necessary to prevent the following four phenomena.

〔発明の目的〕[Purpose of the invention]

本発明は、脱調現象を防止可能とする誘導機使用の可変
速発電装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a variable speed power generator using an induction motor that can prevent step-out phenomena.

〔発明の概要〕[Summary of the invention]

本発明は、可変速の誘導機には、税調現象のないことに
着目し、可変速機で系統の電力のアンバランス分を吸収
させ、系統の安定度の向上を計ろうとするものである。
The present invention focuses on the fact that variable speed induction motors are free from the tax adjustment phenomenon, and attempts to improve the stability of the system by absorbing the unbalanced power of the system using the variable speed induction machine.

即ち、制御地点の必要とする電力及び他の同期機で対応
しつる出力との差を可変速機の電力指令値とする。この
ようにすることにより、他の同期機で対応不可能な電力
量を可変速機で負担するため、他の同期機は一定量以上
の電力量を負担する必要がなく、安定度は向上する。
That is, the difference between the power required by the control point and the corresponding output of another synchronous machine is set as the power command value of the variable speed machine. By doing this, the variable speed machine bears the amount of power that other synchronous machines cannot handle, so other synchronous machines do not have to bear more than a certain amount of power, improving stability. .

〔発明の実施例〕[Embodiments of the invention]

第2図は可変速誘導機を使用した発電機の全体構成を示
す。誘導機100は、三相−次巻vA5 Q 。
Figure 2 shows the overall configuration of a generator using a variable speed induction machine. The induction machine 100 is a three-phase second-turn vA5Q.

5b、5cを持つ固定子1と、三相二次巻線6a。A stator 1 having windings 5b and 5c, and a three-phase secondary winding 6a.

6b、6cを持つ回転子2とより成る。It consists of a rotor 2 having 6b and 6c.

定格周波数をf、すべりをSとすると、回転子2の速度
はf(1−8)であり、回転子の2次巻線をすベリSの
周波数で励磁することにより、回転子2の回転磁界はす
べり零(同期速度)で回転し、固定子1の回転磁界の速
度と同一になる。
If the rated frequency is f and the slip is S, the speed of rotor 2 is f(1-8), and by exciting the secondary winding of the rotor at a frequency of S, the rotation of rotor 2 is increased. The magnetic field rotates with zero slip (synchronous speed) and is the same as the speed of the rotating magnetic field of the stator 1.

二次巻線6a、6b、6cの励磁制御は、制御部5oが
行う。制御部50は、指令値に従った励磁電圧v、 、
 V、 、 v3 を発生し、二次巻線6a。
The control unit 5o performs excitation control of the secondary windings 6a, 6b, and 6c. The control unit 50 controls the excitation voltage v according to the command value, ,
V, , v3 and the secondary winding 6a.

6b、6cに加える。Add to 6b and 6c.

ここに、EはすベリS及び可変速の誘導機の運転状態で
定まる電圧値、δ。は可変速の誘導機の運転状態で定ま
る位相角、Δδは外部指令により制御を受ける位相角と
なる。
Here, E is the voltage value, δ, determined by the operating conditions of the suberi S and variable speed induction machine. is a phase angle determined by the operating state of the variable speed induction machine, and Δδ is a phase angle controlled by an external command.

以北の構成とすることによって、任意の回転数で運転を
行っても、常に電機子巻線(回転子2の巻線6a、6b
、6c)には、系統周波数の電圧を発生させることがで
きる。即ち、第2図の例では、回転子2の回転磁界は、 !<1.−8”)+fS=f         ・・・
(2)となり、すべりSにかかわらず、定格周波数の回
転磁界が得られる。
By adopting a configuration north of this point, the armature windings (rotor 2 windings 6a, 6b
, 6c), a voltage at the grid frequency can be generated. That is, in the example of FIG. 2, the rotating magnetic field of the rotor 2 is: ! <1. -8”)+fS=f...
(2), and regardless of the slip S, a rotating magnetic field of the rated frequency can be obtained.

