JPS6285450A - Heat transfer apparatus - Google Patents

Heat transfer apparatus

Info

Publication number
JPS6285450A
JPS6285450A JP60225313A JP22531385A JPS6285450A JP S6285450 A JPS6285450 A JP S6285450A JP 60225313 A JP60225313 A JP 60225313A JP 22531385 A JP22531385 A JP 22531385A JP S6285450 A JPS6285450 A JP S6285450A
Authority
JP
Japan
Prior art keywords
accumulator
heat
wick
capillary material
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60225313A
Other languages
Japanese (ja)
Inventor
Tetsuro Ogushi
哲朗 大串
Masaaki Murakami
政明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60225313A priority Critical patent/JPS6285450A/en
Publication of JPS6285450A publication Critical patent/JPS6285450A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To reduce a pump power for circulation by composing part of an accumulator of a capillary tube material, and mainly heating condensable heat medium impregnated to the capillary material as an objective. CONSTITUTION:The first capillary tube material 21 is a first wick having fine mesh formed in contact with the walls of accumulators 6, 7, and the second capillary tube material 22 is a second wick having rough mesh formed in liquid phase in the accumulators 6, 7. The operating fluid vapor 3B of high temperature generated in a heat receiver 1 flows to a heat sink 2, is cooled to be condensed, further cooled, fluid 3A to become low temperature flows to the second accumulator 7 to be impregnated to wicks 21, 22. At this time the only fluid impregnated into the wick 21 is heated by the first heater 23 and evaporated, and the fluid in the wick 2 is not heated. Thus, the heating amount of the heater 23 may be small enough.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2例えば2<、子機器の冷却などに用いられる
熱伝達装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat transfer device used for cooling slave devices, for example.

〔従来の技術〕[Conventional technology]

熱伝達装置は熱輸送媒体を管路内に封入1゜、この熱輸
送媒体の液と蒸気との相変化を利用したものが一般的で
、受熱部で吸収した熱を放熱部に輸送して発散させるよ
うにしている。
Generally, heat transfer devices enclose a heat transport medium in a pipe and utilize the phase change of this heat transport medium between liquid and steam. I'm trying to let it out.

第4図は同−用願人による特願昭59−26743号明
細書に示している先行の熱伝達装置でろって1図におい
て、(1)は受熱部、(2)は放熱部、(3)は熱輸送
媒体とl−てのフロンやメチルアルコールなどの凝縮性
の熱媒体すなわち作動流体でおる。この作動流体(3)
は前記受熱部(1)と放熱部(2)とを介装したループ
状の管路(4)内に適量封入されている。(5)は放熱
を効果的に行うために放熱部(2)に設けられた送風フ
ァンである。
FIG. 4 shows the prior heat transfer device shown in Japanese Patent Application No. 59-26743 by the same applicant. In FIG. 1, (1) is a heat receiving part, (2) is a heat radiating part, ( 3) is a heat transport medium and a condensable heat medium such as chlorofluorocarbon or methyl alcohol, that is, a working fluid. This working fluid (3)
An appropriate amount of is sealed in a loop-shaped conduit (4) with the heat receiving section (1) and the heat dissipating section (2) interposed therebetween. (5) is a blower fan provided in the heat radiating section (2) to effectively radiate heat.

(6)及び(7)は受熱部(1)の−上流側と放熱部(
2)の下流側とを接続する管路(4)に介装された複数
個のアキュムレータ、本例においては2個の第1及び第
2のアキュムレータで、2個並列に配管されている。す
なわち、  (4A)は受熱部+1)の下流側と放熱部
(2)の−上流側とを接続する管路、  (、iB)、
 (40)は受熱部(1)の上流側と放熱部(2)の下
流側とを接続する管路で、受熱部(1)側の管路(40
)は第1及び第2のアキュムレータ+61. +71と
受熱部(1)とを連通接続する管路(8A)と管路(8
B)とに分岐され、放熱部(2)側の管路(4B)は第
1及び第2のアキュムレータ(6)、(7)と放熱部(
2)とを連通接続する管路(80)と管路(8D)とに
分岐されている。(9)〜Q3は分岐されたそれぞれの
管路(8A)〜(8D)を選択的に開閉して、第1.第
2アキュムレータ(6)。
(6) and (7) are the -upstream side of the heat receiving part (1) and the heat dissipating part (
A plurality of accumulators, in this example two first and second accumulators, are installed in the pipe line (4) connecting the downstream side of 2) and are piped in parallel. That is, (4A) is a pipe connecting the downstream side of the heat receiving part +1) and the − upstream side of the heat dissipating part (2), (, iB),
(40) is a conduit connecting the upstream side of the heat receiving section (1) and the downstream side of the heat dissipating section (2);
) are the first and second accumulators +61. A pipe line (8A) and a pipe line (8
B), and the pipe line (4B) on the heat radiating part (2) side connects the first and second accumulators (6), (7) and the heat radiating part (
2) is branched into a pipe line (80) and a pipe line (8D). (9) to Q3 selectively open and close the respective branched pipes (8A) to (8D), and the first. Second accumulator (6).