以上の誘導機を揚水発電所の発電機に使用する。The above induction machine is used in a generator for a pumped storage power plant.

この誘導機による発電運転中の系統事故時の安定度を向
上させることが本発明のねらいとなる。
The aim of the present invention is to improve stability in the event of a system failure during power generation operation using this induction machine.

第3図は、揚水発電所での発電機制御系統図を示す。誘
導機100は発電機としての機能を持ち。
Figure 3 shows a generator control system diagram at a pumped storage power plant. The induction machine 100 has a function as a generator.

その発電出力は、系統10に提供している。誘導機10
0の回転子2の回転軸は、水車13に結合し、水車13
によって回転する。
The power generation output is provided to the grid 10. induction machine 10
The rotation shaft of the rotor 2 of 0 is connected to the water wheel 13.
Rotate by.

水車13のガイド弁12は弁開度設定器14によって制
御を受け、誘導機100の二次巻線22a。
The guide valve 12 of the water turbine 13 is controlled by the valve opening setting device 14, and the secondary winding 22a of the induction machine 100.

22b、22cへの電力は移相器23a、23b。Power to 22b and 22c is provided by phase shifters 23a and 23b.

23cによって制御を受ける。23c.

以上の2つの制御は、以下の方法による。The above two controls are performed by the following methods.

指令値算出部15は2静落差(揚程)H1出力指令値(
有効電力指令値)Po とを取込み、効率を考慮したガ
バナ弁12の開度指令値Vの算出、及び速度指令値N。
The command value calculation unit 15 calculates the 2 static head (head) H1 output command value (
Active power command value) Po is taken in, and the opening command value V of the governor valve 12 is calculated in consideration of efficiency, and the speed command value N is calculated.

の算出を行う。弁開度設定器14は、開度指令値Vを取
込み所定の時間遅れをもって弁12の開度調整を行う。
Calculate. The valve opening setting device 14 receives the opening command value V and adjusts the opening of the valve 12 after a predetermined time delay.

位相角算出部16は、有効電力算出部21の検出有効電
力Pと、有効電力指令値P。と、速度指令値N0 と検
出速度Nとを取込みN、、 P、とに見合う2次巻線の
位相角Aδを算出する。検出有効電力Pは、電流変成器
19、電圧変成器20との検出電流、検出電圧とをもと
に有効電電力検出部21が算出する。検出速度Nは速度
検出器11が検出する。
The phase angle calculation unit 16 receives the detected active power P of the active power calculation unit 21 and the active power command value P. Then, the speed command value N0 and the detected speed N are taken in, and the phase angle Aδ of the secondary winding corresponding to N,, P, is calculated. The detected active power P is calculated by the active power detection unit 21 based on the detected current and detected voltage of the current transformer 19 and the voltage transformer 20. The detected speed N is detected by the speed detector 11.

励磁量設定部17は、検出速度N及び位相角Δδ、及び
電圧調整部18の出力とにより、2次巻線の励磁量を設
定する。この励磁量設定部17によって、位相器23a
、23b、23cの位相調整を行い、この移相した励磁
量v、、v、、v。
The excitation amount setting unit 17 sets the excitation amount of the secondary winding based on the detected speed N, the phase angle Δδ, and the output of the voltage adjustment unit 18. By this excitation amount setting section 17, the phase shifter 23a
, 23b, 23c, and the phase-shifted excitation amounts v,,v,,v.

により2次巻線(3a、6b、6cの励磁制御を行う。The excitation control of the secondary windings (3a, 6b, 6c) is performed by.

次に、以上の制御系統より成る二次励磁制御法による可
変速運転の誘導機を水用q電機として使用した場合の本
発明の実施例を第4図に示す。
Next, FIG. 4 shows an embodiment of the present invention in which an induction machine operated at variable speed using the secondary excitation control method and comprising the above-mentioned control system is used as a q-electric machine for water.

第4図は、2つの系統(母線)B、、B、を有し、系統
I3□とB、との間を送電線り、、L、で結合した送電
系統例への適用図である。系統B。には1台の同期機G
、と可変速の誘導機G。とが近接して接続され、系統8
2には1台の同期機G、が結合してなる。送電線■41
 には、系統B、側に電流変成器19Aと遮断器2:3
、系統B2側に電流変成器19B、遮断器24を設けた
。更に、保護リレー25.26を設乙ブている。
FIG. 4 is an application diagram to an example of a power transmission system having two systems (bus lines) B, , B, and connecting systems I3□ and B by a power transmission line, , L. Strain B. has one synchronous machine G
, and a variable speed induction machine G. are connected in close proximity, and system 8
2 is coupled with one synchronous machine G. Power transmission line■41
In the system B, there is a current transformer 19A and a circuit breaker 2:3 on the side.
, a current transformer 19B and a circuit breaker 24 were provided on the system B2 side. Furthermore, protection relays 25 and 26 are installed.

可変速誘導機G1は、第3図の誘導*1−ooに該当す
る6有効電力演算部21−Aは、同期機G2に係る電流
、電圧を変成器19C,20Cで検出し、その値からG
2での有効電力を算出する。制御部50Aは第2図、第
3図の制御部50と同一構成を持つと共に、事故発生時
に、有効電力演算部2.1. Aの出力のもとで出力指
な値の修11ミを行−)。
The variable speed induction machine G1 corresponds to the induction *1-oo in FIG. G
Calculate the active power at 2. The control unit 50A has the same configuration as the control unit 50 in FIGS. 2 and 3, and when an accident occurs, the active power calculation unit 2.1. Modify the output value based on the output of A (11).

操作端30は外部指令をlj、える。The operating end 30 receives an external command lj.

同1(11機G、、G3け、系統の?ニッパランスを・
なくすための機器であり、電動機とな−ったり2発電機
となったりして、エネルギーの放出、吸収制御の役割を
持つ1、 さて、この構成のもとで、地点Fで地絡事故が発生した
とする。従来では、地点!−で地絡事故が発生すると、
電流変成器l、9A、1913を通じて保護リレー25
.26が鋤き、遮断器23.24を開放する。このため
、同期機G2と(Lは入出力間に#Ifi、端なアンバ
ランスが生じ、電力をG7側に供給しでいる状態(G、
 が電動機と1,2て運転)では加速脱調を、G、側か
ら電力が供給されている状m (Gl が電動機として
λ重転)では減速脱調を生ずる。
Same 1 (11 aircraft G,, G3, system? Nippa Lance...
It is a device that acts as an electric motor or a generator, and has the role of controlling energy release and absorption.1 Now, with this configuration, if a ground fault occurs at point F, Suppose this occurs. Conventionally, the point! - If a ground fault occurs in
Protection relay 25 through current transformer l, 9A, 1913
.. 26 plows and opens circuit breakers 23 and 24. For this reason, there is a slight imbalance between the input and output of the synchronous machine G2 and (L), and power is not being supplied to the G7 side (G,
When the motor is operated with the electric motor 1 and 2), acceleration out-of-step occurs, and when the electric power is supplied from the G side and m (where Gl is operated as an electric motor and λ overlaps), deceleration out-of-step occurs.

本実施例では、この説明を防11−するため、同期機6
2側に設けた電流変成り19 c 、、電圧変成器20
Gの検出値より演算部21Aで同1i11機G2の常時
の有効出力を監視し、事故発生時には、同期機G、の出
力が、事故]前の出力になるように、同期機G2の隣接
する可変速誘導機G1を制御することとした。これによ
って、税調の防止、及び系統の安定を計れる。この可変
速誘導機G、の制御は、制御部50Aで行う。
In this embodiment, in order to prevent this explanation, the synchronous machine 6
Current transformer 19 c provided on the 2 side, voltage transformer 20
Based on the detected value of G, the calculation unit 21A constantly monitors the effective output of the 1i11 aircraft G2, and when an accident occurs, the output of the synchronous machine G2 is adjusted to the adjacent synchronous machine G2 so that the output is the same as before the accident. It was decided to control the variable speed induction machine G1. This will help prevent tax adjustments and stabilize the grid. Control of this variable speed induction machine G is performed by a control section 50A.