(7)の動作を反転させる反転用開閉弁で、(9)及び
囮は管路(8A)及び(8B)に介装された第1及び第
2の開閉弁、aυ及びα2は管路(80)及び管路(8
D)に介装された第3及び第4の開閉弁である。
(9) and the decoy are the first and second on-off valves interposed in the pipes (8A) and (8B), and aυ and α2 are the pipes ( 80) and conduit (8
D) are the third and fourth on-off valves installed.

そしてこれら第1〜第4の開閉弁(9)〜Q3はアキ−
ムレ−タ(6) 、 f71の動作を反転する制御手段
を構成するために9次のようにその開閉動作が互いに連
動されている。すなわち、第1、第4の開閉弁(9)、
 +13が共に開で、第2゜第3の開閉弁on、aυが
共に閉の第1の状態と、第1.第4の開閉弁(9)、α
邊が共に閉で、第2、第3の開閉弁On、 01が共に
開の第2の状態とを交互に適当な時間間隔で繰り返すよ
うに連動されている。
And these first to fourth on-off valves (9) to Q3 are
In order to constitute a control means for reversing the operations of the muleta (6) and f71, their opening and closing operations are interlocked with each other in a nine-order manner. That is, the first and fourth on-off valves (9),
+13 are both open, the 2nd and 3rd on-off valves are on, and the first state is that aυ are both closed; Fourth on-off valve (9), α
Both sides are closed, and the second and third on-off valves On and 01 are both open, which are alternately repeated at appropriate time intervals.

03は前記第1及び第2のアキュムレータ(6)、(7
)を加熱冷却する加熱冷却手段としてのベルチェ効果を
利用した熱電素子で、との熱電素子03はアキュムレー
タ間に介装され、一方の面Q41を第1のアキュムレー
タ(6)に接触させ、他方の面口1を第2のアキュムレ
ータ(7)に接触させるように設けられている。この熱
電素子0は通電する雷5流の正負を切り換えることによ
り、前記両面I、01において発熱及び吸熱を交互に行
うことができる。ここで正負の切り換えは、第1〜第4
の開閉弁(9)〜0邊が第1の状態にあるとき、熱電素
子a3の一方の面041が発熱、他方の面(19が吸熱
状態となり、第2の状態にめるとき、熱電素子a3の一
方の面OQが吸熱、他方の面a1が発熱となるように連
動されている。
03 is the first and second accumulator (6), (7
) is a thermoelectric element that utilizes the Bertier effect as a heating and cooling means for heating and cooling. The thermoelectric element 03 and is interposed between the accumulators, one surface Q41 is in contact with the first accumulator (6), and the other surface Q41 is in contact with the first accumulator (6). It is provided so that the face opening 1 is brought into contact with the second accumulator (7). This thermoelectric element 0 can alternately generate heat and absorb heat on both surfaces I and 01 by switching the positive and negative states of the lightning current 5 to be energized. Here, switching between positive and negative is performed from the first to fourth
When the on-off valves (9) to 0 are in the first state, one surface 041 of the thermoelectric element a3 generates heat, and the other surface (19) is in the heat absorption state, and when it enters the second state, the thermoelectric element They are interlocked so that one surface OQ of a3 absorbs heat and the other surface a1 generates heat.

このように構成された熱伝達装置においては、前記第1
の状態に設定されると、受熱部(1)で発生した作動流
体蒸気(3B)は管路(4A)を通って放熱部(2)へ
と流通し、冷却されて凝縮する。凝縮された作動流体液
(3A)は管路(4B)、管路(8D)を経て第4の開
閉弁a邊を通過し。
In the heat transfer device configured in this way, the first
When the state is set, the working fluid vapor (3B) generated in the heat receiving section (1) flows through the pipe (4A) to the heat dissipating section (2), where it is cooled and condensed. The condensed working fluid (3A) passes through a pipe (4B) and a pipe (8D), and then passes around the fourth on-off valve a.

第2のアキュムレータ(7)へ流れ込む作用により、受
熱部(1)で吸収した熱が放熱部(2)へと輸送される
。この間、第2の開閉弁α〔は閉になっているため、受
熱部+1)から第2のアキュムレータ(7)へ管路(8
B)を通って直接蒸気が流れ込むようなことはない。ま
た第1の開閉弁(9)は開、第3の開閉弁aυは閉とな
っている。
Due to the action of flowing into the second accumulator (7), the heat absorbed by the heat receiving part (1) is transported to the heat radiating part (2). During this time, the second on-off valve α [is closed, so the pipe line (8
No steam flows directly through B). Further, the first on-off valve (9) is open, and the third on-off valve aυ is closed.

このとき前記熱電素子G3には第1のアキュムレータ(
6)を加熱し、第2のアキュムレータ(7)を冷却する
ように電圧が印加されており。
At this time, the thermoelectric element G3 has a first accumulator (
A voltage is applied to heat the second accumulator (7) and cool the second accumulator (7).

第1のアキュムレータ(6)の内部圧力が第2のアキュ
ムレータ(7)の内部圧力よりも高くなるため、第1の
アキュムレータ(6)から第2のアキュムレータ(7)
へ向かう方向に液体を流通させる駆動力が発生する。そ
の結果、第1のアキュムレータ(6)内に2)る液体は
管路(8A) 、第1の開閉弁(9)及び管路(4(り
を通って受熱部(1)へ還流することになる。換舊すれ
げ受熱部(1)に作動流体(3)が供給されることにな
る。
Since the internal pressure of the first accumulator (6) is higher than the internal pressure of the second accumulator (7), the difference between the first accumulator (6) and the second accumulator (7)
A driving force is generated that causes the liquid to flow in the direction of. As a result, the liquid in the first accumulator (6) flows back to the heat receiving part (1) through the pipe (8A), the first on-off valve (9) and the pipe (4). The working fluid (3) is supplied to the heat receiving part (1) at the exchange.

一方、一定周期経過後あるいはアキュムレータ(6) 
、 (71内の液面の検知などにより、第1〜第4の開
閉弁(9)〜O2及び熱電、素子f13の切り換えが行
われると、熱′「セ、素子(13は面t+4が吸熱、面
(19が発熱状態となる。また第1及び第4の開閉弁(
91、Hが共に閉で、第2及び第3Q)開閉弁明、0υ
が共に開の第2の状態に切り換えると、受熱部(1)で
蒸発1.た作動流体蒸気(31))は放熱部(2)で液
化1−だ後、第1のアキュムレータ(6)へ流れ込み、
第2のアキュムレータ(7)から受熱部(1)へと液が
還流するという点が異なるだけの第1の状態と全く同様
t「作用で熱輸送が行われる。
On the other hand, after a certain period or the accumulator (6)
, (When the first to fourth on-off valves (9) to O2 and thermoelectric element f13 are switched by detecting the liquid level in 71, heat , surface (19 is in a heat generating state. Also, the first and fourth on-off valves (
91, both H are closed, 2nd and 3rd Q) opening/closing defense, 0υ
When both are switched to the second state where they are open, evaporation 1. The working fluid vapor (31)) is liquefied in the heat radiation part (2) and then flows into the first accumulator (6).
Heat transport is carried out in exactly the same way as in the first state, except that the liquid flows back from the second accumulator (7) to the heat receiving part (1).