尚、同期機G、、G、は、系統安定化のためとしたが、
本来の発電機として設置L、た場合し−も本実施例は適
用できろ。発電機とし、ての同期機であっても、電動機
とし2での運転により工水ルギーの吸収は可能である。
In addition, the synchronous machines G, ,G, were used for system stabilization, but
Even if the generator is installed as an original generator, this embodiment can be applied. Even if the generator is a synchronous machine, it is possible to absorb the industrial water energy by operating it as an electric motor.

第5図は他の適用例である。この電力系統は、系統B、
には送電線L3 を介して2.つの同期機Gz 、G3
 、1つの可変速誘導機G、を接続し、系統B2には2
つの同期機G4.G5 を接続した。
FIG. 5 shows another example of application. This power system is system B,
2 through power transmission line L3. Two synchronous machines Gz, G3
, one variable speed induction machine G is connected, and two variable speed induction machines are connected to system B2.
Two synchronous machines G4. I connected the G5.

この構成は、可変速誘導機G、に近接オる連系統L3の
潮流を可変速誘導機G、の制御端軸として用いるもので
ある。
This configuration uses the power flow of the interconnection system L3 that is close to the variable speed induction machine G as the control end axis of the variable speed induction machine G.

今、潮流が系統B、 からB2へ流れているものとする
。地点ドで地絡事故が発生したとすると、遮断器24A
の動作により同期機G、が系統から切離され、B、から
132 へのWA流は;或少する。このため、何の制御
をしない場合には、同期機(j7゜G、は、第4図の説
明と同様の理由により加速し脱調する。この脱調を防+
hするべく制御部50Aを介して誘iに機G、  を二
次励磁制御する9次に、制御部50Aの動作を説明する
Assume that the current is now flowing from system B, to B2. If a ground fault occurs at point D, circuit breaker 24A
Due to the operation of , synchronous machine G is disconnected from the system, and the WA flow from B to 132 is reduced to some extent. Therefore, if no control is performed, the synchronous machine (j7°G) will accelerate and step out for the same reason as explained in Fig. 4.
9. Next, the operation of the control section 50A will be explained.

制御部50Aは、常時は高効率の運転ができるように、
誘導機G、の二次励磁制御を行い、[1,つ本川13の
ガバナ弁12の開度制御を行う、例えば、誘導機G、に
よる発電出力を低ドすべき指告が与えられると、fしめ
定めた手法により回転数、弁開度を算出1−2、二の算
出結果によって運転υJailを行い、指令通りの発電
出力の低下をさせる。一方、誘導機G、の回転数の定格
よりのずれは7励磁周波数としですべり周波数を用いる
。二とにより、定格周波数σ)出力を得ることができろ
、。
The control unit 50A always operates with high efficiency.
Perform secondary excitation control of the induction machine G, and control the opening of the governor valve 12 of the main river 13. For example, when an instruction is given to reduce the power generation output of the induction machine G, , f Calculate the rotational speed and valve opening degree using a predetermined method. Based on the calculation results of steps 1-2 and 2, the operation υJail is performed to reduce the power generation output as instructed. On the other hand, the deviation of the rotational speed of the induction machine G from the rated value is determined by using the excitation frequency 7 and the slip frequency. By means of two, the rated frequency σ) output can be obtained.

次に、制御部50Aの実施例を第1図に示す、。Next, an embodiment of the control section 50A is shown in FIG.

制御部50に比べて、比較演算部60を新しく付加した
。、比較演算部60は、1(11絡事故発生時に。
Compared to the control section 50, a comparison calculation section 60 is newly added. , the comparison calculation unit 60 calculates 1 (when an 11 fault occurs).