このように第1〜第4の開閉弁(9)〜aaの開閉の切
り換え、及び熱*、素子α9の電流の切り換えにより、
受熱部(1)に作動流体(3)が還流1゜ている時点で
アキュムレータ(61,+71を切り換え、略連続的に
作動流体(3)を受熱部(1)へと還流させることがで
きる。
In this way, by switching the opening and closing of the first to fourth on-off valves (9) to aa, and switching the heat* and current of element α9,
When the working fluid (3) is refluxed to the heat receiving part (1) by 1°, the accumulators (61, +71) are switched, and the working fluid (3) can be substantially continuously returned to the heat receiving part (1).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の熱伝達装置は以上のように構成されているので、
熱!素子a3の加熱によりアキュムレータ+61. (
71内の圧力を高めるためにはアキュムレータ+61.
 (71内の作動流体(3)を蒸発させる必要があるが
、放熱部(2)で冷却されて凝縮し、管路(4B)を通
ってアキュムレータ(6)。
Since the conventional heat transfer device is configured as described above,
heat! Accumulator +61. due to heating of element a3. (
To increase the pressure inside 71, the accumulator +61.
(It is necessary to evaporate the working fluid (3) in 71, but it is cooled and condensed in the heat dissipation part (2), and passes through the pipe (4B) to the accumulator (6).

(7)へ還流する作動流体(3A)は、放熱部(2)で
凝縮温度以下に過冷却されるため、アキュムレータf6
1. (71で蒸発する温度よりもかなり低い温度で流
入する。そのため、熱電素子α3による加熱量として、
液体を蒸気に変える蒸発潜熱の他に、液体の温度を蒸発
温度まで上昇させるための顕熱量が必要となり、したが
って、作動流体(3)を循環させるために必要なポンプ
動力すなわち熱電素子03への入力電力が多く必要とな
るという問題点があった。
The working fluid (3A) that flows back to (7) is supercooled to below the condensation temperature in the heat radiation section (2), so the working fluid (3A) that flows back to the accumulator f6
1. (It flows in at a temperature considerably lower than the temperature at which it evaporates at 71. Therefore, the amount of heating by thermoelectric element α3 is
In addition to the latent heat of vaporization that turns the liquid into vapor, an amount of sensible heat is required to raise the temperature of the liquid to the vaporizing temperature. There was a problem that a large amount of input power was required.

この発明は上記のような問題点を解消するためになされ
たもので、アキュムレータの昇圧に要する加熱量が小さ
な(すなわちポンプ動力が小さい)熱伝達装置を得るこ
とを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to obtain a heat transfer device that requires a small amount of heating to increase the pressure of an accumulator (that is, requires a small pump power).

〔問題点を解決するための手段〕 この発明に係る熱伝達装置は、アキュムレータ内の少な
くとも一部を毛管材料で構成し、加熱は主と1−て上記
毛管材料に浸透した凝縮性熱媒体を対象に行うものであ
る。
[Means for Solving the Problems] The heat transfer device according to the present invention includes at least a portion of the accumulator made of a capillary material, and heating is performed mainly by using a condensable heat medium that has permeated the capillary material. It is something that is done to the target.

〔作 用〕[For production]

この発明においては1毛管材料に浸透した作動流体を加
熱することによってアキュムレータ内を昇圧するので、
アキュムレータ内の全部の作動流体を加熱するのに比べ
昇圧に要する加熱量が少なくてすむ。
In this invention, the pressure inside the accumulator is increased by heating the working fluid that has permeated the capillary material.
The amount of heating required to increase the pressure is smaller than heating all of the working fluid in the accumulator.

〔実施例〕〔Example〕

以下、この発明の一実施例を図をもとに説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図において、Qυはアキュムレータ(6)l(7)
の壁面に密着して設けられた網目状の目の細かい第1毛
管材料すなわち第1ウイツク。
In Figure 1, Qυ is an accumulator (6) l (7)
A first capillary material with a fine mesh, that is, a first wick, is provided in close contact with the wall of the cell.

@はアキュムレータ+61. +71内の液相部に設け
られた網目状の目の粗い第2毛管材料すなわち第2ウイ
ツク、 g3. C141は第1ウイツクQυに密着し
てアキュムレータT61. +7+の外部に設けられた
第1.第2のヒータ、(ト)、■はアキュムレータ+6
1. (71の蒸気相部に密着して設けられた第1.第
2の冷却器でおり、これら冷却器(ハ)、(ハ)は受熱
部側の管路(40)から分岐され第1.第2のアキュム
レータ161. +71にそれぞれ連通接続される管路
(8A) 、 (8B)  の途中に介装されている。
@ is accumulator +61. a second capillary material with a coarse mesh provided in the liquid phase within +71, i.e., a second wick; g3. C141 is in close contact with the first wick Qυ and is connected to the accumulator T61. +7+ provided outside the first. Second heater, (G), ■ is accumulator +6
1. These coolers (C) and (C) are branched from the pipe line (40) on the side of the heat receiving section and are arranged in close contact with the vapor phase section of the first and second coolers (71). The pipes (8A) and (8B) are interposed in the middle of the pipes (8A) and (8B) which are connected to the second accumulator 161.+71, respectively.

八は第1.第2アキュムレータ+61. (71と反転
用開閉弁(9)〜O3を有するアキュムレータ群装置を
示す。
Eight is the first. 2nd accumulator +61. (71) and an accumulator group device having reversing on-off valves (9) to O3.

次に動作について説明する。第1図は第1、第4の開閉
弁(9+、 Q3が共に開、第2.第3の開閉弁(In
、 Onが共に閉でめり、第1のヒータ(ハ)は通電さ
れて発熱し、第2のヒータ(2)は通電されておらず発
熱していない第1の状態を示している。この時、受熱部
0)で発生した高温の作動流体蒸気(31))は、管路
(4A)を通って放熱部(2)へと流通し、冷却されて
凝縮する。凝縮してさらに冷却され、低温となった流体
(3A)は管路(4B)を通り、管路(sl))を経て
第4の開閉弁α2を通過し、第2のアキュムレータ(7
)へ流入し、ウィックall、(ハ)内に浸透する。こ
の間、第1のアギームレータ(6)内の目の細かいウィ
ックQυ内に浸透していた流体は。
Next, the operation will be explained. Figure 1 shows that the first and fourth on-off valves (9+, Q3 are both open, and the second and third on-off valves (In
, On are both closed, indicating the first state in which the first heater (c) is energized and generates heat, and the second heater (2) is not energized and does not generate heat. At this time, the high temperature working fluid vapor (31)) generated in the heat receiving part 0) flows through the pipe (4A) to the heat radiating part (2), where it is cooled and condensed. The fluid (3A), which is condensed and further cooled to a low temperature, passes through the pipe (4B), passes through the pipe (sl), passes through the fourth on-off valve α2, and is transferred to the second accumulator (7).
) and permeates into the wick (c). During this time, the fluid that had penetrated into the fine wick Qυ in the first agimulator (6).

第1のヒータのにより加熱されて蒸発1〜.第1のアキ
ュムレータ(6)内の蒸気圧を一1)昇せしめる。その
結果、第1のアキュムレータ(6)の内部圧力が、受熱
部+1)の圧力よりも痛くなり、第1のアキュムレータ
(6)内の目の粗いウィックの内に浸透していた流体が
受熱部(1)へ排出される。この時、第1のヒータr2
漕により加熱され蒸発するのは、目の細かいクイックQ
υ内に浸透していた流体のみであり、目の粗いウィック
(イ)内の流体は加熱されないので、第1のヒータ(ハ
)による加熱蓋がわずかでよいことになる。また、ウィ
ックを目の細かいウィックC1)1と目の粗いウィック
四に区別することにより、目の細かいウィックQυの毛
管力の方が目の粗いウィック(ハ)よりも太きいため、
目の粗いウィック@よりも先に目の細かいウィック01
)に流体が浸透し、ヒータの加熱開始時においては常に
目の細かいウィックQυ内に液体が存在することになり
、いわゆる空だきを防IFでき、ヒータ■、c!41加
熱による圧力上昇の信頼性を高めることができる。また
、目の粗いウィック(ハ)の使用により、液体の流入・
流出に伴う流動抵抗を小さくできるため、アキュムレー
タ(61,(71への液体の流入・流出が容易に行える
ばかりでなく2例えば宇宙などの無重力下でも同様の機
能を持つという利点を得ることができる。
It is heated by the first heater and evaporates from 1 to 1. -1) Increase the vapor pressure in the first accumulator (6). As a result, the internal pressure of the first accumulator (6) becomes higher than the pressure of the heat receiving part +1), and the fluid that has penetrated into the coarse wick in the first accumulator (6) is transferred to the heat receiving part. (1). At this time, the first heater r2
It is the fine-mesh Quick-Q that is heated and evaporated by the tank.
Only the fluid that has permeated into υ is heated, and the fluid in the coarse wick (A) is not heated, so only a small amount of heating is required by the first heater (C). In addition, by distinguishing the wick into fine wick C1)1 and coarse wick 4, the capillary force of the fine wick Qυ is greater than that of the coarse wick (C).
Fine wick 01 before coarse wick @
), and when the heater starts heating, the liquid is always present in the fine wick Qυ, which prevents so-called dry firing (IF), and the heater ■, c! 41 The reliability of pressure increase due to heating can be improved. In addition, by using a coarse wick (c), liquid can flow in and
Since the flow resistance associated with outflow can be reduced, not only can liquid flow easily into and out of the accumulator (61, (71), but also the advantage of having the same function even under zero gravity, such as in space, can be obtained. .