出力指令値P、 を補正して系統のアンバランスなエネ
ルギーの吸収に供する。比較演算部60の処理内容を第
6図に示す。先ず、有効電力算出部21Aで算出した同
期機G2の有効電力P、の変動量が許容値内か否かチェ
ックする。変動量が許容値内であれば、外部から与えら
れている指令値Po をそのまま正規の指令値Potと
して出力する。
The output command value P, is corrected to absorb unbalanced energy in the system. The processing contents of the comparison calculation section 60 are shown in FIG. First, it is checked whether the amount of variation in the active power P of the synchronous machine G2 calculated by the active power calculation unit 21A is within a permissible value. If the amount of variation is within the allowable value, the command value Po given from the outside is output as is as the regular command value Pot.

一方、変動量が許容値以上であると、外部指令値Po 
を補正し、新しい指令値P0.を出力する。この新しい
指令値P。1とは、同期機G2の変動出力に見合うもの
であり、変動量をΔPとすると、Pl、1= P、+Δ
P とする。
On the other hand, if the amount of variation is greater than the allowable value, the external command value Po
is corrected and a new command value P0. Output. This new command value P. 1 corresponds to the variable output of synchronous machine G2, and if the amount of variation is ΔP, then Pl, 1=P, +Δ
Let it be P.

位相角算出部16では(1)式のΔδを算出する。The phase angle calculation unit 16 calculates Δδ in equation (1).

このΔδは、 Aδ= /に□(P−Po1)dt+ / k、(N−
N、)dt−に、(p−p、1)dt+に、(N−No
)−G3)である。ここで、K工、に、、に1.に2は
定数である。
This Δδ is Aδ= /to□(P-Po1)dt+/k, (N-
N,) to dt-, (p-p, 1) to dt+, (N-No
)-G3). Here, K. 1. 2 is a constant.

第4図の系統のもとでの本実施例の動作を説明する。今
、同期機G2が有効電力を03側に供給している状態で
、第4図に示す如く送電&!L、の地点Fで事故が生ず
ると、電流変成器19A。
The operation of this embodiment under the system shown in FIG. 4 will be explained. Now, with the synchronous machine G2 supplying active power to the 03 side, power is transmitted &! as shown in Figure 4. When an accident occurs at point F of L, current transformer 19A.

19Bを介して保護リレー25.26がその事故検出を
行い、遮断器23.24に遮断指令を発し、送電線L1
 を系統より切離す。この場合に、同期機G2は事故前
の出力をp atとすると、発電機としての誘導機の入
力も、はぼこれに見合った値P2で運転している。然る
に、事故時には、発電機としての出力がほぼ零となるた
め、何等の制御も行わないと、P2が発電機としての加
速に使用される。
19B, the protective relay 25.26 detects the fault, issues a disconnection command to the circuit breaker 23.24, and disconnects the power transmission line L1.
is separated from the lineage. In this case, if the output of the synchronous machine G2 before the accident is pat, then the input of the induction machine as a generator is also operating at a value P2 commensurate with this. However, in the event of an accident, the output as a generator becomes almost zero, so if no control is performed, P2 will be used for acceleration as a generator.

そこで、本実施例では、同期機G2の有効電力を監視し
ておき、同期機G2の有効電力の変動が許容値内か否か
を判定し、許容値以上の変動があれば、誘導機G□への
指令値として、同期機G2の事故前の出力P、1と事故
後の出力P6□との差分ΔP= (P、□−P、、)を
求め、この差分、4Pによって、指令値P。を補正する
。例えば、補正後の指令値をPl、1とすると。
Therefore, in this embodiment, the active power of the synchronous machine G2 is monitored, and it is determined whether the fluctuation in the active power of the synchronous machine G2 is within a permissible value, and if the fluctuation exceeds the permissible value, the induction motor As the command value for □, the difference ΔP= (P, □ - P, ,) between the output P, 1 before the accident of synchronous machine G2 and the output P6 □ after the accident is calculated, and from this difference, 4P, the command value P. Correct. For example, suppose the corrected command value is Pl, 1.