次(=、第1のアキュムレータ(6)から排出された直
接加熱されていない温度の低い液体は、管路(8A)を
経て第2の冷却器(至)及び第1の開閉弁(9)を通過
して受熱部(1)へ流入する。この時、第2の冷却器(
至)を通して第2のアキュムレータ(7)内の蒸気相を
冷却するため、第2のアキュムレータ(7)の圧力が容
易に低下し。
Next (=, the low-temperature liquid that is not directly heated and discharged from the first accumulator (6) passes through the pipe (8A) to the second cooler (to) and the first on-off valve (9). passes through and flows into the heat receiving part (1). At this time, the second cooler (
In order to cool the vapor phase in the second accumulator (7) through the second accumulator (7), the pressure in the second accumulator (7) is easily reduced.

放熱部(2)からの液体(3A)の流入が容易となる。The liquid (3A) can easily flow in from the heat radiation part (2).

そのため、先行例で示I−た熱電素子(131による冷
却、すなわち冷却のための電気入力が不必要となるとい
う利点が生じる。ただし、冷却器(ハ)、(4)が無い
場合にも、アキュムレータ(61,(7)内の蒸気は流
入液体(3A)により冷却されて凝縮し、圧力が低下す
るので、正常な動作が得られるのはもちろんでおる。
Therefore, there is an advantage that cooling by the thermoelectric element (131) shown in the preceding example, that is, no electrical input for cooling is required.However, even when there are no coolers (c) and (4), Since the vapor in the accumulators (61, (7)) is cooled and condensed by the inflowing liquid (3A) and the pressure is reduced, normal operation can of course be achieved.

次に、第2.第3の開閉弁01. +IIIが共に開、
第1.第4の開閉弁01. tlllが共に閉でるり、
第1のヒータ(ハ)は発熱せず、第2のヒータC141
は通電されて発熱する第2の状態に切り変わると、上記
第1の状態の場合と同様の作用により受熱部+1)から
放熱部(21へと熱輸送が行われる。この時、放熱部(
2)からの液体(3A)は第1のアキュムレータ(6)
に流入し、第2のアキュムレータ(7)から受熱部+1
)へ向けて排出されることになる。
Next, the second. Third on-off valve 01. +III opens together,
1st. Fourth on-off valve 01. tllll closes together,
The first heater (C) does not generate heat, and the second heater C141
When the is switched to the second state in which it is energized and generates heat, heat is transported from the heat receiving part +1 to the heat radiating part (21) by the same action as in the first state.At this time, the heat radiating part (
The liquid (3A) from 2) is transferred to the first accumulator (6)
from the second accumulator (7) to the heat receiving part +1
).

以上の動作の繰り返しにより、わずかなヒータ(至)、
 C141人力により受熱部(1)から放熱部(2)へ
の熱輸送が行われることになる。
By repeating the above operation, a slight heater (total),
C141 Heat will be transported from the heat receiving section (1) to the heat dissipating section (2) by human power.