Pa、 = Po+AP           ・(4
)となる。この新しい指令値P。、をもとに(3)式の
演算を算出部16で行い、補正後のAδを得ることがで
きる。このΔδによって、事故により、同期機G2が系
統へ吸収できなかった電力を誘導機で吸収できることに
なる。この制御により、発電機の出力の減少がおさえら
れるため、加速が抑制される。
Pa, = Po+AP ・(4
). This new command value P. The calculation unit 16 calculates the formula (3) based on , and the corrected Aδ can be obtained. This Δδ allows the induction machine to absorb power that could not be absorbed into the grid by the synchronous machine G2 due to the accident. This control suppresses a decrease in the output of the generator, thereby suppressing acceleration.

第7図は本実施例と従来例との効果の比較図である。事
故時の同期機G2 の位相角の変動曲線であり、曲線a
は本実施例による場合、曲線すは従来例による場合を示
す。本実施例によれば1位相角の変動は少なくなる。
FIG. 7 is a comparison diagram of the effects of this embodiment and the conventional example. This is the phase angle fluctuation curve of synchronous machine G2 at the time of the accident, and curve a
The curves indicate the case according to this embodiment, and the curves indicate the case according to the conventional example. According to this embodiment, fluctuations in one phase angle are reduced.

尚(4)式の補正式は一例であり、システムに応じて補
正が可能である。
Note that the correction equation (4) is just an example, and correction can be made depending on the system.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、同期機を有する系統において系統のア
ンバランスが生じた場合も、可変速誘導機でエネルギー
の出し入れを行うことができ、安定な系統運転が可能と
なった。
According to the present invention, even when system imbalance occurs in a system having a synchronous machine, energy can be input and output using the variable speed induction machine, and stable system operation has become possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例図、第2図は誘導機の制御系統
図、第3図は水車発電機として利用した場合の誘導機の
更に詳細な制御系統図、第4図。 第5図は系統適用例図、第6図は処理フロー図、第7図
は効果の比較図である。 100及びG1・・・可変速誘導機、G2+G3+G4
rG5・・・同期機、50A・・・制御部。
FIG. 1 is an embodiment of the present invention, FIG. 2 is a control system diagram of an induction motor, FIG. 3 is a more detailed control system diagram of the induction motor when used as a water turbine generator, and FIG. FIG. 5 is a system application example diagram, FIG. 6 is a processing flow diagram, and FIG. 7 is a comparison diagram of effects. 100 and G1...variable speed induction machine, G2+G3+G4
rG5...Synchronous machine, 50A...Control unit.

Claims (1)

【特許請求の範囲】 1、水車によつて駆動される2次励磁付の可変速誘導機
と、該誘導機に隣接又は近傍の連系統に接続された同期
機と、系統からの該同期機への有効電力の変動が許容値
以上のとき上記誘導機への2次励磁制御用の出力指令値
を該変動した量に併せて修正させる手段と、より成る可
変速発電装置。 2、上記有効電力の変動は、系統の地絡事故を原因とす
る特許請求の範囲第1項記載の可変速発電装置。
[Claims] 1. A variable speed induction machine with secondary excitation driven by a water turbine, a synchronous machine connected to an interconnection system adjacent to or in the vicinity of the induction machine, and the synchronous machine from the system a variable speed power generator comprising: means for correcting an output command value for secondary excitation control to the induction machine in accordance with the amount of variation when the variation in active power to the induction machine exceeds a permissible value. 2. The variable speed power generator according to claim 1, wherein the fluctuation in the active power is caused by a ground fault in the grid.
JP60222812A 1985-10-08 1985-10-08 Variable-speed generator Pending JPS6285699A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60222812A JPS6285699A (en) 1985-10-08 1985-10-08 Variable-speed generator
US06/915,392 US4742288A (en) 1985-10-08 1986-10-06 Control system for AC motor/generator of secondary AC excitation type
DE19863634328 DE3634328A1 (en) 1985-10-08 1986-10-08 CONTROL SYSTEM FOR AN AC MOTOR / GENERATOR OF THE AC SECONDARY REGULATOR TYPE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222812A JPS6285699A (en) 1985-10-08 1985-10-08 Variable-speed generator