なお、上記実施例では目の細かいウィックQυ及び目の
粗いウィック(イ)として網目状のものを示したが、第
2図及び第2図の一部を拡大して第3図に示すように、
目の細かいウィックQυとしてアキュムレータ+61.
 +71内面に細い溝を切って構成した溝形ウィック、
目の粗いウィック@として細管を束ねて構成した細管群
を使用しても上記実施例と同様の効果を奏することはも
ちろん、製作が容易で信頼性が高いなどの効果もめる。
In the above embodiment, the fine wick Qυ and the coarse wick (A) are shown as mesh-like ones, but as shown in FIG. 2 and a part of FIG. 2 enlarged, ,
Accumulator +61 as fine wick Qυ.
+71 A groove-shaped wick constructed by cutting thin grooves on the inner surface.
Even if a group of thin tubes formed by bundling thin tubes is used as a coarse wick, the same effects as those of the above embodiment can be obtained, as well as advantages such as ease of manufacture and high reliability.

また、上記実施例では反転用開閉弁(9)〜O2を使用
した場合を示したが、第1.第2の開閉弁(9+、 (
IIのかわりにアキュムレータ(6)、 (71から受
熱部(1)へ向かってのみ開となる逆止弁、第3.第4
の開閉弁aυ、Q邊のかわりに放熱部(2)からアキュ
ムレータ(61,+71に向かっての開となる逆1)−
弁をそれぞれ使用l−だ場合にも」二記実施例と同様の
効果を奏する。
Further, in the above embodiment, the case where the reversing on-off valves (9) to O2 are used, but the first. Second on-off valve (9+, (
Instead of II, an accumulator (6), (a check valve that opens only from 71 to the heat receiving part (1), 3rd and 4th
Instead of the opening/closing valve aυ, Q side, the accumulator is opened from the heat dissipation part (2) towards 61, +71 (reverse 1) -
Even when two valves are used, the same effect as in the second embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、アキュムレータ内の
少なくとも一部な毛管拐料で構成し、加熱は主とし【」
二記毛管材別に浸透した凝縮性熱媒体を対象に行うので
、アキュムレータの列用に装する加熱−が小さな、すな
わち凝縮性熱媒体の循環のためのポンプ動力が小さい熱
伝達装置が得られる効果がめる。
As described above, according to the present invention, at least a part of the accumulator is composed of capillary material, and heating is mainly performed.
2. Since this is performed on the condensable heat medium that has permeated into each capillary material, a heat transfer device that requires less heating for the accumulator row, that is, a smaller pump power for circulating the condensable heat medium, can be obtained. I'm worried.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成断面図、第2図
はこの発明の他の実施例に係わるアキュムレータを拡大
して示す断面図、第3図は第2図のI■の部分を拡大l
〜て示す断面図、第4図は先行の熱伝達装置を示す構成
断面図である図において、(1)は受熱部、(2)は放
熱部、 13+。 (aA) 、 (3B) ij、凝縮性熱媒体、 (4
1,(4A)〜(4e) +(8A)〜(8D)は管路
、(5)はファン、 (61,+71は第1゜第2のア
キュムレータ、(9)〜03は開閉弁、α3は熱電2素
子、Qυは第1毛管材料、@は第2毛管材料、 c!3
. (241は第1. 第2(7)ヒ−1,J cah
iI、第2の冷却器である。 なお、各図中同一符号は同一または相当部分を示すもの
とする。
FIG. 1 is a cross-sectional view of the configuration of an embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of an accumulator according to another embodiment of the present invention, and FIG. 3 is a portion of I■ in FIG. Enlarge l
13+ is a cross-sectional view showing the structure of the previous heat transfer device. (aA), (3B) ij, condensable heating medium, (4
1, (4A) to (4e) + (8A) to (8D) are pipes, (5) is a fan, (61, +71 are 1st and 2nd accumulators, (9) to 03 are on-off valves, α3 is two thermoelectric elements, Qυ is the first capillary material, @ is the second capillary material, c!3
.. (241 is the 1st. 2nd (7) H-1, J cah
iI, second cooler; Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] (1)受熱部と放熱部とアキュムレータ群装置を順に連
結し、内部に凝縮性熱媒体を封入して循環路を形成し、
上記アキュムレータ群装置は少なくとも第1アキュムレ
ータと第2アキュムレータと反転用開閉弁を有し、第1
アキュムレータ内の凝縮性熱媒体を加熱して蒸気圧を高
めることにより、上記凝縮性熱媒体を上記受熱部へ還流
させ、かつ第2アキュムレータへ上記放熱部の凝縮性熱
媒体を流入させると共に、上記加熱を第1アキュムレー
タから第2アキュムレータに切り替え、上記反転用開閉
弁の作用で第1アキュムレータと第2アキュムレータの
動作を反転させることを繰り返す熱伝達装置において、
上記アキュムレータ内の少なくとも一部を毛管材料で構
成し、上記加熱は主として上記毛管材料に浸透した凝縮
性熱媒体を対象に行うことを特徴とする熱伝達装置。
(1) A heat receiving section, a heat dissipating section, and an accumulator group device are connected in order, and a condensable heat medium is sealed inside to form a circulation path,
The accumulator group device has at least a first accumulator, a second accumulator, and a reversing on-off valve;
By heating the condensable heat medium in the accumulator to increase its vapor pressure, the condensable heat medium is refluxed to the heat receiving section, and the condensable heat medium in the heat radiating section is caused to flow into the second accumulator, and the In a heat transfer device that repeatedly switches heating from a first accumulator to a second accumulator and reverses the operation of the first accumulator and the second accumulator by the action of the reversing on-off valve,
A heat transfer device characterized in that at least a portion of the accumulator is made of a capillary material, and the heating is performed mainly on a condensable heat medium that has permeated the capillary material.
(2)毛管材料として目の細かい第1毛管材料と目の粗
い第2毛管材料とを用い、第1毛管材料に浸透した凝縮
性熱媒体を加熱する特許請求の範囲第1項記載の熱伝達
装置。
(2) Heat transfer according to claim 1, in which a first capillary material with a fine mesh and a second capillary material with a coarse mesh are used as capillary materials to heat the condensable heat medium that has permeated the first capillary material. Device.
(3)第1毛管材料としてアキュムレータ内面に溝を切
って構成した溝形毛管材料を用いる特許請求の範囲第2
項記載の熱伝達装置。
(3) Claim 2 in which a groove-shaped capillary material formed by cutting grooves on the inner surface of the accumulator is used as the first capillary material.
Heat transfer device as described in section.
(4)第2毛管材料として細管を束ねて構成した細管群
を用いる特許請求の範囲第2項または第3項記載の熱伝
達装置。
(4) The heat transfer device according to claim 2 or 3, in which a group of capillary tubes formed by bundling capillary tubes is used as the second capillary material.
JP60225313A 1985-10-09 1985-10-09 Heat transfer apparatus Pending JPS6285450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60225313A JPS6285450A (en) 1985-10-09 1985-10-09 Heat transfer apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60225313A JPS6285450A (en) 1985-10-09 1985-10-09 Heat transfer apparatus

Publications (1)

Publication Number Publication Date
JPS6285450A true JPS6285450A (en) 1987-04-18

Family

ID=16827393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60225313A Pending JPS6285450A (en) 1985-10-09 1985-10-09 Heat transfer apparatus

Country Status (1)

Country Link
JP (1) JPS6285450A (en)

Similar Documents

Publication Publication Date Title
US4688399A (en) Heat pipe array heat exchanger
US6351951B1 (en) Thermoelectric cooling device using heat pipe for conducting and radiating
US4862708A (en) Osmotic thermal engine
CN104040280B (en) Cooling device
US10605541B1 (en) Heat pipe—thermal storage medium based cool storage system
US9052126B2 (en) Heat exchange circulatory system
AU608994B2 (en) Air-cooled absorption air-conditioner
JPS6285450A (en) Heat transfer apparatus
JPH0352627A (en) Membrane distillation apparatus
JPH0113023B2 (en)
CN109154253B (en) Thermoelectric power generation device
JPH0413636B2 (en)
KR20110122240A (en) Heat-exchange apparatus with micro-channels
JPS6226491A (en) Heat transfer device
JP2005337336A (en) Liquefied gas evaporating device
JP7080001B2 (en) Absorption chiller
JPH10122688A (en) Chiller
KR102355126B1 (en) Heat exchanger
JPS60171389A (en) Heat transfer device
KR200228259Y1 (en) Boiler apparatus adopting heat pipes
JPS5838719B2 (en) Netsuden Tatsuouchi
JP2005030659A (en) Heat pump type water heater
JPS61110881A (en) Heat exchanger
JPH0590777A (en) Cold plate and cooler using the same
JPH0424370Y2 (en)