Publications (1)

Publication Number Publication Date
JPS6285699A true JPS6285699A (en) 1987-04-20

Family

ID=16788287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222812A Pending JPS6285699A (en) 1985-10-08 1985-10-08 Variable-speed generator

Country Status (1)

Country Link
JP (1) JPS6285699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174599A (en) * 1988-12-27 1990-07-05 Tokyo Electric Power Co Inc:The Rotary machine controller
JP2011036123A (en) * 2009-07-30 2011-02-17 Alstom Technology Ltd Method and apparatus for identifying load reduction at an early stage, and controlling in precedence
CN116667445A (en) * 2023-07-27 2023-08-29 中国能源建设集团湖南省电力设计院有限公司 Multi-time scale optimal configuration method for capacity of pumping and storing station of new energy power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112898A (en) * 1980-02-13 1981-09-05 Toshiba Corp Speed adjustment controller
JPS5972998A (en) * 1982-10-20 1984-04-25 Hitachi Ltd Operating method for variable speed water wheel generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112898A (en) * 1980-02-13 1981-09-05 Toshiba Corp Speed adjustment controller
JPS5972998A (en) * 1982-10-20 1984-04-25 Hitachi Ltd Operating method for variable speed water wheel generator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02174599A (en) * 1988-12-27 1990-07-05 Tokyo Electric Power Co Inc:The Rotary machine controller
JP2011036123A (en) * 2009-07-30 2011-02-17 Alstom Technology Ltd Method and apparatus for identifying load reduction at an early stage, and controlling in precedence
CN116667445A (en) * 2023-07-27 2023-08-29 中国能源建设集团湖南省电力设计院有限公司 Multi-time scale optimal configuration method for capacity of pumping and storing station of new energy power system
CN116667445B (en) * 2023-07-27 2023-11-17 中国能源建设集团湖南省电力设计院有限公司 Multi-time scale optimal configuration method for capacity of pumping and storing station of new energy power system

Similar Documents

Publication Publication Date Title
Basler et al. Understanding power system stability
US7800243B2 (en) Variable speed wind turbine with doubly-fed induction generator compensated for varying rotor speed
JPH0351910B2 (en)
Ambati et al. A hierarchical control strategy with fault ride-through capability for variable frequency transformer
US4742288A (en) Control system for AC motor/generator of secondary AC excitation type
JP2555407B2 (en) AC excitation power generator
CN112350346A (en) Method for establishing transient stability simulation model of power system
JPS6285699A (en) Variable-speed generator
Deepak et al. Virtual inertia control for transient active power support from DFIG based wind electric system
CN113659629B (en) Synchronous computerized power electronic grid-connected device and control method thereof
CN110212546B (en) Control method and controller for suppressing torsional oscillator terminal STATCOM output current
JP3187257B2 (en) Operation control device for AC excitation synchronous machine
CN106253310A (en) The sub-synchronous oscillation suppression system controlled based on synchronous coordinate torque vector and method
JP3515275B2 (en) Variable speed generator motor
JP2538859B2 (en) Variable speed pumped storage system control device
JP3268457B2 (en) Power system stabilization method and variable speed generator motor
Erlich et al. Dynamic behavior of variable speed pump storage units in the German electric power system
JPS63114599A (en) Variable speed power generator
JP3130192B2 (en) Secondary excitation control method for AC excitation synchronous machine
JPH0576277B2 (en)
JPH0570370B2 (en)
JPS63265594A (en) Operation control system for variable speed pumping-up power generating system
Chapman et al. Operation of an isolated hydro plant supplying an HVDC transmission load
JP3092858B2 (en) Grid stabilization system
Paserba et al. Enhanced Generator Controls for the Improvement of Power System Voltage Stability